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Math 411 Homework 5 Due Friday, April 22

(Big Quiz 2 on Friday, April 22 also)

FTC Let f: [a,b] — R continuous.
a) Prove that [ f(t) dt = 0 for all # € [a,b] implies that f(z) = 0 for all = € [a, b].

FTC part 1 implies that -+ f f(t) dt = f(x), so by differentiating both sides of the
above equation, we get f ( ) 0.

b) Prove that [ f(t) dt = ff f(t) dt for all x € [a.b] implies that f(z) = 0 for all

x € [a,b].
Note that f; f(t) dt = — fb ) dt, so differentiate both 51des of the equation using
FTC part 1 gives 2 [ f(t) f(z)=—f(x — ;7 f(t) dt. Since the only real

number y with y = —y is 0 and this holds for all x e [a b] we get flx) =

Integral definition of Inx and e

a) Use the definition of Inxz = flx % dt to prove that In(z/y) = Inx —Iny for z,y > 0.
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This is a change of variables argument. In(x/y) is equal to by definition / — dt while
1

the right hand side Inz —Iny = [} dt — [V 3 dt = [[ } dt+ [ § dt = [T} dt. Let
u = £. So what I'm looking for is a change of variables s(¢) such that s(1) = y and

s(z/y) = x. The obvious choice is s = yt, so ds = ydt and
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In(z/y) = T dt = ——ds= —ds=1Inx —Iny.
1 B
1 y y Y y §

b) Use the definition of e as the number such that fl % dt = 1 to prove that e*° =
e?/e’ and e = (e%)°.
Using the definition from a), this means that e is defined to be the number such that
In(e) = 1. By part a), we know that In(e®/e®) = In(e?) — In(e®) = aln(e) — bln(e) =
(a — b)In(e) = In(e*"?) if only we show that In(z") = rIn(x). However, that is just
another change of variables since if we let t = s, then dt = rs"~'ds which makes

x” 1 xT
In(z") = / —dt = / —rs’” lds = r/ —ds =rln(z)
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Therefore, In(e?/e’) = In(e®~?), however, since 1 is a strictly positive function, In(z)

is a strictly increasing function (FTCI), which means that In(z) = In(y) implies that

T =uy.
Similarly, In(e?’) = abln(e) = bIn(e?) = In((e®)®) implies that e = (e)°.

xT

c) Use the definition from part b) to prove that -Le® = e®.

By our previous work, notice that In(e”) = x1n(e) = x. Also, we know by FTC1 that

d slnz = % Differentiating both sides of the above equation now gives %ln(e‘”) =

1 d r _ d x
= g,¢° = 1. Solving for 4 o€’ gives us e’ = e”



Show that the sequence f,(z) = & converges uniformly on [0, M] for any M, but only
pointwise on [0, c0).

Notice that lim,,c frn(2) = 0, so the limit of the functions is the zero function. Given
M (M > 0 is implied by the problem as [0,M] = @ if M < 0 and [0,0] is a single
point where f,(0) = 0 for all n), show that for all e > 0, there exists N such that
|fa(z) — 0] < € for all z € [0,M]. Fix € > 0 and let N = % then for all n > N,
fa(z) = £ < & = % since z € [0, M], fu(z) < M& < ¢ which is the first thing we
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wanted to show.

On [0,00), fr — 0 pointwise since for any = > 0, given € > 0, let N > x/epsilon. Then

for all n > N, |fu(z)| = || < |£| < € (for pointwise convergence, N is allowed to

depend on x). To show that conve;gence fails to be uniform, we need to show that there

exists € > 0 such that for all NV, there exists z € [0, 00) such that |f,(z)| > € for some
1

n > N. Let e = 1. Then for any N, let z = . Notice that |f,(z)| = |%&]| = |¥| =1
which is what we wanted to prove.

The sup norm Let X and Y be metric spaces. Define Cy(X) = {f : X —
Y | f is continuous and bounded }. If Y is a normed space with norm |- |y, then
define the sup norm on Cy (X) to be ||f|| = sup{|f(x)|y | x € X}.

Prove that Cy(X) is a metric space under the metric induced by the sup norm
(dey (x)(f,9) = |If — gll). What does B(f,¢) look like?

We need to show
1. dCy(X) Cy(X) X Cy(X) — R29 and d(f,g) =0= f =g.

2. d(f,g) = d(g, f)
3. the triangle inequality

1. Since | — |y is a norm on Y, it is a map | — |y : Y — R2%, so |f(z) — g(z)| € RO
for all z € X. Therefore, d(f,g) = ||f — gl = sup{|f(z) — g(z)|y} € R=" and
dey(x) + Cy (X) x Cy(X) — RZ0, Assume that d(f,g) = ||f — g/ = 0. Namely, we
are assuming that sup{|f(z) — g(x)|y } = 0, and therefore that |f(x) — g(z)|y = 0 for
all z € X. Since | — |y is a norm, this implies that f(z) = g(x) for all z € X and
therefore that f = ¢ as functions from X to Y.

2. Since |—|y isanorm, |f(z)—g(z)|y = |g(x)—f(z)|y and therefore || f—g|| = |lg— f]|-
3. Since | — |y is a norm, it satisfies the triangle inequality. = Namely, if
fig,h : X = Y, then |f(x) — h(z)|y < |f(z) — g(x)|y + |g(x) — h(z)]y. Therefore,
d(f ) = (I~ h] = sup{|(x) —h(x)ly} < sup{|t(zx) —g(@)ly} +sup{lglz) —h@)ly} =
If =gl +1lg — bl = d(f,g) + d(g, h) as we wanted.

B(f,€) C Cy(X) looks like an epsilon ribbon around the function f.

Let f be a bounded continuous function on [0,1] and define |f|, =

1/n .
(o 1 @)™ de) ™ Prove that Timyec | flln = /1]

The key to this problem is the fact that 0 < A < 1 implies that lim, oo VX = 1 (this
is the inverse function version of the fact that the pointwise limit of y = z™ on [0,1) is

f(2) = 0).

Since f is a continuous function on a compact set, f achieves both a max and a min. Let

M be the larger of the absolute values of these two quantities. Then |f(z)| < M for all
x € [0,1] and ||f|| = sup{|f(x)| | z € [0,1]} = M (since both the max and the min are
achieved on [0, 1], there exists xo € [0, 1] with |f(zo)| = M). In addition, our inequality
implies that fol |f(x)|™ dx < fol M"™ de =M"(1—-0)=M",so | f|l. <M for all n € N.
Since sequential limits preserve inequalities, this implies that lim, . || f]|n < M.



To show that lim, o || f|ln = M, show that for all e > 0, there exists N such that for

1

alln >N, M—e<|[fln<Mforalln>N (ie. M —e< (folyf(x)|”da;)" < M).

For now, assume that all those things are non-neg (the only part in doubt is the M —¢)
and raising to the nth power is an increasing function on positive numbers, so this is

(M — )" < [ |f(z)]" dz < M™.

Assume M > 0 (otherwise f = 0 on [0,1] and all of the norms involved are 0, so
proposition holds). Given 0 < € < €; < M, the fact that | f(x¢)| = M implies that there

1

exists 6 > 0 such that |f(x)| > M —¢; for x € [xg— 3,29+ 0]. Then <f01 |f(z)|™ dx) ">
1 1

(f;;jj f ()] dx) "> (ijOjj(M )" dx) " = (M — &) /23. Since 0 < 25 < 1, we

know that lim,, o, V20 = 1 (this is a pointwise limit), so lim, o0 || flln = M — €1 >

M — ¢, which implies that there exists N such that ||f|,, > M — € for all n > N.

6. Prove that the uniform limit of bounded functions is bounded and that the sequence
itself is uniformly bounded.

For both parts, let f, : X — Y and assume that for all n € N, there exists M, such
that |f,(z)| < M, (i.e. fy, is bounded). Let f, — f (with f: X — Y) uniformly. The
first part is prove that there exists M such that |f(z)| < M for all x € X. The second
part is prove that there exists M such that |f,(z)] < M and |f(z)| < M for all z € X.

Since f, — f uniformly, for all € > 0, there exists N such that |f,(z) — f(x)| < € for
all n > N and for all z € X. If € = 1, using the Cauchy condition, we get N such
that |fn(z) — fn(z)] < 1 for all n > N and all x € X. In other words, for all x € X
and for all n > N, d(fn, fn) < 1, or fn € Bey(x)(fn,1) for all n > N. This implies
that f(x) = limu—eo fn(7) € Bey (x)(fn,1). That is, d(fn, f) < 1, and since [fy(z)| is
bounded above by My, |f(z)| < |f(x) — fv(2)|+|fn(z)| < 1+ My for all x € X which
is the first part of what we wanted to show.

For the second part, simply let M = max{ My, My, ..., Mn_1, My + 1}.

7. Pointwise convergence with no uniformly convergent subsequence
a) Let f,(z) = ﬁ“ Prove that f,, — 0 pointwise on (0, 1] (this was a typo, the
interval shouldn’t have included 0.

1
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Fix e >0 and fix 0 < z < 1. Then any N > 571 will give us |-

| <e.

b) Prove that the fact that f,(1) = % for all n € N implies that there is no subse-
quence converging uniformly on (0, 1].
Assume there is a uniformly convergent subsequence. This means that for all € > 0,
there exist K such that for all £ > K, |fy, (z) — 0] < € for all z € (0,1]. Assume that
this is the case and let € = % and K as given. Notice that fnk(nl—k) = nikn—lk +1= %
Since ng € N, é € (0, 1], however, |fnk($)‘ = 1 > ¢ which is a contradiction.

8. Suppose that f: R — R continuous and let f,,(z) = f(nx) for n € N. Prove that {f,}
equicontinuous implies that f(z) = ¢ for some constant c.

Proof by contradiction. Assume that there exist a,b € R such that f(a) # f(b) and
assume that {f,} is equicontinuous (i.e. for all € > 0, there exists 6 > 0 such that
|z — y| < 0 implies that |f,(x) — fn(y)| < €. Let |f(a) — f(b)] = e. Equicontinuity
gives a corresponding > 0. The idea is that the points 7 and the points % both
approach 0, so will eventually be less than § apart (for large enough n). However,



9.
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our assumption f,(z) = f(nx) implies that f,(%) = f(n3) = f(a) and fn(%) = f(b),
so their y coordinates will still have distance € from each other. This will contradict
equicontinuity and we will have shown that f is necessarily constant.

Since a € R, lim,, o & = 0, so there exists N1 such that [%[,6/2 for all n > Ny and
similarly there exists Ny such that [2| < §/2 for all n > Ny. Let N = max{Ny, No}.
Then |% — 2| < & by design but fy(%) = f(N%) = f(a) and fn(£) = f(b), so
(&) — fn ()] = |f(a) — f(b)| = € which is not < € and so we have a contradiction.

Let f, : [a,b] — R such that {f,} is uniformly bounded and f, € R([a,b]). Let
x) = [T fa(t) dt for & € [a,b]. Prove that there exists a subsequence {F, }
converging uniformly on [a, b].

We need to show that {F,} is pointwise bounded and equicontinuous. If this is the
case, the Arzeld-Ascoli theorem guarantees a convergent subsequence in Cgr([a,b]) and
convergence in the function space is uniform convergence of the subsequence.

Since {f,} is uniformly bounded, there exists M such that | fn( )| < M for all z € [a, b].
This implies that |F,,(z)] = | [ fu(t) dt| < [ |fa(t)] dt < f |fn(t)] dt < f M dt =
M (b — a) so the set {F,(x)} is pointwise bounded by the constant function ¢(x) = M.

To show that the set is equicontinuous, we need to show that for all ¢ > 0, there
exists 6 > 0 such that | —y| < ¢ implies that |F,(z) — = | [ fa(t)dt —
L2 fu(t)dt] = | f f(t)dt| < e. Without loss of generality, assume that y < x. No-

tice that |f fa(t)dt| < f | fn(t)| dt < f M dt = M(x —y), so § = ¢/M will work.

Weierstrass Theorem Let f : [0, 1] — R continuous and assume that fol f(z)z" dox =
0 for all n € Z=°. Prove that f(x) =0 for all z € [0, 1].

The hint was use the Weierstrass Theorem to show that fo 2dr = 0.

By the Weierstrass Approximation Theorem, there exists a sequence of polynomials
pn(x) that converge uniformly to f(z) on [0,1]. Let p,(z) = ap(n) + ar(n)z + --- +

an(n)x”. Since fol zF dz =0 for all k = 0,1,..., for any n = 0,1, ... the coefficient
of 2 in pn( ),ak(n) € ]R o) fo x)ay(n)x* = 0 and by summing these up, we get that
fo ) dr = 0. Recall that if the limit is uniform and all of our functions are

mtegrable, then fa limy, 00 frn(7) dz = lim, fa fn(z) dz, so we need to show that
f(x)pn(x) = (f(x))? uniformly and we will have achieved the hint.

Since py, () — f(x) uniformly, for every € > 0, there exists N such that |p,(z)—f(z)] < €
for every n > N and for every = € [0, 1]. We need to show that for all e > 0, there exists
N such that |f(x)pn(x) — f(z)f(z)| = |f(z)] - |[pn(z) — f(z)]. Since f is continuous on a
closed interval, f is bounded. Let |f(z)| < M. Then let € = ¢/M and N = N, and we
have, for all n > N, [f(x)pn(x) = f(2) f(2)] = | f(2)]-|pn(x) = f(2)] < M]|pn(z) = f(z) <
M 7 = € and the convergence is uniform.

Therefore, lim,, oo fol prn(x)f(x) de = 0 = fol limy, 00 P () f(z) dz = fo 2 dz.
However, (f(z))? > 0, so for all partitions P of [0, 1], M;, m; > 0. If there ex1sts x E [0, 1]
with f2(z) > 0, then since f? is a product of continuous functions, so continuous, there
exists a partition P with = € [x;_1,2;] and m; > 0. This implies that fol f*(z) dx >
L(P, f?) > m;Ax; > 0 which is a contradiction. Therefore, f?(x) = 0 and f(x) =



