
Math 411 Homework 5 Due Friday, April 22
(Big Quiz 2 on Friday, April 22 also)

1. FTC Let f : [a, b]→ R continuous.
a) Prove that

∫ x
a f(t) dt = 0 for all x ∈ [a, b] implies that f(x) = 0 for all x ∈ [a, b].

FTC part 1 implies that d
dx

∫ x
a f(t) dt = f(x), so by differentiating both sides of the

above equation, we get f(x) = 0.

b) Prove that
∫ x
a f(t) dt =

∫ b
x f(t) dt for all x ∈ [a.b] implies that f(x) = 0 for all

x ∈ [a, b].

Note that
∫ b
x f(t) dt = −

∫ x
b f(t) dt, so differentiate both sides of the equation using

FTC part 1 gives d
dx

∫ x
a f(t) dt = f(x) = −f(x) = d

dt −
∫ x
b f(t) dt. Since the only real

number y with y = −y is 0 and this holds for all x ∈ [a, b], we get f(x) = 0

2. Integral definition of lnx and e
a) Use the definition of lnx =

∫ x
1

1
t dt to prove that ln(x/y) = lnx− ln y for x, y > 0.

This is a change of variables argument. ln(x/y) is equal to by definition

∫ x
y

1

1

t
dt while

the right hand side lnx− ln y =
∫ x
1

1
t dt−

∫ y
1

1
t dt =

∫ x
1

1
t dt+

∫ 1
y

1
t dt =

∫ x
y

1
t dt. Let

u = x
y . So what I’m looking for is a change of variables s(t) such that s(1) = y and

s(x/y) = x. The obvious choice is s = yt, so ds = ydt and

ln(x/y) =

∫ x
y

1

1

t
dt =

∫ x

y

1
s
y

1

y
ds =

∫ x

y

1

s
ds = lnx− ln y.

b) Use the definition of e as the number such that
∫ e
1

1
t dt = 1 to prove that ea−b =

ea/eb and eab = (ea)b.

Using the definition from a), this means that e is defined to be the number such that
ln(e) = 1. By part a), we know that ln(ea/eb) = ln(ea) − ln(eb) = a ln(e) − b ln(e) =
(a − b) ln(e) = ln(ea−b) if only we show that ln(xr) = r ln(x). However, that is just
another change of variables since if we let t = sr, then dt = rsr−1ds which makes

ln(xr) =

∫ xr

1

1

t
dt =

∫ x

1

1

sr
rsr−1ds = r

∫ x

1

1

s
ds = r ln(x)

Therefore, ln(ea/eb) = ln(ea−b), however, since 1
t is a strictly positive function, ln(x)

is a strictly increasing function (FTCI), which means that ln(x) = ln(y) implies that
x = y.
Similarly, ln(eab) = ab ln(e) = b ln(ea) = ln((ea)b) implies that eab = (ea)b.

c) Use the definition from part b) to prove that d
dxe

x = ex.

By our previous work, notice that ln(ex) = x ln(e) = x. Also, we know by FTC1 that
d
dx lnx = 1

x . Differentiating both sides of the above equation now gives d
dx ln(ex) =

1
ex

d
dxe

x = 1. Solving for d
dxe

x gives us d
dxe

x = ex.
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3. Show that the sequence fn(x) = x
n converges uniformly on [0,M ] for any M , but only

pointwise on [0,∞).

Notice that limn→∞ fn(x) = 0, so the limit of the functions is the zero function. Given
M (M > 0 is implied by the problem as [0,M ] = ∅ if M < 0 and [0, 0] is a single
point where fn(0) = 0 for all n), show that for all ε > 0, there exists N such that
|fn(x) − 0| ≤ ε for all x ∈ [0,M ]. Fix ε > 0 and let N = M

ε , then for all n ≥ N ,
fn(x) = x

n ≤
x
M
ε

= xε
M since x ∈ [0,M ], fn(x) ≤ Mε

εM ≤ ε which is the first thing we

wanted to show.
On [0,∞), fn → 0 pointwise since for any x ≥ 0, given ε > 0, let N > x/epsilon. Then
for all n ≥ N , |fn(x)| = |xn | < |

x
x
ε
| < ε (for pointwise convergence, N is allowed to

depend on x). To show that convergence fails to be uniform, we need to show that there
exists ε > 0 such that for all N , there exists x ∈ [0,∞) such that |fn(x)| ≥ ε for some

n ≥ N . Let ε = 1. Then for any N , let x = 1
N . Notice that |fn(x)| = | xN | = |

1
N
N | = 1

which is what we wanted to prove.

4. The sup norm Let X and Y be metric spaces. Define CY (X) = {f : X →
Y | f is continuous and bounded }. If Y is a normed space with norm | · |Y , then
define the sup norm on CY (X) to be ‖f‖ = sup{|f(x)|Y | x ∈ X}.
Prove that CY (X) is a metric space under the metric induced by the sup norm
(dCY (X)(f, g) = ‖f − g‖). What does B(f, ε) look like?

We need to show
1. dCY (X) : CY (X)× CY (X)→ R≥0 and d(f, g) = 0 ⇒ f = g.
2. d(f, g) = d(g, f)
3. the triangle inequality

1. Since | − |Y is a norm on Y , it is a map | − |Y : Y → R≥0, so |f(x) − g(x)| ∈ R≥0
for all x ∈ X. Therefore, d(f, g) = ‖f − g‖ = sup{|f(x) − g(x)|Y } ∈ R≥0 and
dCY (X) : CY (X) × CY (X) → R≥0. Assume that d(f, g) = ‖f − g‖ = 0. Namely, we
are assuming that sup{|f(x)− g(x)|Y } = 0, and therefore that |f(x)− g(x)|Y = 0 for
all x ∈ X. Since | − |Y is a norm, this implies that f(x) = g(x) for all x ∈ X and
therefore that f = g as functions from X to Y .
2. Since |−|Y is a norm, |f(x)−g(x)|Y = |g(x)−f(x)|Y and therefore ‖f−g‖ = ‖g−f‖.
3. Since | − |Y is a norm, it satisfies the triangle inequality. Namely, if
f, g, h : X → Y , then |f(x) − h(x)|U ≤ |f(x) − g(x)|Y + |g(x) − h(x)|Y . Therefore,
d(f, h) = ‖f−h‖ = sup{|f(x)−h(x)|Y } ≤ sup{|t(x)−g(x)|Y }+sup{|g(x)−h(x)|Y } =
‖f − g‖+ ‖g − h‖ = d(f, g) + d(g, h) as we wanted.

B(f, ε) ⊂ CY (X) looks like an epsilon ribbon around the function f .

5. Let f be a bounded continuous function on [0, 1] and define ‖f‖n =(∫ 1
0 |f(x)|n dx

)1/n
. Prove that limn→∞ ‖f‖n = ‖f‖.

The key to this problem is the fact that 0 < λ ≤ 1 implies that limn→∞
n
√
λ = 1 (this

is the inverse function version of the fact that the pointwise limit of y = xn on [0, 1) is
f(x) = 0).

Since f is a continuous function on a compact set, f achieves both a max and a min. Let
M be the larger of the absolute values of these two quantities. Then |f(x)| ≤M for all
x ∈ [0, 1] and ‖f‖ = sup{|f(x)| | x ∈ [0, 1]} = M (since both the max and the min are
achieved on [0, 1], there exists x0 ∈ [0, 1] with |f(x0)| = M). In addition, our inequality
implies that

∫ 1
0 |f(x)|n dx ≤

∫ 1
0 M

n dx = Mn(1− 0) = Mn, so ‖f‖n ≤M for all n ∈ N.
Since sequential limits preserve inequalities, this implies that limn→∞ ‖f‖n ≤M .



To show that limn→∞ ‖f‖n = M , show that for all ε > 0, there exists N such that for

all n ≥ N , M − ε < ‖f‖n ≤ M for all n ≥ N (i.e. M − ε <
(∫ 1

0 |f(x)|n dx
) 1
n ≤ M).

For now, assume that all those things are non-neg (the only part in doubt is the M − ε)
and raising to the nth power is an increasing function on positive numbers, so this is
(M − ε)n <

∫ 1
0 |f(x)|n dx ≤Mn.

Assume M > 0 (otherwise f = 0 on [0, 1] and all of the norms involved are 0, so
proposition holds). Given 0 < ε < ε1 < M , the fact that |f(x0)| = M implies that there

exists δ > 0 such that |f(x)| ≥M − ε1 for x ∈ [x0− δ, x0 + δ]. Then
(∫ 1

0 |f(x)|n dx
) 1
n ≥(∫ x0+δ

x0−δ |f(x)|n dx
) 1
n ≥

(∫ x0+δ
x0−δ (M − ε1)n dx

) 1
n

= (M − ε1) n
√

2δ. Since 0 < 2δ ≤ 1, we

know that limn→∞
n
√

2δ = 1 (this is a pointwise limit), so limn→∞ ‖f‖n ≥ M − ε1 >
M − ε, which implies that there exists N such that ‖f‖n > M − ε for all n ≥ N .

6. Prove that the uniform limit of bounded functions is bounded and that the sequence
itself is uniformly bounded.

For both parts, let fn : X → Y and assume that for all n ∈ N, there exists Mn such
that |fn(x)| < Mn (i.e. fn is bounded). Let fn → f (with f : X → Y ) uniformly. The
first part is prove that there exists M such that |f(x)| < M for all x ∈ X. The second

part is prove that there exists M̃ such that |fn(x)| < M̃ and |f(x)| < M̃ for all x ∈ X.

Since fn → f uniformly, for all ε > 0, there exists N such that |fn(x) − f(x)| < ε for
all n ≥ N and for all x ∈ X. If ε = 1, using the Cauchy condition, we get N such
that |fn(x) − fN (x)| < 1 for all n ≥ N and all x ∈ X. In other words, for all x ∈ X
and for all n ≥ N , d(fN , fn) < 1, or fn ∈ BCY (X)(fN , 1) for all n ≥ N . This implies

that f(x) = limn→∞ fn(x) ∈ BCY (X)(fN , 1). That is, d(fN , f) ≤ 1, and since |fN (x)| is
bounded above by MN , |f(x)| ≤ |f(x)−fN (x)|+ |fN (x)| ≤ 1 +MN for all x ∈ X which
is the first part of what we wanted to show.

For the second part, simply let M̃ = max{M1,M2, ...,MN−1,MN + 1}.

7. Pointwise convergence with no uniformly convergent subsequence
a) Let fn(x) = 1

nx+1 . Prove that fn → 0 pointwise on (0, 1] (this was a typo, the
interval shouldn’t have included 0.

Fix ε > 0 and fix 0 < x ≤ 1. Then any N >
1
ε
−1
x will give us | 1

nx+1 | < ε.

b) Prove that the fact that fn( 1
n) = 1

2 for all n ∈ N implies that there is no subse-
quence converging uniformly on (0, 1].

Assume there is a uniformly convergent subsequence. This means that for all ε > 0,
there exist K such that for all k ≥ K, |fnk(x)− 0| < ε for all x ∈ (0, 1]. Assume that
this is the case and let ε = 1

2 and K as given. Notice that fnk( 1
nk

) = 1
nk

1
nk

+ 1 = 1
2 .

Since nk ∈ N, 1
nk
∈ (0, 1], however, |fnk( 1

nk
)| = 1

2 ≥ ε which is a contradiction.

8. Suppose that f : R→ R continuous and let fn(x) = f(nx) for n ∈ N. Prove that {fn}
equicontinuous implies that f(x) = c for some constant c.

Proof by contradiction. Assume that there exist a, b ∈ R such that f(a) 6= f(b) and
assume that {fn} is equicontinuous (i.e. for all ε > 0, there exists δ > 0 such that
|x − y| < δ implies that |fn(x) − fn(y)| < ε. Let |f(a) − f(b)| = ε. Equicontinuity
gives a corresponding δ > 0. The idea is that the points a

n and the points b
n both

approach 0, so will eventually be less than δ apart (for large enough n). However,



our assumption fn(x) = f(nx) implies that fn( an) = f(n an) = f(a) and fn( bn) = f(b),
so their y coordinates will still have distance ε from each other. This will contradict
equicontinuity and we will have shown that f is necessarily constant.

Since a ∈ R, limn→∞
a
n = 0, so there exists N1 such that | an |, δ/2 for all n ≥ N1 and

similarly there exists N2 such that | bn | < δ/2 for all n ≥ N2. Let N = max{N1, N2}.
Then | aN −

b
N | < δ by design but fN ( aN ) = f(N a

N ) = f(a) and fN ( bN ) = f(b), so

|fN ( aN )− fN ( bN )| = |f(a)− f(b)| = ε which is not < ε and so we have a contradiction.

9. Let fn : [a, b] → R such that {fn} is uniformly bounded and fn ∈ R([a, b]). Let
Fn(x) =

∫ x
a fn(t) dt for x ∈ [a, b]. Prove that there exists a subsequence {Fnk}

converging uniformly on [a, b].

We need to show that {Fn} is pointwise bounded and equicontinuous. If this is the
case, the Arzelá-Ascoli theorem guarantees a convergent subsequence in CR([a, b]) and
convergence in the function space is uniform convergence of the subsequence.

Since {fn} is uniformly bounded, there exists M such that |fn(x)| < M for all x ∈ [a, b].

This implies that |Fn(x)| = |
∫ x
a fn(t) dt| ≤

∫ x
a |fn(t)| dt ≤

∫ b
a |fn(t)| dt ≤

∫ b
a M dt =

M(b− a) so the set {Fn(x)} is pointwise bounded by the constant function φ(x) = M .

To show that the set is equicontinuous, we need to show that for all ε > 0, there
exists δ > 0 such that |x − y| < δ implies that |Fn(x) − Fn(y)| = |

∫ x
a fn(t)dt −∫ y

a fn(t)dt| = |
∫ x
y f(t)dt| < ε. Without loss of generality, assume that y < x. No-

tice that |
∫ x
y fn(t)dt| ≤

∫ x
y |fn(t)| dt ≤

∫ x
y M dt = M(x− y), so δ = ε/M will work.

10. Weierstrass Theorem Let f : [0, 1]→ R continuous and assume that
∫ 1
0 f(x)xn dx =

0 for all n ∈ Z≥0. Prove that f(x) = 0 for all x ∈ [0, 1].

The hint was use the Weierstrass Theorem to show that
∫ 1
0 (f(x))2 dx = 0.

By the Weierstrass Approximation Theorem, there exists a sequence of polynomials
pn(x) that converge uniformly to f(x) on [0, 1]. Let pn(x) = a0(n) + a1(n)x + · · · +
an(n)xn. Since

∫ 1
0 f(x)xk dx = 0 for all k = 0, 1, ..., for any n = 0, 1, ... the coefficient

of xk in pn(x), ak(n) ∈ R, so
∫ 1
0 f(x)ak(n)xk = 0 and by summing these up, we get that∫ 1

0 f(x)pn(x) dx = 0. Recall that if the limit is uniform and all of our functions are

integrable, then
∫ b
a limn→∞ fn(x) dx = limn→∞

∫ b
a fn(x) dx, so we need to show that

f(x)pn(x)→ (f(x))2 uniformly and we will have achieved the hint.

Since pn(x)→ f(x) uniformly, for every ε̃ > 0, there exists Ñ such that |pn(x)−f(x)| < ε̃
for every n ≥ Ñ and for every x ∈ [0, 1]. We need to show that for all ε > 0, there exists
N such that |f(x)pn(x)− f(x)f(x)| = |f(x)| · |pn(x)− f(x)|. Since f is continuous on a
closed interval, f is bounded. Let |f(x)| < M . Then let ε̃ = ε/M and N = Ñ , and we
have, for all n ≥ N , |f(x)pn(x)−f(x)f(x)| = |f(x)| · |pn(x)−f(x)| < M |pn(x)−f(x)| <
M ε

M = ε and the convergence is uniform.

Therefore, limn→∞
∫ 1
0 pn(x)f(x) dx = 0 =

∫ 1
0 limn→∞ pn(x)f(x) dx =

∫ 1
0 (f(x))2 dx.

However, (f(x))2 ≥ 0, so for all partitions P of [0, 1], Mi,mi ≥ 0. If there exists x ∈ [0, 1]
with f2(x) > 0, then since f2 is a product of continuous functions, so continuous, there
exists a partition P with x ∈ [xi−1, xi] and mi > 0. This implies that

∫ 1
0 f

2(x) dx ≥
L(P, f2) ≥ mi∆xi > 0 which is a contradiction. Therefore, f2(x) = 0 and f(x) = 0.


