Math 411 Homework 5 Due Friday, April 22

(Big Quiz 2 on Friday, April 22 also)

1. FTC Let $f : [a, b] \to \mathbb{R}$ continuous.

a) Prove that $\int_a^x f(t) dt = 0$ for all $x \in [a, b]$ implies that f(x) = 0 for all $x \in [a, b]$.

FTC part 1 implies that $\frac{d}{dx} \int_a^x f(t) dt = f(x)$, so by differentiating both sides of the above equation, we get f(x) = 0.

b) Prove that $\int_a^x f(t) dt = \int_x^b f(t) dt$ for all $x \in [a,b]$ implies that f(x) = 0 for all $x \in [a,b]$.

Note that $\int_x^b f(t) dt = -\int_b^x f(t) dt$, so differentiate both sides of the equation using FTC part 1 gives $\frac{d}{dx} \int_a^x f(t) dt = f(x) = -f(x) = \frac{d}{dt} - \int_b^x f(t) dt$. Since the only real number y with y = -y is 0 and this holds for all $x \in [a, b]$, we get f(x) = 0

2. Integral definition of $\ln x$ and e

a) Use the definition of $\ln x = \int_1^x \frac{1}{t} dt$ to prove that $\ln(x/y) = \ln x - \ln y$ for x, y > 0.

This is a change of variables argument. $\ln(x/y)$ is equal to by definition $\int_{1}^{\frac{x}{y}} \frac{1}{t} dt$ while the right hand side $\ln x - \ln y = \int_{1}^{x} \frac{1}{t} dt - \int_{1}^{y} \frac{1}{t} dt = \int_{1}^{x} \frac{1}{t} dt + \int_{y}^{1} \frac{1}{t} dt = \int_{y}^{x} \frac{1}{t} dt$. Let $u = \frac{x}{y}$. So what I'm looking for is a change of variables s(t) such that s(1) = y and s(x/y) = x. The obvious choice is s = yt, so ds = ydt and

$$\ln(x/y) = \int_1^{\frac{x}{y}} \frac{1}{t} dt = \int_y^x \frac{1}{\frac{s}{y}} \frac{1}{y} ds = \int_y^x \frac{1}{s} ds = \ln x - \ln y.$$

b) Use the definition of e as the number such that $\int_1^e \frac{1}{t} dt = 1$ to prove that $e^{a-b} = e^a/e^b$ and $e^{ab} = (e^a)^b$.

Using the definition from a), this means that e is defined to be the number such that $\ln(e) = 1$. By part a), we know that $\ln(e^a/e^b) = \ln(e^a) - \ln(e^b) = a \ln(e) - b \ln(e) = (a - b) \ln(e) = \ln(e^{a-b})$ if only we show that $\ln(x^r) = r \ln(x)$. However, that is just another change of variables since if we let $t = s^r$, then $dt = rs^{r-1}ds$ which makes

$$\ln(x^r) = \int_1^{x^r} \frac{1}{t} dt = \int_1^x \frac{1}{s^r} r s^{r-1} ds = r \int_1^x \frac{1}{s} ds = r \ln(x)$$

Therefore, $\ln(e^a/e^b) = \ln(e^{a-b})$, however, since $\frac{1}{t}$ is a strictly positive function, $\ln(x)$ is a strictly increasing function (FTCI), which means that $\ln(x) = \ln(y)$ implies that x = y.

Similarly, $\ln(e^{ab}) = ab\ln(e) = b\ln(e^a) = \ln((e^a)^b)$ implies that $e^{ab} = (e^a)^b$.

c) Use the definition from part b) to prove that $\frac{d}{dx}e^x = e^x$.

By our previous work, notice that $\ln(e^x) = x \ln(e) = x$. Also, we know by FTC1 that $\frac{d}{dx} \ln x = \frac{1}{x}$. Differentiating both sides of the above equation now gives $\frac{d}{dx} \ln(e^x) = \frac{1}{e^x} \frac{d}{dx} e^x = 1$. Solving for $\frac{d}{dx} e^x$ gives us $\frac{d}{dx} e^x = e^x$.

3. Show that the sequence $f_n(x) = \frac{x}{n}$ converges uniformly on [0, M] for any M, but only pointwise on $[0, \infty)$.

Notice that $\lim_{n\to\infty} f_n(x) = 0$, so the limit of the functions is the zero function. Given M (M > 0 is implied by the problem as $[0, M] = \emptyset$ if M < 0 and [0, 0] is a single point where $f_n(0) = 0$ for all n), show that for all $\epsilon > 0$, there exists N such that $|f_n(x) - 0| \le \epsilon$ for all $x \in [0, M]$. Fix $\epsilon > 0$ and let $N = \frac{M}{\epsilon}$, then for all $n \ge N$, $f_n(x) = \frac{x}{n} \le \frac{M}{\epsilon} = \frac{x\epsilon}{M}$ since $x \in [0, M]$, $f_n(x) \le \frac{M\epsilon}{\epsilon M} \le \epsilon$ which is the first thing we wanted to show.

On $[0, \infty)$, $f_n \to 0$ pointwise since for any $x \ge 0$, given $\epsilon > 0$, let N > x/epsilon. Then for all $n \ge N$, $|f_n(x)| = |\frac{x}{n}| < |\frac{x}{\frac{x}{\epsilon}}| < \epsilon$ (for pointwise convergence, N is allowed to depend on x). To show that convergence fails to be uniform, we need to show that there exists $\epsilon > 0$ such that for all N, there exists $x \in [0, \infty)$ such that $|f_n(x)| \ge \epsilon$ for some $n \ge N$. Let $\epsilon = 1$. Then for any N, let $x = \frac{1}{N}$. Notice that $|f_n(x)| = |\frac{x}{N}| = |\frac{1}{N}| = 1$ which is what we wanted to prove.

4. The sup norm Let X and Y be metric spaces. Define $C_Y(X) = \{f : X \to Y \mid f \text{ is continuous and bounded } \}$. If Y is a normed space with norm $|\cdot|_Y$, then define the sup norm on $C_Y(X)$ to be $||f|| = \sup\{|f(x)|_Y \mid x \in X\}$.

Prove that $C_Y(X)$ is a metric space under the metric induced by the sup norm $(d_{\mathcal{C}_Y(X)}(f,g) = ||f-g||)$. What does $B(f,\epsilon)$ look like?

We need to show

1. $d_{\mathcal{C}_Y(X)} : \mathcal{C}_Y(X) \times \mathcal{C}_Y(X) \to \mathbb{R}^{\geq 0}$ and $d(f,g) = 0 \Rightarrow f = g$. 2. d(f,g) = d(g,f)

3. the triangle inequality

1. Since $|-|_Y$ is a norm on Y, it is a map $|-|_Y : Y \to \mathbb{R}^{\geq 0}$, so $|f(x) - g(x)| \in \mathbb{R}^{\geq 0}$ for all $x \in X$. Therefore, $d(f,g) = ||f - g|| = \sup\{|f(x) - g(x)|_Y\} \in \mathbb{R}^{\geq 0}$ and $d_{\mathcal{C}_Y(X)} : \mathcal{C}_Y(X) \times \mathcal{C}_Y(X) \to \mathbb{R}^{\geq 0}$. Assume that d(f,g) = ||f - g|| = 0. Namely, we are assuming that $\sup\{|f(x) - g(x)|_Y\} = 0$, and therefore that $|f(x) - g(x)|_Y = 0$ for all $x \in X$. Since $|-|_Y$ is a norm, this implies that f(x) = g(x) for all $x \in X$ and therefore that f = g as functions from X to Y. 2. Since $|-|_Y$ is a norm, $|f(x) - g(x)|_Y = |g(x) - f(x)|_Y$ and therefore ||f - g|| = ||g - f||.

2. Since $|-|_{Y}$ is a norm, $|f(x) - g(x)|_{Y} = |g(x) - f(x)|_{Y}$ and therefore ||f - g|| = ||g - f||. 3. Since $|-|_{Y}$ is a norm, it satisfies the triangle inequality. Namely, if $f, g, h : X \to Y$, then $|f(x) - h(x)|_{U} \le |f(x) - g(x)|_{Y} + |g(x) - h(x)|_{Y}$. Therefore, $d(f, h) = ||f - h|| = \sup\{|f(x) - h(x)|_{Y}\} \le \sup\{|t(x) - g(x)|_{Y}\} + \sup\{|g(x) - h(x)|_{Y}\} = ||f - g|| + ||g - h|| = d(f, g) + d(g, h)$ as we wanted.

 $B(f,\epsilon) \subset \mathcal{C}_Y(X)$ looks like an epsilon ribbon around the function f.

5. Let f be a bounded continuous function on [0,1] and define $||f||_n = \left(\int_0^1 |f(x)|^n dx\right)^{1/n}$. Prove that $\lim_{n\to\infty} ||f||_n = ||f||$.

The key to this problem is the fact that $0 < \lambda \leq 1$ implies that $\lim_{n \to \infty} \sqrt[n]{\lambda} = 1$ (this is the inverse function version of the fact that the pointwise limit of $y = x^n$ on [0, 1) is f(x) = 0).

Since f is a continuous function on a compact set, f achieves both a max and a min. Let M be the larger of the absolute values of these two quantities. Then $|f(x)| \leq M$ for all $x \in [0,1]$ and $||f|| = \sup\{|f(x)| \mid x \in [0,1]\} = M$ (since both the max and the min are achieved on [0,1], there exists $x_0 \in [0,1]$ with $|f(x_0)| = M$). In addition, our inequality implies that $\int_0^1 |f(x)|^n dx \leq \int_0^1 M^n dx = M^n(1-0) = M^n$, so $||f||_n \leq M$ for all $n \in \mathbb{N}$. Since sequential limits preserve inequalities, this implies that $\lim_{n\to\infty} ||f||_n \leq M$.

To show that $\lim_{n\to\infty} ||f||_n = M$, show that for all $\epsilon > 0$, there exists N such that for all $n \ge N$, $M - \epsilon < ||f||_n \le M$ for all $n \ge N$ (i.e. $M - \epsilon < \left(\int_0^1 |f(x)|^n dx\right)^{\frac{1}{n}} \le M$). For now, assume that all those things are non-neg (the only part in doubt is the $M - \epsilon$) and raising to the *n*th power is an increasing function on positive numbers, so this is $(M - \epsilon)^n < \int_0^1 |f(x)|^n dx \le M^n$. Assume M > 0 (otherwise f = 0 on [0, 1] and all of the norms involved are 0, so proposition holds). Civen $0 \le \epsilon \le \epsilon_n \le M$, the fact that $|f(x_0)| = M$ implies that there

proposition holds). Given $0 < \epsilon < \epsilon_1 < M$, the fact that $|f(x_0)| = M$ implies that there exists $\delta > 0$ such that $|f(x)| \ge M - \epsilon_1$ for $x \in [x_0 - \delta, x_0 + \delta]$. Then $\left(\int_0^1 |f(x)|^n dx\right)^{\frac{1}{n}} \ge \left(\int_{x_0-\delta}^{x_0+\delta} |f(x)|^n dx\right)^{\frac{1}{n}} \ge \left(\int_{x_0-\delta}^{x_0+\delta} (M-\epsilon_1)^n dx\right)^{\frac{1}{n}} = (M-\epsilon_1)\sqrt[n]{2\delta}$. Since $0 < 2\delta \le 1$, we know that $\lim_{n\to\infty} \sqrt[n]{2\delta} = 1$ (this is a *pointwise* limit), so $\lim_{n\to\infty} ||f||_n \ge M - \epsilon_1 > M - \epsilon$, which implies that there exists N such that $||f||_n > M - \epsilon$ for all $n \ge N$.

6. Prove that the uniform limit of bounded functions is bounded and that the sequence itself is uniformly bounded.

For both parts, let $f_n : X \to Y$ and assume that for all $n \in \mathbb{N}$, there exists M_n such that $|f_n(x)| < M_n$ (i.e. f_n is bounded). Let $f_n \to f$ (with $f : X \to Y$) uniformly. The first part is prove that there exists M such that |f(x)| < M for all $x \in X$. The second part is prove that there exists \widetilde{M} such that $|f_n(x)| < \widetilde{M}$ and $|f(x)| < \widetilde{M}$ for all $x \in X$. Since $f_n \to f$ uniformly, for all $\epsilon > 0$, there exists N such that $|f_n(x) - f(x)| < \epsilon$ for all $n \ge N$ and for all $x \in X$. If $\epsilon = 1$, using the Cauchy condition, we get N such that $|f_n(x) - f_N(x)| < 1$ for all $n \ge N$ and all $x \in X$. In other words, for all $x \in X$ and for all $n \ge N$, $d(f_N, f_n) < 1$, or $f_n \in B_{\mathcal{C}_Y(X)}(f_N, 1)$ for all $n \ge N$. This implies that $f(x) = \lim_{n\to\infty} f_n(x) \in \overline{B_{\mathcal{C}_Y(X)}(f_N, 1)}$. That is, $d(f_N, f) \le 1$, and since $|f_N(x)|$ is bounded above by M_N , $|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| \le 1 + M_N$ for all $x \in X$ which is the first part of what we wanted to show.

For the second part, simply let $\overline{M} = \max\{M_1, M_2, ..., M_{N-1}, M_N + 1\}$.

7. Pointwise convergence with no uniformly convergent subsequence

a) Let $f_n(x) = \frac{1}{nx+1}$. Prove that $f_n \to 0$ pointwise on (0,1] (this was a typo, the interval shouldn't have included 0.

Fix $\epsilon > 0$ and fix $0 < x \le 1$. Then any $N > \frac{\frac{1}{\epsilon} - 1}{x}$ will give us $\left|\frac{1}{nx+1}\right| < \epsilon$.

b) Prove that the fact that $f_n(\frac{1}{n}) = \frac{1}{2}$ for all $n \in \mathbb{N}$ implies that there is no subsequence converging uniformly on (0, 1].

Assume there is a uniformly convergent subsequence. This means that for all $\epsilon > 0$, there exist K such that for all $k \ge K$, $|f_{n_k}(x) - 0| < \epsilon$ for all $x \in (0, 1]$. Assume that this is the case and let $\epsilon = \frac{1}{2}$ and K as given. Notice that $f_{n_k}(\frac{1}{n_k}) = \frac{1}{n_k}\frac{1}{n_k} + 1 = \frac{1}{2}$. Since $n_k \in \mathbb{N}, \frac{1}{n_k} \in (0, 1]$, however, $|f_{n_k}(\frac{1}{n_k})| = \frac{1}{2} \ge \epsilon$ which is a contradiction.

8. Suppose that $f : \mathbb{R} \to \mathbb{R}$ continuous and let $f_n(x) = f(nx)$ for $n \in \mathbb{N}$. Prove that $\{f_n\}$ equicontinuous implies that f(x) = c for some constant c.

Proof by contradiction. Assume that there exist $a, b \in \mathbb{R}$ such that $f(a) \neq f(b)$ and assume that $\{f_n\}$ is equicontinuous (i.e. for all $\epsilon > 0$, there exists $\delta > 0$ such that $|x - y| < \delta$ implies that $|f_n(x) - f_n(y)| < \epsilon$. Let $|f(a) - f(b)| = \epsilon$. Equicontinuity gives a corresponding $\delta > 0$. The idea is that the points $\frac{a}{n}$ and the points $\frac{b}{n}$ both approach 0, so will eventually be less than δ apart (for large enough n). However, our assumption $f_n(x) = f(nx)$ implies that $f_n(\frac{a}{n}) = f(n\frac{a}{n}) = f(a)$ and $f_n(\frac{b}{n}) = f(b)$, so their y coordinates will still have distance ϵ from each other. This will contradict equicontinuity and we will have shown that f is necessarily constant.

Since $a \in \mathbb{R}$, $\lim_{n\to\infty} \frac{a}{n} = 0$, so there exists N_1 such that $|\frac{a}{n}|, \delta/2$ for all $n \ge N_1$ and similarly there exists N_2 such that $|\frac{b}{n}| < \delta/2$ for all $n \ge N_2$. Let $N = \max\{N_1, N_2\}$. Then $|\frac{a}{N} - \frac{b}{N}| < \delta$ by design but $f_N(\frac{a}{N}) = f(N\frac{a}{N}) = f(a)$ and $f_N(\frac{b}{N}) = f(b)$, so $|f_N(\frac{a}{N}) - f_N(\frac{b}{N})| = |f(a) - f(b)| = \epsilon$ which is not $< \epsilon$ and so we have a contradiction.

9. Let $f_n : [a,b] \to \mathbb{R}$ such that $\{f_n\}$ is uniformly bounded and $f_n \in \mathcal{R}([a,b])$. Let $F_n(x) = \int_a^x f_n(t) dt$ for $x \in [a,b]$. Prove that there exists a subsequence $\{F_{n_k}\}$ converging uniformly on [a,b].

We need to show that $\{F_n\}$ is pointwise bounded and equicontinuous. If this is the case, the Arzelá-Ascoli theorem guarantees a convergent subsequence in $C_{\mathbb{R}}([a, b])$ and convergence in the function space is uniform convergence of the subsequence.

Since $\{f_n\}$ is uniformly bounded, there exists M such that $|f_n(x)| < M$ for all $x \in [a, b]$. This implies that $|F_n(x)| = |\int_a^x f_n(t) dt| \le \int_a^x |f_n(t)| dt \le \int_a^b |f_n(t)| dt \le \int_a^b M dt = M(b-a)$ so the set $\{F_n(x)\}$ is pointwise bounded by the constant function $\phi(x) = M$. To show that the set is equicontinuous, we need to show that for all $\epsilon > 0$, there exists $\delta > 0$ such that $|x - y| < \delta$ implies that $|F_n(x) - F_n(y)| = |\int_a^x f_n(t)dt - \int_a^y f_n(t)dt| = |\int_y^x f(t)dt| < \epsilon$. Without loss of generality, assume that y < x. Notice that $|\int_y^x f_n(t)dt| \le \int_y^x |f_n(t)| dt \le \int_y^x M dt = M(x - y)$, so $\delta = \epsilon/M$ will work.

10. Weierstrass Theorem Let $f : [0,1] \to \mathbb{R}$ continuous and assume that $\int_0^1 f(x)x^n dx = 0$ for all $n \in \mathbb{Z}^{\geq 0}$. Prove that f(x) = 0 for all $x \in [0,1]$.

The hint was use the Weierstrass Theorem to show that $\int_0^1 (f(x))^2 dx = 0$.

By the Weierstrass Approximation Theorem, there exists a sequence of polynomials $p_n(x)$ that converge uniformly to f(x) on [0,1]. Let $p_n(x) = a_0(n) + a_1(n)x + \cdots + a_n(n)x^n$. Since $\int_0^1 f(x)x^k dx = 0$ for all $k = 0, 1, \ldots$, for any $n = 0, 1, \ldots$ the coefficient of x^k in $p_n(x), a_k(n) \in \mathbb{R}$, so $\int_0^1 f(x)a_k(n)x^k = 0$ and by summing these up, we get that $\int_0^1 f(x)p_n(x) dx = 0$. Recall that if the limit is uniform and all of our functions are integrable, then $\int_a^b \lim_{n\to\infty} f_n(x) dx = \lim_{n\to\infty} \int_a^b f_n(x) dx$, so we need to show that $f(x)p_n(x) \to (f(x))^2$ uniformly and we will have achieved the hint.

Since $p_n(x) \to f(x)$ uniformly, for every $\tilde{\epsilon} > 0$, there exists \tilde{N} such that $|p_n(x) - f(x)| < \tilde{\epsilon}$ for every $n \geq \tilde{N}$ and for every $x \in [0, 1]$. We need to show that for all $\epsilon > 0$, there exists N such that $|f(x)p_n(x) - f(x)f(x)| = |f(x)| \cdot |p_n(x) - f(x)|$. Since f is continuous on a closed interval, f is bounded. Let |f(x)| < M. Then let $\tilde{\epsilon} = \epsilon/M$ and $N = \tilde{N}$, and we have, for all $n \geq N$, $|f(x)p_n(x) - f(x)f(x)| = |f(x)| \cdot |p_n(x) - f(x)| < M|p_n(x) - f(x)| < M \frac{\epsilon}{M} = \epsilon$ and the convergence is uniform.

Therefore, $\lim_{n\to\infty} \int_0^1 p_n(x)f(x) \, dx = 0 = \int_0^1 \lim_{n\to\infty} p_n(x)f(x) \, dx = \int_0^1 (f(x))^2 \, dx$. However, $(f(x))^2 \ge 0$, so for all partitions P of [0,1], $M_i, m_i \ge 0$. If there exists $x \in [0,1]$ with $f^2(x) > 0$, then since f^2 is a product of continuous functions, so continuous, there exists a partition P with $x \in [x_{i-1}, x_i]$ and $m_i > 0$. This implies that $\int_0^1 f^2(x) \, dx \ge L(P, f^2) \ge m_i \Delta x_i > 0$ which is a contradiction. Therefore, $f^2(x) = 0$ and f(x) = 0.