Math 485 Homework 2

due Friday, January 27

1. A subgroup of a group of motions is *discrete* if it does not contain any arbitrarily small rotations or translations. That is, there exists some $\varepsilon > 0$ such that for any translation by a vector \vec{v} in the subgroup, $|\vec{v}| > \epsilon$ and for every rotation (about a point **p** through an angle θ) in the subgroup, $\theta > \varepsilon$.

Let M be the group of symmetries of a plane (namely, M consists of all of the translations, rotations, reflections and glide reflections) and let G be a discrete subgroup of M.

- a) Prove that the stabilizer G_p of a point is finite.
- b) Prove that the orbit O_p of a point p is a discrete set. That is, prove that there exists $\varepsilon > 0$ such that the distance between any two points in the orbit is $> \varepsilon$.
- c) Let B, B' be two bounded regions in the plane. Prove that there are only finitely many elements $g \in G$ such that $gB \cap B' \neq \emptyset$.
- **2.** Let $X = M_{m,n}(\mathbb{R})$ be the set of all m by n matricies with coefficients in \mathbb{R} and let $G = GL_m(\mathbb{R}) \times GL_n(\mathbb{R}).$
 - **a)** Prove that $(P,Q), A \to PAQ^{-1}$ defines an action of G on X.
 - **b**) Describe the decomposition of X into G-orbits.
 - c) Assume that $m \leq n$. What is the stabilizer of the matrix $[I \mid \mathbf{0}]$ (the matrix that consists of I_m the identity matrix followed by n zeroes)?
- **3.** Let $GL_2(F)$ act on $M_2(F)$ by conjugation.
 - **a)** For $F = \mathbb{R}$, describe the orbit and stabilizer of the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$?
 - **b)** If $F = \mathbb{F}_3$ (that is, $\mathbb{F} = \mathbb{Z}/3\mathbb{Z}$ treated as the field it is), compute $|O_A|$.
- **4.** We say a group G acting on a set X acts doubly transitively on X if for all (x_1, x_2) and (y_1, y_2) in $X \times X$ with $x_1 \neq x_2$ and $y_1 \neq y_2$, there exists $g \in G$ with $gx_1 = y_1$ and $gx_2 = y_2$.
 - a) Prove that the action of Σ_n on $\{1, 2, ..., n\}$ is doubly transitive.
 - b) Let X be a set with |X| > 2. Prove that G acts doubly transitively on X if and only if the stabilizer of $x \in X$ acts transitively on $X \{x\}$.
- 5. We say that a G-set X is primitive if the only non-empty subsets B such that B and gB are either equal or disjoint for all $g \in G$ are the whole set X and the single point subsets. Prove that a doubly transitive G-set is always primative.

- 6. Let G be the subgroup of Σ_5 generated by the 5-cycle (12345) and let G act on $\{1, 2, 3, 4, 5\}$ in the usual way. Show that this action is primative but not doubly transitive.
- 7. BONUS: Let X be a G-set and let [X] denote the isomorphism class of the set X as a G-set.
 - a) If G is a finite group, let S(G) denote the set of isomorphism classes of finite Gsets. Show that we can define a sum and product operation on S(G) by $[X]+[Y] = [X \cup Y]$ and $[X][Y] = [X \times Y]$. (Show that these operations respect the G-action.)
 - **b)** Let B(G) be the set obtained from S(G) by adjoining formal additive inverses (here the additive identity is $[\emptyset]$). Show that B(G) is a commutative ring under the operations in part **a**). (B(G) is the *Burnside ring* of G.)
 - c) Show that any element of B(G) can be written uniquely as a \mathbb{Z} linear combination of isomorphism classes of transitive G-sets.
 - d) Let *H* be any subgroup of *G*. Show that there is a unique ring homomorphism $\phi_H : B(G) \to \mathbb{Z}$ which sends [X] to the number of elements of *X* fixed by *H*.
 - e) Show that the intersection of ker ϕ_H for all H subgroup of G is zero.
 - f) Show that any non-zero ring homomorphism $\phi : B(G) \to \mathbb{Z}$ is equal to ϕ_H for some H.