Math 485 Homework 3

due Friday, February 10

- 1. Apply the Graham-Schmidt procedure to the basis $(1,1,1)^t, (1,0,1)^t, (0,1,1)^t$, when the form is ordinary dot product.
- **2.** Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Find an orthonormal basis for \mathbb{R}^2 with respect to the form $\langle \vec{v}, \vec{w} \rangle_A$.
- **3.** Let \langle , \rangle be a symmetric bilinear form on a vector space V over a field F. The function $q: V \to F$ defined by $q(\vec{v}) = \langle \vec{v}, \vec{v} \rangle$ is called a *quadradic form* associated to the bilinear form. Show how to recover the bilinear form from q, if $1 + 1 \neq 0$ in the field, by expanding $q(\vec{v} + \vec{w})$.
- 4. Is $\langle \vec{v}, \vec{w} \rangle = v_1 w_1 + i v_1 w_2 i v_2 w_1 + i v_2 w_2$ on \mathbb{C}^2 a hermitian form?
- 5. Let A, B be positive definite hermitian matrices. Determine which of the following matrices are positive definite hermitian: $A^2, A^{-1}, AB, A + B$.
- **6.** Prove that a hermitian form on a complex vector space has an orthonormal basis if and only if it is positive definite.
- 7. Let \langle , \rangle be a hermitian form on a complex vector space V, and let \{ , \} be the real part of the complex number \langle , \rangle. Prove that if V is regarded as a real vector space, then \{ , \} is a symmetric bilinear form on V, and that if \langle , \rangle is positive definite, then so is \{ , \}. What can you say about the imaginary part?
- 8. Determine whether or not the following rules define hermitian forms on the space $\mathbb{C}^{n \times n}$.
 - a) $A, B \to \operatorname{trace}(A^*B)$
 - **b)** $A, B \to \operatorname{trace}(\overline{A}B)$
- **9.** Let *P* be a unitary matrix, and let $\overrightarrow{v}_1, \overrightarrow{v}_2$ be eigenvectors for *P* with eigenvalues λ_1, λ_2 such that $\lambda_1 \neq \lambda_2$. Prove that $\overrightarrow{v}_1, \overrightarrow{v}_2$ are orthogonal with respect to the standard hermitian product on \mathbb{C}^n .

10. Let P be the vector space of polynomials in x of degree $\leq n$ with coefficients in \mathbb{C} . a) Show that

$$\langle f,g \rangle = \int_0^{2\pi} \overline{f(e^{i\theta})} g(e^{i\theta} d\theta)$$

is a positive definite hermitian form on P.

- b) Find an orthonormal basis for this form.
- **11.** Let A be any complex matrix. Prove that $det(I + A^*A) \neq 0$.