485 REPRESENTATION THEORY MIDTERM

April 14, 2017 Name: _ ¥£X

By printing my name T pledge to uphold the honor code.
Unless otherwise stated, assume that G is a group of order N with % distinct conjugacy classes, X
is a set with a G action, F is a field, and V is a n-dimensional vector space over F' with a G action
and x its character and C is the set of class functions on G with coefficients in F.
I. True/False, circle T or F as appropriate. After you have finished the rest of the quiz,
please explain your answer by citing specific theorems/definitions/ computations/etc.

1. a) @ F If F = Cor R, there always exists a positive definite inner product on
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b) @ F Complex conjugation of a representation is a Tepresentation.

c) T @ It F = C and G is a finite group, then for all g € G, x(g) is an N-th
root of unity. ALY BULNIALVEN Apw- N ™ peoery
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d) T @ The character table for G is a N x N matrix.
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e) @ F All one-dimensional represeﬁtsﬁ:ns are irreducible.
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f) @ F A representation of a finite group is completely determined by its
character.
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g) T @ A group is completely determined by its character table.
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h) @ F Up, is a compact continuous group with a Haar measure.

i) T @ For U7, the the irreducible characters generate the subset of C consist-
ing of continuous class functions. \RRwh CNADAC TSR A
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i) T @ SU; = S? puts a group structure on 3 that treats all 4 coordinates
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IL. Definitions/Fill in the blank Please define/state the following.

1. A representation of G on V is defined to be what? Please give the diagram that
expresses the representation both as linear transformations and as matrices (Rgs and

Pg8)- P S
(1 . > O BAAS Y—Q—QE__ NeTvaenN
PGy G 2. PR Ae &

ConK .
CLASS
rom)

R\ g&: e e WOMBMARPIIN

2, What is a compact continuous group?
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3. Please state our Huge Theorem. . = SR AR
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4. What does it mean for a linear transformation 7': V — V' to be G-invariant and why
is that a not-so-great definition? vieedsr A Doy PG L) AND
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5. Please state Schur’s lemma. How is it used in the proof of our Huge Theorem? AT 2 %BVS:‘?
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1. What is the difference between & acting on X and G acting on V. Give one nice Lh
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2. What was the point of finding a G-invariant positive definite hermitian form? m"@-—_ \ ‘&) \S
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3. Extend the action of X3 on an equilateral triangle to a representation of X3 on R? Q“ PUAR bR
(hint: your matrices will be a lot nicer if you choose a basis whose angles are 2m/3 e gwg
angle apart). Ne
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4. Go through the process of comstructing a positive definite inner product for your
representation of X3 above and use this to get a unitary representation.
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9. How many one dimensional representations of X3 are there? Please construct them!

e v QN

6. Demonstrate explicitly the orthonormal basis portion of our huge new theorem for the
representations of X3 you have constructed above.
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7. Please write down the character table for .
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8. The table below is a partial character table of a finite group, in which ¢ = %( -1+v3)

and v = %(—1 + /7). There are no missing conjugacy classes and their sizes are as
listed. %%
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x1i1l 1 1 ¢ ¢
x2(13 v ¥ 0 0
x3|3 ¥ v 0 0
a) Determine the order of the group and the number and dimensions of the irre-
ducible representations. 2= 1233 Nmf.‘l-\- din f'SL
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b) Determine the remaining characters (hint: there’s a short-cut!)

3
D prmrewaow s K@ pesp o Kl Kl
2.

c) What can you say about the group G?
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9. Why is Schur’s lemma called a lemma despite the fact that it is a key part in our Huge
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10. How would you go about turning an arbitrary linear transformagion 7 : V —= V' into

a G-invariant one? Aysehes oo CALRNN Y, F O\ L \j’
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11. Why are all the eigenvalues of p(g) Nth roots on unity? What is the version of this
for compact continuous groups and why does it still hold?

Sinew \af=N, Noeh, o'=1. e pleg) ("‘-._ ) Te W Ao, &G
| e N 2n
T&BN,)C@‘:L ““W('"‘.?ﬂ) = At =\. \PEX \s&k—cf?\-‘ Gi‘f%
THeN 0(6,) MET Be- (Rt AS. WL 50 AVE\::P‘} A;.:%Cé’::ffw%m EIS

12. Define the regular representation and its decomposition intd irreducible sub- 7| AL
representations and why our Huge Theorem implies this. \St:\-\“
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13. What role does Mashke’s theorem play in the proof of our Huge Theorem? AN 4“\&‘ )y“
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14. Let G be a compact continuous group and p a one-dimensional representation.
p(g) = re®. What must » be and why?
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IV. Proofs
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2. A key step in the proof of our Huge Theorem is where we pass from a linear transfor-
mation being the zero linear transformation to a statement about traces of matrices.
How does that step work?
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1. Prove that any finite subgroup of SLyR is cyclic. %

3. Illustrate why the proof of the portion of our huge theorem that doesn’t extend to
compact continuous groups fails. Ilustrate why it is a good thing we didn’t try to
extend this result to compact continuous groups.
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4. OQutline our construction of the set of all irreducible representations of U/;. Be sure to
include why you have a complete list.
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8. What are the group structures on S* and $37 How are they related to reprks

entations?
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6. If we have a group G with a subgroup H (G is not necessarily finite}, how is p also
representation of H? Is its decomposition into a sum of irreducible H-representations
related to its its decomposition into a sum of irreducible G-representations? Why
might this be useful?
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