April 14, 2017 Name: By printing my name I pledge to uphold the honor code. Unless otherwise stated, assume that G is a group of order N with k distinct conjugacy classes, Xis a set with a G action, F is a field, and V is a n-dimensional vector space over F with a G action and χ its character and $\mathcal C$ is the set of class functions on G with coefficients in F. I. True/False, circle T or F as appropriate. After you have finished the rest of the quiz, please explain your answer by citing specific theorems/definitions/computations/etc. If $F = \mathbb{C}$ or \mathbb{R} , there always exists a positive definite inner product on 1. a) FORM DEPINED BY ANY BASIS & I V. BOHNDARD 18 POS DEF. T b) \mathbf{F} Complex conjugation of a representation is a representation. x - 4 = xy If $F = \mathbb{C}$ and G is a finite group, then for all $g \in G$, $\chi(g)$ is an N-th T c) root of unity. ALL TICONALUES APE N'TH ROOTS OF 1 But X(g) is sin of Erconhaus F d) ${f T}$ The character table for G is a $N \times N$ matrix. IT'S LE RXR MARRIX. All one-dimensional representations are irreducible.

ANY BE WHITEN AS A GET LEWE DIMENSIONAL \mathbf{F} e) REPRESENT AMONS A representation of a finite group is completely determined by its f) \mathbf{F} character. THAT'S OUR HUGG THEOROW (F) \mathbf{T} A group is completely determined by its character table. g) DY & It'S HAVE SAME CHAR TABLE T h) \mathbf{F} U_n is a compact continuous group with a Haar measure. For U_1 , the the irreducible characters generate the subset of $\mathcal C$ consisti) \mathbf{T} ing of continuous class functions. IRRED CHARLETON LOS X(z)=z" so DAM = X = Zan Xn => X(o) & X(T) ART ROUND $SU_2 \cong S^3$ puts a group structure on S^3 that treats all 4 coordinates (Noj) identically. -> (1,0,0,0) ASTS AS IDENTITY TEUF FORJA TIMOR (1,0,0,0), (0,0,10), (0,0,1,0) JUHW KNAGTREA cont. II. Definitions/Fill in the blank Please define/state the following. CLASS FON]

1. A representation of G on V is defined to be what? Please give the diagram that expresses the representation both as linear transformations and as matrices (R_{gs} and ρ_{g} s).

P: G P GLLV) BASIS PREED VERSION

SI. PER ARE GR HOMOMORPHISH

2. What is a compact continuous group? A CHOOSE 4 BASIS

aosoo é Bainto é GP SI GCIEN EN DEFINOD BY CONTINUOS PLANS, (EQUIVALUM TO MUST E INVORERS BOTTLE CONTINUES

3. Please state our Huge Theorem. OF IRRED ROPS WI CHARLETORS XI, WE THON < NI, NI) = 1/2 Xi(Q) Xi(q) =0 AND THE AT SPAN THE SUT OF CLASS ECTUR ON G. 4. What does it mean for a linear transformation $T: V \to V'$ to be G-invariant and why is that a not-so-great definition? How A REP P. G. - GL(N) AND

P: G - GL(N'). THEN T IS NOOD G-INVARIANT IF NOT A GREAT OFF

Typing Typing Typing T(pg(NZ)) = pg T(NZ) YNEV. SINCE THESE 5. Please state Schur's lemma. How is it used in the proof of our Huge Theorem? No 2 WP. MEANINGS TO a) IF T IS A G-INN. LIN. TRANSF AND P = P = 7 7= 3 b) IF P=P AND T IS Q-INNACLAND, THON T IS MUNT BY A SCALAR. WE USE O TO III. Short answer Show $\langle X_i, X_j \rangle = 0$ if $j \neq 0$ to show $\langle X_i, X_i \rangle = 1$. What is the difference between G acting on X and G acting on V. Give one nice consequence of the later type of action.

G ACTING ON X CMM NEODS HAVE P(1) = id AND P(g)P(h) = P(gh)

G ACTING ON X CMM NEODS TO BE COMPATIBLE W BARRAGEM NECTOR

SPACE STRUCTURE SO KARPOW) = P(CR) AND P(CR) + P(CR) + P(CR)

What was the point of finding a G-invariant positive definite hermitian form? CNSEC IS

POINT WAS TO TURN AN APRICARY

P: G — GLUI) IS consequence of the later type of action. POINT WAS TO TURN AN ARBITRARY A GP. HEMCR REPRESENTATION INTO A UNITARY REPRESENTATION ISINCE ANY 805 DEF. HORM. FORM IS CONTUCTED TO THE STANDARD ONE E 3. Extend the action of Σ_3 on an equilateral triangle to a representation of Σ_3 on \mathbb{R}^2 \mathbb{Q}_n (hint: your matrices will be a lot nicer if you choose a basis whose angles are $2\pi/3$ angle apart).

SEE BIG ONIS

4. Go through the process of constructing a positive definite inner product for your representation of Σ_3 above and use this to get a unitary representation.

SEE BLY WIZ

5. How many one dimensional representations of Σ_3 are there? Please construct them!

SEE BILL ONE

6. Demonstrate explicitly the orthonormal basis portion of our huge new theorem for the representations of Σ_3 you have constructed above.

SEE BY ONE

7. Please write down the character table for Σ_3 .

SEE BIG ONIE

8. The table below is a partial character table of a finite group, in which $\zeta = \frac{1}{2}(-1+\sqrt{3}i)$
and $\gamma = \frac{1}{2}(-1+\sqrt{7}i)$. There are no missing conjugacy classes and their sizes are as
listed.
x_1 1 1 1 ζ $\overline{\zeta}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\chi_3 \mid 3 \overline{\gamma} \gamma 0 0$
a) Determine the order of the group and the number and dimensions of the irre-
ducible representations. $21 = 1^2 + 3^2 $
G =2 5 IRRED REPS. SO BOTH MISSING REPS ARE 1 din b) Determine the remaining characters (hint: there's a short-cut!)
$Q_{A} = Tellinal Per $
The ρ_{+} = Tennal Ref So $\chi_{q}(g) = 1$, $\rho_{5} = \overline{\rho_{1}}$ so $\chi_{5}(g) = \chi_{1}(g)$ c) What can you say about the group G ?
NO NORMAL SUBGRS?
9. Why is Schur's lemma called a lemma despite the fact that it is a key part in our Huge
Theorem? BECAUSE TH'S PROCE IS REALLY EXKY!
T: V -> V' WHERE V, V' ARE IRROD ROPS & G COMMINES
BOTWERN 2 G-ACTIONS, SO KENT AWO IMT ARE G-INVARIANT
SUBSPACES, SO MUST BE ETHER O OR V OR O OR V RESPONMENT
10. How would you go about turning an arbitrary linear transformation T, V, V' into
a G-invariant one? AUBRAGE OVER G-ACTION! TO THE
T= \(\frac{1}{gec_1}\rho_g'(\tau(\rho_g))\) Pg \(\frac{1}{y'}\)
$V \longrightarrow V'$
11. Why are all the eigenvalues of $\rho(g)$ Nth roots on unity? What is the version of this
Then $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$. If $\rho(G) = 1$ is $\rho(G) = 1$ is $\rho(G) = 1$. Define the regular representation and its decomposition into irreducible sub-representations and why our Huge Theorem implies this.
THEN POP = () AN () = XI = 1 IF G IS A CPT GROUP,
THON P(G) WET BE OF ICHEL SO RETED DIECES LECOT SON Y =
12. Define the regular representation and its decomposition into irreducible sub
representations and why our Huge Theorem implies this.
REGULAR REPRESENTATION IS ACTION OF G ON V(G) BOLLOND)
(US GON BY G), to beth of gled -> PODINTATION WATER
Chi all add a series of the control
REGULAR REPRESENTATION IS ACTION OF G ON V(G) ISMIT (VS. GON BY G). ELECT OF GEG -> PORTUTATION WATER GLOWN BY COLOR PORM 9,, gn -> 99,, 99, WHICH IS PLOD DOWN PROF THEREFORE YMPG(1)= N, Ympg()=0 in g+1 AND King = (X, XmpyX,+(Xk, Ympg(Xk.))

13. What role does Mashke's theorem play in the proof of our Huge Theorem? THE Stys ANY REP. CAN BE WRITTON AS

X=q, X, +.. + ap Xx FOR SOME CIRIS. THEN O.N. BAYSIS

SEE #11. 100 12/ 14 LC1 , IHON

1= +>1, P(gl)=reille wont BE DONDAD.

 $\rho(g) = re^{i\theta}$. What must r be and why?

gets the unaver.

IPROD. ROPS. WE NOUD THIS TO GOT PERCEPT

14. Let G be a compact continuous group and ρ a one-dimensional representation. Let

pg)=reile mont es closon (0 mil se Almit Point à 0¢ blid)

1. Prove that any finite subgroup of $SL_2\mathbb{R}$ is cyclic.

HW PROBLEM

ANY PINNE SUBGROUP HAS A UNIMPRY

PEPPRESONNATION (FEUND BY PRODUCING A

G-INVARIANT HORMITIAN FORM & BOTNG BASIS CHANGE

TO WAKE THE FORM HE = DOT PRODUCT)

U2= SAEGL_C | A* = A^{TZ} }

IF AEGL_ZR => A[±]= A^{TZ} => G~ SUBGROUP & SO_ZR~S'

ANY PULSE SUBGROUP CF S' IS CYCLIC.

2. A key step in the proof of our Huge Theorem is where we pass from a linear transformation being the zero linear transformation to a statement about traces of matrices. How does that step work?

WE SIMMED SUMBO UP AU THE LINEAR TRANSF.
PRODUCED GROWN BY AUGRACING THE EVENUMEARY MATRICIES

3. Illustrate why the proof of the portion of our huge theorem that doesn't extend to compact continuous groups fails. Illustrate why it is a good thing we didn't try to extend this result to compact continuous groups.

TO SHOW THAT I'S SPAN C, WE USE THE EXISTANCE OF THE REGULAR REPRESENTATION
FOR IMPINIONE GROUPS, THE REGULAR REP! WOULD BE UNCOUNTABLY INFINITE DIMONSIQUIAL, SO MAKED!
NO SOUSE

HELLANDER, BYDN FOR THE SIMPLAST CPT CON GP U, THE VERDED ROPS DON'T SPAN THE SOT CP CHES FEMS. (ONLY COUNTABLY WHAT IPPOD ROPS, UNCOUNTABLY MANY COND. CHASTA IN S! SINCE IT'S ABBURN SO DIOPLY BROMONT HAP HS OWN CONT. CHASS.)

6. If we have a group G with a subgroup H (G is not necessarily finite), how is ρ also representation of H? Is its decomposition into a sum of irreducible H-representations related to its its decomposition into a sum of irreducible G-representations? Why might this be useful?

p: G -> GL(V) IMDOCES P : H -> GL(V)

P : G -> GL(V) IMDOCES P : H -> GL(V)

P

p into uppor G-rops.

IT MIGHT BE ESPECIALLY HERPUL IF SAY IT IS LEDVAN, SO IRROD H-POPS LEE PARTICULTED 8 MPG.