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1. Overview

The long term goal of my research is to understand how the structure of a group
controls the topological and algebraic geometric invariants of its classifying space.
I try to find key examples, the computation of which reveals structure theorems
for larger classes of groups. My papers to date are part of a body of work including
[F4, Gu, KY, T, Ve, RV, Y] devoted to computing invariants of the classifying
space of simple complex algebraic groups. Most of my work concerns reductive
algebraic groups but I have also studied p-groups. I am interested in the extent
to which these sorts of computations pass to motivic cohomology.

The ultimate goal of my research is theorems relating the structure of the group
itself to various invariants on the classifying space of the group using certain
basic examples, namely classical groups, exceptional groups and p-groups of a
certain length. Algebraic geometric methods also play a part because the algebraic
geometric invariant I study (Chow theory) is not a cohomology theory, so slightly
different techniques need to be used to attack these.

Before describing my work, let me recall some of the ways these spaces arise in
algebraic topology. A vector bundle E on a space X determines a homotopy class
of maps from X to the classifying space BGl(n, C) of vector bundles. This allows
us to define cohomological invariants of the vector bundle E by pulling back a
class in the cohomology of BGl(n, C) via the map that classifies E. All ’natural’
cohomological invariants of E arise in this way. This rephrases the problem of
finding invariants that distinguish vector bundles—it is equivalent to computing
H∗BGl(n, C).

Just as the space BGl(n, C) classifies complex n dimensional vector bundles,
BO(n, C) is the classifying space for vector bundles with non-degenerate qua-
dratic form, and BSO(2n) is that of oriented vector bundles with non-degenerate
quadratic form.

Aside from their intrinsic interest, these spaces are part of the basic building
blocks of algebraic topology. For example, Bott periodicity is a statement about
relations between loopings of these spaces as n →∞.

My work is concerned with a detailed study of algebraic topological and al-
gebraic geometric variants of these spaces. If G is one of the above classical
groups, or more generally an algebraic group (for example, a finite group) then its
classifying space BG has additional structure. It is an Ind algebraic variety—a
direct limit of finite dimensional algebraic varieties. We would like to understand
algebraic geometric incarnations of the topology of these varieties.
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Put differently, as well as studying topological vector bundles, one wants to
study algebraic vector bundles (in the Zariski, etale, ... topologies) and to find
cohomological invariants of these. Instead of taking values in singular cohomology,
these invariants are now classes in motivic cohomology, Chow groups, algebraic
Morava K-theories...and so we must compute these exotic cohomology theories of
the classifying spaces.

Finally, the finite dimensional approximations to BG are interesting algebraic
varieties themselves. They are of the form (V −S)/G where V is a representation
of G and S is the closed subvariety on which G fails to act freely. These spaces are a
famous source of examples in algebraic geometry – they were originally introduced
by Godeaux, studied by Serre, and have been used by Atiyah and Hirzebruch to
provide counterexamples to the integral version of the Hodge conjecture.

2. Descent for complex oriented cohomology theories and Chow
theory

In this section I will describe work computing E∗BG where E∗ is a complex
oriented cohomology theory. The work is inspired by the beautiful papers of
Kriz and Wilson who describe E∗BO(n) purely in terms of the formal group law
attached to the cohomology theory [K][W]. (All groups will be with complex
coefficients unless otherwise explicitly stated.) This work is part of a larger joint
project with Ian Grojnowski.

The crucial idea which informs our recent work is the use of the descent spectral
sequence, which is a version of the bar construction.

Theorem 2.1. Let F → Y → X be any fibration which locally on X admits
sections and define
Y n = Y ×X Y ×X ...×X Y the nth fibered product. Then the simplicial space

Y Y 2oooo Y 3oooo
oo

Y 4oo oo
oooo · · ·

is weakly equivalent to the constant simplicial space X, hence there is a spectral
sequence, the descent spectral sequence, converging to E∗X whose E1 term is the
chain complex attached to the cosimplicial complex

E∗Y
//// E∗Y 2

////// E∗Y 3
//////// E∗Y 4 · · ·

where the arrows are induced by the various projection maps.

When one applies this to a spherical fibration, the E1 term is computable. The
content of the differential comes down to computing the swap map E∗Y 2 → E∗Y 2.
The computation of E∗BG using descent is even interesting for the case of PSL2,
but the actual answer is well known. To derive a genuinely new result, we turned
to the exceptional group G2, which possesses a spherical fibration BSL3 → BG2

with fiber an affine quadric homotopic to S6. Here ordinary cohomology and K-
theory are well known, but the result for a general complex oriented cohomology
theory is new (though partial information [an associated graded for MU∗BG2,
the universal complex oriented cohomology theory] had been computed by Kono
and Yagita using an Atiyah-Hirtzebruch spectral sequence [KY]). Note that for
the descent spectral sequence, the differential d : E1 → E1 is defined in terms of
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the formal group law, so the computation can be carried out for a general complex
oriented cohomology theory [FG2].

In fact, the descent spectral sequence for PSL2 = SO(3) captures most of the
difficulty for that of G2. Namely, both spectral sequences collapse at E2, and
both E2 terms possess 2-torsion. As E∗BPSL2 is 2-torsion free, the spectral
sequences converge to a non-trivial associate graded for E∗BPSL2. However,
this associated graded is much closer to the actual answer than the one arrived
at via the Atiyah-Hirtzebruch spectral sequence. The module structure of the
descent spectral sequence reveals that the apparent 2−torsion is just the residue
of the obvious relation c3 = c̃3 due to the standard representation being self dual.
Similarly, the 2−torsion in E2 for BG2 is the residue of the relation c7 = c̃7.

Furthermore, while this computation and spectral sequence works for any com-
plex oriented cohomology theory, it does not give the correct answer for algebraic
geometric versions of these theories such as higher Chow groups/motivic coho-
mology. This is because the affine quadric bundle, though trivial étale locally is
not trivial in the Nisnevich topology [Vo]. Because of this, the above spectral
sequence for Chow theory converges to étale cohomology of BG2 and not motivic
cohomology.

However, the computation, at least for ordinary Chow rings is possible by
describing what happens for algebraic cobordism of quadric bundles and then
relating this to Chow groups using the “Conner-Floyd theorem” of Morel and
Levine[ML], namely that CHnX = MGL2n,nX ⊗MGL(pt) Z. This determines the
Chow groups—but not the higher Chow groups—in terms of algebraic cobordism.
The exact extent to which the descent spectral sequence fails to converge to mo-
tivic cohomology is of special interest as Chow groups and higher Chow groups are
notoriously difficult to compute (for example, this difference could be explained
in terms of the existence of higher differentials in the descent spectral sequence).
CH∗BG2 itself is known (by an ingenious set of computations using partial infor-
mation coming from subgroups of G2 [Gu]), so our computation is of interest for
its relationship to higher Chow groups.

G2 is certainly not the only group possessing a useful spherical fibration, so
this is just the first of a series of papers exploiting the idea of the descent spectral
sequence. In a sequel to this paper, I intend to use this technique to compute
MU∗Spin and hence CH∗Spin as well as derive my old results on CH∗BSO(2n)
from a computation of MU∗BSO(2n) [F] (an associated graded of MU∗BSO(2n)
has been determined by Yagita [Y2] but he didn’t compute the relations).

3. BSO as an extension of BO by BSp

I will now describe additional joint work with Ian Grojnowski [FG]. We define
a new decomposition of the classifying space BSO(2n) (and also the classifying
space of its double cover BSpin(2n)) which shows the existence a copy of BSp(2n)
sitting inside BSO(2n) in a highly non-geometric manner. Remarkably, this gives
a surjection of the cohomology of BSO(2n) onto BSp(2n) for any cohomology
theory.
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This is a surprising result—there is no homomorphism of groups from Sp(2n)
to SO(2n). However, there are many tantalizing similarities between SO(2n), and
Sp(2n). What we have done is find an explanation of these similarities in terms
of an exact sequence of their classifying spaces (in the appropriate homotopy
category).

Roughly speaking, this copy of BSp(2n) measures the difference between BO(2n)
and BSO(2n). Away from the prime 2, this is easy to say precisely:

Theorem 3.1. Let E∗(−) be a ring valued cohomology theory, such that 1/2 is
an element of k = E0(pt). Then

E∗(BSO(2n)) = E∗(BO(2n))⊕ ynE∗(BSp(2n))

where yn is in E2n(BSO(2n)).

When 1/2 ∈ k, all three terms in the theorem have been computed for most
cohomology theories. However, even when all three terms were known, the relation
with BSp(2n) had not been observed.

If x ∈ O(2n) − SO(2n), then x induces an automorphism θ on BO(2n) by
conjugation. As x2 is homotopic to the identity, this is an involution up to homo-
topy. So if 1/2 ∈ k, we can decompose E∗(BSO(2n)) into its eigenspaces. It is
immediate from the Leray-Serre spectral sequence that the +1 eigenspace is just
E∗(BO(2n), k), so the content of the theorem above is the identification of the
−1 eigenspace with E∗(BSp(2n), k).

Remarkably, the relation between all three cohomology groups persists at the
prime 2. Hence, this relationship gives a completely different method for comput-
ing MU∗BSO(2n).

The precise statement can be found in our paper. Rather than explain the
complicated patterns caused by 2 torsion, let me explain another feature of the
connection between Sp(2n), SO(2n), and O(2n) which is in fact a major ingredient
in the proof.

Consider the symmetric space Gl(2n)/SO(2n). The Chow ring of this space
was computed in [F3].The main ingredient in [FG] is a conceptually new proof
and explanation of this calculation. This symmetric space is a double cover of
Gl(2n)/O(2n), and the group of upper triangular matrices - the Borel subgroup
B - acts on both of them. An orbit of B on Gl(2n)/O(2n) is homotopy equivalent
to a product of circles. The inverse image of such an orbit in GL(2n)/SO(2n) is
either a single orbit of the action of B or splits into disjoint copies of a certain
canonical orbit.

The orbits whose double covers split are parameterized by symmetric fixed
point free permutations on 2n letters. This is precisely the set that parametrizes
B-orbits on Gl(2n)/Sp(2n). Moreover, the attaching maps between B-orbits are
completely determined by this Weyl group data. That is, the attaching maps for
this subset of Gl(2n)/SO(2n) and the attaching maps for Gl(2n)/Sp(2n) precisely
match up.

However, it not the case that there is a copy of Gl(2n)/Sp(2n) sitting inside
Gl(2n)/SO(2n) —there are ‘holes’ in the pattern of B-orbits. Nonetheless, we
can use this decomposition to explicitly construct a long exact sequence relating
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these three symmetric spaces. Using this we prove the refinement of theorem 3.1
in which 2-torsion is considered.

When the appropriate version of the theorem of [FG] is applied to the Chow
rings of these three symmetric spaces, one recovers a another proof of the main
theorem of [F3]:

Theorem 3.2.
CH∗(Gl(2n)/SO(2n)) = Z⊕ ynZ

where yn ∈ CHn(Gl(2n)/SO(2n).

The original proof was quite different and gave additional information that
is not readily accessible from the new proof. It used an inductive argument to
decompose Gl(2n)/SO(2n) into 2n subvarieties, each of which is trivially fibered
over Gl(2n− 2)/SO(2n− 2) with fiber an open subset of affine space. This gives
a completely different interpretation of the class yn. Namely, it is a transfer via
a series of projection maps of the class y1 in CH∗(Gl(2)/SO(2)), which is just
CH∗(CP1).

In contrast, the new proof is as follows.

CH∗(Gl(2n)/SO(2n)) = CH∗(Gl(2n)/O(2n)) + ynCH∗Gl(2n)/Sp(2n))

by the [FG] theorem. But Gl(2n)/O(2n) is the set of non-degenerate symmetric
2n×2n matrices, while Gl(2n)/Sp(2n) is the set of non-degenerate skew symmetric
2n × 2n matrices. These are both open subsets of affine space, and hence both
have Chow rings isomorphic to Z.

4. A more traditional approach to Chow theory: CH∗BSO(2n)

Theorems 3.1 and 3.2 are computationally useful. For example, they enable the
determination of the Chow ring of BSO(2n):

Theorem 4.1.

CH∗(BSO(2n)) ∼= Z[c2, c3, ..., c2n, yn]/(2codd, yn.codd, y
2
n + (−1)n22n−2c2n),

where yn maps to 2n−1χ in cohomology.

This is the main theorem of my Ph.D. thesis [F4]. Using a theorem of my advisor
Totaro [T] CH∗Gl(2n)/SO(2n) transgresses to give generators of CH∗BSO(2n)
as a module over CH∗BGl(2n) ∼= Z[c1, ..., c2n]. The content in the theorem above
is the relations satisfied by these generators.

The class yn ∈ CH∗Gl(2n)/SO(2n) is identical to the characteristic class de-
fined by Edidin and Graham in [EG], and is the closest one can come to an Euler
class in Chow rings.

The representation ring of SO(2n) is generated by exterior powers of the stan-
dard representation along with one other representation D+

n , which is the represen-
tation whose highest weight vector is twice that of the half spin representation. It
is natural to wonder if the class yn is generated by cn(D+

n ) modulo Chern classes of
the standard representation. However, I show in [F4] that cn(D+

n ) only generates
2n−2(n− 1)! yn and not yn itself.
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Another application of these ideas is to give a completely different method from
the one in section 2 for explicit computation of the cobordism ring MU∗(BSO(2n)),
and the r’th Morava K-theory K〈r〉∗BSO(2n) [F]. These rings were previously
known only for n ≤ 3 [I], stably (“n = ∞”) [KLW], and modulo relations [Y2].

However, the rings K〈r〉∗BO(2n), and K〈r〉∗BSp(2n) were known—the first
was determined by Wilson [W] and K〈r〉∗BSp(2n) is immediately from the fact
that H∗BSp(2n) is torsion free.

The theorem of [FG] can be used to piece these results together to form K〈r〉∗BSO(2n).

5. RO(G) graded theory

I am also working on a project with Laura Scull at the University of British
Columbia to understand the relationship between equivariant concepts in alge-
braic geometry and algebraic topology via a detailed examination of equivariant
resolution of singularities for singular subvarieties with group action.

In algebraic geometry, the most widely known definition of equivariant inter-
section theory is that of Edidin and Graham [EG2]. They define CH∗

GX by
considering the Borel construction X ×G EG on X as an Ind algebraic variety,
and letting CH∗

GX be CH∗X×G EG, the inverse limit of the ring of algebraic cy-
cles on finite dimensional approximations of the Borel construction mod rational
equivalence (this is all algebraic cycles, not just G-invariant cycles).

In algebraic topology, there is also the notion of an RO(G)-graded equivariant
theory [M] [GLM]. In such a theory, one can also suspend by spheres SV which
are the one point compactifications of representations V of G. The cohomology
of the Borel construction is the Z-graded part of an RO(G)-graded cohomology
theory.

We hope to understand the compatibility between these two types of construc-
tions in algebraic geometry using equivariant resolution of singularities [K]. The
literature contains many versions of equivariant theories that may be relevant. For
example Mark Levine has a new equivariant intersection theory which behaves well
under base change, and hence may well be closer to algebraic topological notions
of equivariant theories than the currently available notion of Edidin and Graham.
This project as a whole is related to the absence of descent in algebraic K-theory,
and attempts to repair this by G. Carlsson, Morel and Voevodsky.
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