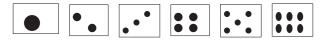
5 Some Important Discrete Probability Distributions

5.1 The Probability Distribution for a Discrete Random Variable

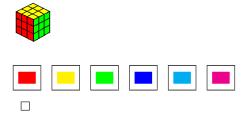
What are some **continuous** random variables?

Discrete distributions

Example: (*Discrete case*) Roll a (not necessarily fair) six-sided die once. The possible outcomes are the **faces** (i.e., dots) on the die.



A different die might have six colors for the six sides (like a Rubik's cube).



Example: (Discrete case) Toss a (not necessarily fair) coin once.

Definition: The **probability distribution** of a **discrete** random variable *X* consists of the possible values of *X* along with their associated probabilities.

We sometimes use the terminology population distribution.

Example: Fair (six-sided) die. Let X be the numerical outcome. Determine the probability distribution of X, graph this probability distribution, and compute the mean of the probability distribution.

Example: Toss a fair coin 3 times. Let X = number of heads.

Let Y = number of matches among the three tosses.

Terminology: The **expected value** of X is the **mean** of a random variable X.

Example: (hypothetical) Suppose an airline often overbooks flights, because past experience shows that some passengers fail to show.

Let the random variable X be the number of passengers who cannot be boarded because there are more passengers than seats.

x	P(x)
0	0.6
1	0.2
2	0.1
3	0.1
sum	1

(a) Compute the expected value of X.

(b) Suppose each unboarded passenger costs the airline \$100 in a ticket voucher. Compute the average cost to the airline per flight in ticket vouchers.

Brief review of means and standard deviations

- The **mean**, μ , of a random variable is the **average** of all outcomes in the population, and is the limiting value of \bar{X} as n gets large.
- The standard deviation, σ , of a random variable measures the **spread** of all outcomes in the population, and is the limiting value of s as n gets large.

The **variance**, σ^2 , of a random variable also measures the spread in the population, and is the limiting value of s^2 as n gets large.

 σ is more intuitive than σ^2 , partly because σ has the same units as the original data.

5.3 Binomial Distribution

Example: Toss an unfair coin 5 times, where $\pi = P(\text{heads}) = 0.4$. Let X be the number of heads. Suppose we want to determine P(X = 2).

Factorials: $m! = m(m-1)(m-2)\cdots 1$ for positive integers m.

Example: Compute 4!, 5!, 1!, and 0!.

A **Bernoulli** trial can have two possible outcomes, *success* or *failure*.

Definition of a **binomial** random variable X.

- 1. Let n, the number of Bernoulli trials, be **fixed** in advance.
- 2. The Bernoulli trials are **independent**.
- 3. The probability of success of a Bernoulli trial is π , which is the same for all observations.

Let X be the number of successes. Then, X is a binomial (n, π) random variable.

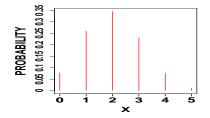
$$P(X = x) = \frac{n!}{x! (n - x)!} \pi^x (1 - \pi)^{n - x}, \quad \text{for } x = 0, 1, 2, \dots, n$$

Example: n = 5 tosses of an unfair coin.

Assume $\pi = P(heads) = 0.4$ (OR 40% Democrats from a huge population). Let X be the number of heads.

Determine the probability distribution of X and construct the line graph.

x	P(x)
0	0.0776
1	0.2592
2	0.3456
3	0.2304
4	0.0768
5	0.01024



Determine the probability of obtaining at least one heads among the five coin tosses.

In 100 tosses of this coin, on average, how many heads do you expect?

Mean and standard deviation of a binomial random

variable

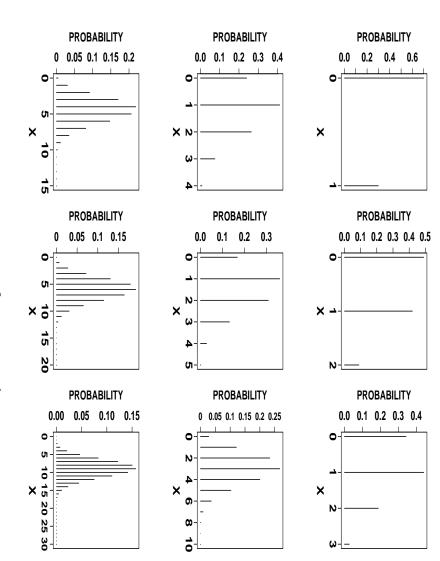
 $\mu = n\pi, \qquad \sigma^2 = n\pi(1-\pi), \qquad \sigma = \sqrt{n\pi(1-\pi)}$

Example: Revisit. Let $X \sim \text{Binomial}(n = 5, \pi = 0.4)$. Compute the mean and standard deviation of X.

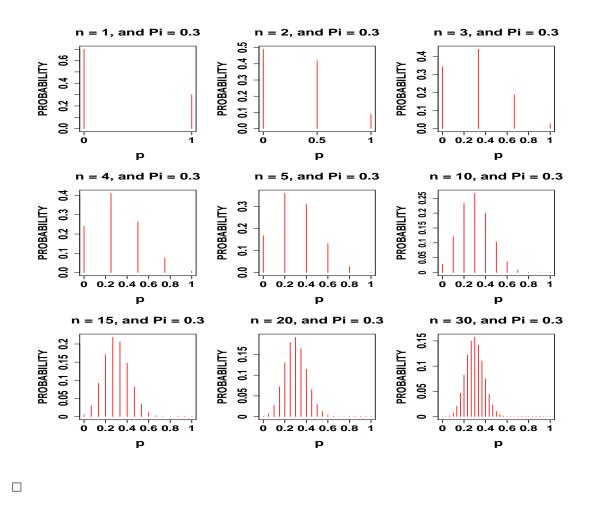
- **Example:** Consider a *huge* population where 30% of the people are Democrats. Let X be the number of Democrats in a sample of size 1000. Compute the mean and standard deviation of X.
- For large sample sizes (i.e., $n\pi \ge 5$ and $n(1 \pi) \ge 5$), a binomial random variable and a sample proportion are approximately **normally distributed** by the **Central Limit Theorem**.

Example: Viewing the Central Limit Theorem.

(a) Consider the graphs below for **binomial** random variables, using $\pi = 0.3$ and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.

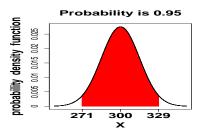


(b) Consider the graphs below for sample proportions, p, using π and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30 ||0.3

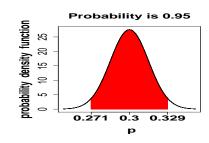


Example: The Democrats.

(a) Use the 95% part of the empirical rule on the binomial random variable.



(b) Use the 95% part of the empirical rule on the sample proportion.



Read p. 194, Microsoft Excel.

5.4 Poisson Distribution

Consider the **Binomial** (n, π) distribution, such that n is huge, π is small, but $n\pi$ is moderate (i.e., neither huge nor small).

Example: Radioactive decay. Consider a radioactive substance containing 3,000,000 atoms, such that decaying atoms are **independent** of each other, and $\pi = P(A \text{ particular atom decays in the next day}) = 1/1,000,000.$ Compute the **mean** number of atomic decays in the next day.

Consider letting $n \to \infty$ and $\pi \to 0$ such that $n\pi \to \lambda$, a positive constant, where $X \sim \text{Binomial}(n, \pi)$.

In this limit, $X \sim \text{Poisson}(\lambda)$.

If $X \sim \text{Poisson}(\lambda)$ for $\lambda > 0$, then

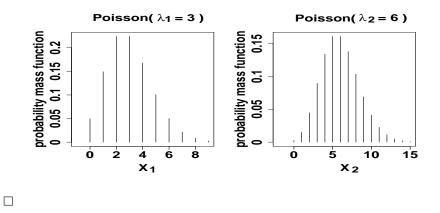
$$P(X = x) = \frac{1}{x!} \lambda^x e^{-\lambda}$$
, for $x = 0, 1, 2, ...$

January 9, 2014 10

Example: *Revisit radioactive decay.* Consider a radioactive substance containing 3,000,000 atoms, such decaying atoms are **independent** of each other, and

 $\pi = P(A \text{ particular atom decays in the next day}) = 1/1,000,000.$

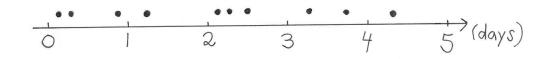
- (a) Let X₁ be the number of decays in **one** day. Determine the probability thatat least one atom decays in the next day.
- (b) Let X₂ be the number of decays in two days. Determine the probability that at least one atom decays in the next two days.



Remark: Typically, when a $\operatorname{Binomial}(n, \pi)$ distribution is reasonably approximated by a $\operatorname{Poisson}(\lambda)$ distribution, n and π are difficult to determine (or estimate), but λ can be estimated from the data. How?

The Poisson Process is explained by the following:

- (a) The probability of a success (such as a radioactive decay) in the next day is independent of its past.
- (b) The mean of a Poisson process based on two days is twice as large as the mean of the same Poisson process based on one day.



Example: Consider the number of recombinations (breaks) in DNA (chromosome pairs) when DNA strands are passed to offspring.

Read p. 200, Microsoft Excel.

Read pp. 212–214, Appendix E5: Using Microsoft Excel for Discrete Probability Distributions.