5 Some Important Discrete Probability Distributions

5.1 The Probability Distribution for a Discrete Random Variable

What are some continuous random variables?

Discrete distributions

Example: (Discrete case) Roll a (not necessarily fair) six-sided die once. The possible outcomes are the faces (i.e., dots) on the die.

A different die might have six colors for the six sides (like a Rubik's cube).

Example: (Discrete case) Toss a (not necessarily fair) coin once.

Definition: The probability distribution of a discrete random variable X consists of the possible values of X along with their associated probabilities. We sometimes use the terminology population distribution.

Example: Fair (six-sided) die. Let X be the numerical outcome. Determine the probability distribution of X, graph this probability distribution, and compute the mean of the probability distribution.

Example: Toss a fair coin 3 times. Let $X=$ number of heads.

Let $Y=$ number of matches among the three tosses.

Terminology: The expected value of X is the mean of a random variable X.
Example: (hypothetical) Suppose an airline often overbooks flights, because past experience shows that some passengers fail to show.

Let the random variable X be the number of passengers who cannot be boarded because there are more passengers than seats.

x	$P(x)$
0	0.6
1	0.2
2	0.1
3	0.1
sum	1

(a) Compute the expected value of X.
(b) Suppose each unboarded passenger costs the airline $\$ 100$ in a ticket voucher. Compute the average cost to the airline per flight in ticket vouchers.

Brief review of means and standard deviations

The mean, μ, of a random variable is the average of all outcomes in the population, and is the limiting value of \bar{X} as n gets large.

The standard deviation, σ, of a random variable measures the spread of all outcomes in the population, and is the limiting value of s as n gets large.

The variance, σ^{2}, of a random variable also measures the spread in the population, and is the limiting value of s^{2} as n gets large.
σ is more intuitive than σ^{2}, partly because σ has the same units as the original data.

5.3 Binomial Distribution

Example: Toss an unfair coin 5 times, where $\pi=P($ heads $)=0.4$.
Let X be the number of heads.
Suppose we want to determine $P(X=2)$.

Factorials: $\quad m!=m(m-1)(m-2) \cdots 1$ for positive integers m.
Example: Compute 4!, 5!, 1!, and 0!.

A Bernoulli trial can have two possible outcomes, success or failure.

Definition of a binomial random variable X.

1. Let n, the number of Bernoulli trials, be fixed in advance.
2. The Bernoulli trials are independent.
3. The probability of success of a Bernoulli trial is π, which is the same for all observations.

Let X be the number of successes. Then, X is a $\operatorname{binomial}(n, \pi)$ random variable.

$$
P(X=x)=\frac{n!}{x!(n-x)!} \pi^{x}(1-\pi)^{n-x}, \quad \text { for } x=0,1,2, \ldots, n
$$

Example: $n=5$ tosses of an unfair coin.
Assume $\pi=P($ heads $)=0.4 \quad$ (OR 40% Democrats from a huge population).
Let X be the number of heads.
Determine the probability distribution of X and construct the line graph.

x	$P(x)$
0	0.0776
1	0.2592
2	0.3456
3	0.2304
4	0.0768
5	0.01024

Determine the probability of obtaining at least one heads among the five coin tosses.

In 100 tosses of this coin, on average, how many heads do you expect?

Mean and standard deviation of a binomial random

variable

$$
\mu=n \pi, \quad \sigma^{2}=n \pi(1-\pi), \quad \sigma=\sqrt{n \pi(1-\pi)}
$$

Example: Revisit. Let $X \sim \operatorname{Binomial}(n=5, \pi=0.4)$. Compute the mean and standard deviation of X.

Example: Consider a huge population where 30% of the people are Democrats. Let X be the number of Democrats in a sample of size 1000. Compute the mean and standard deviation of X.

For large sample sizes (i.e., $n \pi \geq 5$ and $n(1-\pi) \geq 5$), a binomial random variable and a sample proportion are approximately normally distributed by the Central Limit Theorem.

Example: Viewing the Central Limit Theorem.
(a) Consider the graphs below for binomial random variables, using $\pi=0.3$ and $n=1,2,3,4,5,10,15,20$, and 30 .

Example: The Democrats.
(a) Use the 95% part of the empirical rule on the binomial random variable.

(b) Use the 95% part of the empirical rule on the sample proportion.

Read p. 194, Microsoft Excel.

5.4 Poisson Distribution

Consider the $\operatorname{Binomial}(\boldsymbol{n}, \boldsymbol{\pi})$ distribution, such that \boldsymbol{n} is huge, $\boldsymbol{\pi}$ is small, but $\boldsymbol{n} \boldsymbol{\pi}$ is moderate (i.e., neither huge nor small).

Example: Radioactive decay. Consider a radioactive substance containing $3,000,000$ atoms, such that decaying atoms are independent of each other, and $\pi=P($ A particular atom decays in the next day $)=1 / 1,000,000$.
Compute the mean number of atomic decays in the next day.

Consider letting $n \rightarrow \infty$ and $\pi \rightarrow 0$ such that $n \pi \rightarrow \lambda$, a positive constant, where $X \sim \operatorname{Binomial}(n, \pi)$.
In this limit, $X \sim \operatorname{Poisson}(\lambda)$.
If $X \sim \operatorname{Poisson}(\lambda)$ for $\lambda>0$, then

$$
P(X=x)=\frac{1}{x!} \lambda^{x} e^{-\lambda}, \text { for } x=0,1,2, \ldots
$$

Example: Revisit radioactive decay. Consider a radioactive substance containing $3,000,000$ atoms, such decaying atoms are independent of each other, and $\pi=P(\mathrm{~A}$ particular atom decays in the next day $)=1 / 1,000,000$.
(a) Let X_{1} be the number of decays in one day. Determine the probability that at least one atom decays in the next day.
(b) Let X_{2} be the number of decays in two days. Determine the probability that at least one atom decays in the next two days.

Remark: Typically, when a $\operatorname{Binomial}(n, \pi)$ distribution is reasonably approximated by a $\operatorname{Poisson}(\boldsymbol{\lambda})$ distribution, \boldsymbol{n} and $\boldsymbol{\pi}$ are difficult to determine (or estimate), but $\boldsymbol{\lambda}$ can be estimated from the data. How?

The Poisson Process is explained by the following:

(a) The probability of a success (such as a radioactive decay) in the next day is independent of its past.
(b) The mean of a Poisson process based on two days is twice as large as the mean of the same Poisson process based on one day.

Example: Consider the number of recombinations (breaks) in DNA (chromosome pairs) when DNA strands are passed to offspring.

Read p. 200, Microsoft Excel.
Read pp. 212-214, Appendix E5: Using Microsoft Excel for Discrete Probability Distributions.

