2 Graphical Summaries of Data

2.1 Graphical Summaries of Qualitative Data

Bar graphs, Pareto charts, and pie charts graph the relative frequency of qualitative data.
relative frequency $=\frac{\text { frequency in the category }}{\text { total } \# \text { of observations }}$
Example: Poll of 400 students at a university, we have 138 Democrats, 146 Republicans, and 116 Independents.

Construct the bar graph, Pareto chart, and pie chart.

PIE CHART

What is the mode in the above graph?

2.2 Frequency Distributions and Their Graphs

Consider quantitative variables.

Histograms

A histogram is a graph that uses rectangles to portray the frequencies or the relative frequencies of the possible outcomes for a quantitative variable.

Discrete case with a small number of possible outcomes:

Example: Construct a relative frequency histogram for data on household sizes.

\# of people	frequency
1	34
2	51
3	42
4	30
5	20
6	13
7	4
8	6

Discrete case with a large number of possible outcomes, OR continuous case:

Note: Select the intervals of the histogram to be of equal width, for simplicity.
Example: Construct a relative frequency histogram for income (in terms of hourly wage).

income level	\# of people
$\$ 0$ to $\$ 9.99$	35
$\$ 10$ to $\$ 19.99$	50
$\$ 20$ to $\$ 29.99$	70
$\$ 30$ to $\$ 39.99$	115
$\$ 40$ to $\$ 49.99$	100
$\$ 50$ to $\$ 59.99$	130

Sample histograms and population histograms

Compare and contrast sample histograms with population histograms.

The shape of a distribution

A histogram might be described as

1. unimodal
2. bimodal
3. multimodal

A sample or population histogram might be described as

1. symmetric
2. skewed to the right
3. skewed to the left

2.3 More Graphs for Quantitative Data

Stem-and-Leaf Plots

Example:

Data: $43,38,25,41,13,24,30,10,17,5,46,33,5,29,58,10,34,57,62,95,26,21,6$, 46

Ordered data: $5,5,6,10,10,13,17,21,24,25,26,29,30,33,34,38,41,43,46,46$, 57, 58, 62, 95

Each stem represents tens, and each leaf represents ones, in this example.

Stems	Leaves				
0	5	5	6		
1	0	0	3	7	
2	1	4	5	6	9
3	0	3	4	8	
4	1	3	6	6	
5	7	8			
6	2				
7					
8					
9	5				

Stem-and-leaf plots can be used to observe the shape (and location and spread) of the data or detect outliers.

An outlier is an observation that falls well above or well below the overall bulk of the data.

Example: In a random sample of heights of 100 women, a 6 -foot- 8 -inch-tall woman is recorded.

Dotplots

Example: Construct the dotplot for the following data on personal income (in thousands of dollars): $35,49,70,21,49,80,57,160$.

Time-Series Plots

A time plot is the plot of a variable against time.

