3 Numerical Summaries of Data

3.1 Measures of Center

Measures of Center of Quantitative Data

Summarize the data by taking an average.

Example: Suppose that a student has the following 6 quiz grades: 95, 100, 85, 89, 10, 97.

In general, the sample mean of n observations on x is denoted

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum x}{n} .
$$

The sample median is the middle value when the measurements are arranged from smallest to largest. For an even number of data, the median is the average of the two middle values.

When outliers exist or at least one tail of the distribution is heavy, then the sample
median typically is preferred over the sample mean, as a measurement of center. Otherwise, the sample mean typically has less variability and is preferred over the sample median.

For symmetric distributions (with a finite mean, μ), the population mean and population median are equal.

For left skewed distributions, the population mean is less than the population median.

For right skewed distributions, the population mean is greater than the population median.

Example: Explain how to estimate the population average income, μ, in Virginia. Also explain how to estimate the population median income in Virginia.

Estimating a Proportion

Example: Suppose the governor is interested in the proportion of Virginian adults who approve of his budget.

Let p be the population proportion of Virginian adults who approve of his budget.

A sample proportion is the sample mean of zeros and ones, where "one" indicates
success and "zero" indicates failure.

3.2 Measures of Spread

Measures of Spread of Quantitative Data

The sample range is the maximum value minus the minimum value; this measure is reasonable for small data sets, but not large ones.

Example: Suppose a sample of 100 incomes among employed Virginians might have the smallest value of $\$ 10,000$ and the largest value of $\$ 300,000$.

Example: Grades by instructor Jill for 5 students on a chemistry exam are $\{81$, 85, 97, 73, 89\}.

	\bullet	\bullet	\bullet	\bullet		\bullet
70	75	80	85	90	95	100
		Dot plot of grades for Jill's class				

Example: Grades by instructor Susan for 5 students on a chemistry exam are $\{84,88,85,86,82\}$.

70	75	80	85	90	95	100

Which instructor do you prefer?

sample variance $=s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{\sum x^{2}-\frac{1}{n}\left(\sum x\right)^{2}}{n-1}$
 sample standard deviation $=s=\sqrt{s^{2}}$

Example: Jill's class

Example: Susan's class

Remark: Adding a constant to the data does not affect s. For example, adding 10 points to everyone's grade increases \bar{X} and the sample median by 10 points but does not affect s, the spread.

Remark: Multiplying data by a constant c changes s by a factor of $|c|$.

Example: At a company the salaries are $\$ 50,000, \$ 55,000$, and $\$ 60,000$.

Example: Consider the data $\{8,8,8,8,8,8\}$.

Brief review of means and standard deviations

The mean, μ, of a random variable is the average of all outcomes in the population, and is the limiting value of \bar{X} as n gets large.

The standard deviation, σ, of a random variable measures the spread of all outcomes in the population, and is the limiting value of s as n gets large.

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}
$$

The variance, σ^{2}, of a random variable also measures the spread in the population, and is the limiting value of s^{2} as n gets large.

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}
$$

σ is more intuitive than σ^{2}, partly because σ has the same units as the original data.

Empirical Rule

If a large number of observations are sampled from an approximately normal distribution, then (usually)

1. Approximately 68% of the observations fall within one standard deviation, σ, of the mean, μ.
2. Approximately 95% of the observations fall within two standard deviations, σ, of the mean, μ.
3. Approximately 99.7% of the observations fall within three standard deviations, σ, of the mean, μ.

Example: IQ scores of normal adults on the Weschler test have a symmetric bell-shaped distribution with a mean of 100 and standard deviation of 15 .
(a) If 1000 adults are sampled, approximately how many have IQs between 85 and $115 ?$
(b) If 1000 adults are sampled, approximately how many have IQs between 70 and $130 ?$
(c) If 1000 adults are sampled, approximately how many have IQs between 55 and $145 ?$
(d) If 1000 adults are sampled, approximately how many have IQs greater than $130 ?$
probability density function
Probability is $\mathbf{0 . 6 8}$

Probability is 0.95

Probability is 0.997

3.3 Measures of Position

The z-Score

Z represents the number of standard deviations, σ, away from the mean, μ.
Z is the "standardized" variable, known as the Z-score, and has no units.

$$
z=\frac{x-\mu}{\sigma} \quad x=\mu+\sigma z
$$

Definition: The \boldsymbol{p} th percentile separates the lowest $p \%$ of the data from the highest $(100-p) \%$.

Finding the p th percentile

* Sort the n observations in increasing order.
* Calculate $L=(p / 100) n$.
* If L is a whole number, then the p th percentile is the average of the L th and $(L+1)$ th ordered observations.
* If L is NOT a whole number, then the p th percentile is $\lceil L\rceil$ th ordered observation, where $\lceil L\rceil$ is the integer rounded UPWARD from L.

Definition:

* Q_{1} is the first quartile, which is 25 th percentile.
* Q_{2} is the second quartile, which is 50 th percentile, also the sample median.
* Q_{3} is the third quartile, which is 75 th percentile.

Interquartile Range

To determine the interquartile range, first determine the lower quartile and the upper quartile.

The interquartile range or IQR is upper quartile minus lower quartile.

The 5-number summary is $\{$ minimum, lower quartile, median, upper quartile, maximum $\}$.

The 5-number summary divides the data into four (roughly) equal sections (fourths).

Example: Consider the following 14 observations:
$\{45,48,53,103,160,10,63,68,70,71,55,58,81,82\}$.

How do the above results change if we replace 160 by $1,000,000$?

Definition: An observation is an outlier if it is at least $1.5 \times \mathrm{IQR}$ from its nearest quartile.

The Box Plot: Graphing a Five-Number Summary of Position

Procedure:

1. Draw rectangle with edges at lower and upper quartiles.
2. Draw a line through the box at the sample median.
3. Plot the outliers using asterisks.
4. Draw whiskers; i.e., lines from the edge of the box to the most extreme observations which are not outliers.

Previous example: Consider the following 14 observations:
$\{45,48,53,103,160,10,63,68,70,71,55,58,81,82\}$.

Mathematically determine if there are any outliers on the left.

Mathematically determine if there are any outliers on the right.

Which measures of center and spread should one use?

Suppose a data set has outliers (or the distribution has at least one heavy tail).

Suppose a data set seems to be from a distribution which is normal (or approximately normal).

