5 Discrete Probability Distributions

5.1 Random Variables

A variable may be categorical (qualitative) or numerical (quantitative).

Definition: A random variable assigns a number to each outcome in a population.

Two types of random variables are discrete and continuous.
What are some discrete random variables?

What are some continuous random variables?

Discrete distributions

Example: (Discrete case) Roll a (not necessarily fair) six-sided die once. The possible outcomes are the faces (i.e., dots) on the die.

Example: (Discrete case) Toss a (not necessarily fair) coin once.

Definition: The probability distribution of a discrete random variable X consists of the possible values of X along with their associated probabilities. We sometimes use the terminology population distribution.

Example: Fair (six-sided) die. Let X be the numerical outcome. Determine the probability distribution of X, graph this probability distribution, and compute the mean of the probability distribution.

Example: Toss a fair coin 3 times. Let $X=$ number of heads.

Let $Y=$ number of matching coins among the three tosses.

Terminology: The expected value of X is the mean of a random variable X.

Example: (hypothetical) Suppose an airline often overbooks flights, because past experience shows that some passengers fail to show.

Let the random variable X be the number of passengers who cannot be boarded because there are more passengers than seats.

x	$P(x)$
0	0.6
1	0.2
2	0.1
3	0.1
sum	1

(a) Compute the expected value of X.
(b) Suppose each unboarded passenger costs the airline $\$ 100$ in a ticket voucher.

Compute the average cost to the airline per flight in ticket vouchers.

Law of Large Numbers

\bar{X} "converges" to μ as n gets large.
Likewise, s^{2} "converges" to the population variance, σ^{2}, as n gets large.
Similarly, s "converges" to the population standard deviation, σ, as n gets large.

5.2 The Binomial Distribution

Finding Probabilities When Each Observation Has Two Possible Outcomes

The binomial distribution

Example: Toss an unfair coin 5 times, where $p=P$ (heads) $=0.4$.
Let X be the number of heads.
Suppose we want to determine $P(X=2)$.

A Bernoulli trial can have two possible outcomes, success or failure.

Definition of a binomial random variable X.

1. Let n, the number of Bernoulli trials, be fixed in advance.
2. The Bernoulli trials are independent.
3. The probability of success of a Bernoulli trial is p, which is the same for all observations.

Let X be the number of successes. Then, X is a $\operatorname{binomial}(n, p)$ random variable.

$$
P(X=x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}, \quad \text { for } x=0,1,2, \ldots, n
$$

Example: $n=5$ tosses of an unfair coin.
Assume $p=P($ heads $)=0.4 \quad$ (OR 40% Democrats from a huge population)
Let X be the number of heads.
Determine the probability distribution of X and construct the line graph.

x	$P(x)$
0	0.07776
1	0.2592
2	0.3456
3	0.2304
4	0.0768
5	0.01024

Determine the probability of obtaining at least one heads among the five coin tosses.

In 100 tosses of this coin, on average, how many heads do you expect?

Mean and standard deviation of a binomial random variable

$\mu=n p, \quad \sigma^{2}=n p(1-p), \quad \sigma=\sqrt{n p(1-p)}$

Example: Revisit. Let $X \sim \operatorname{Binomial}(n=5, p=0.4)$. Compute the mean and standard deviation of X.

Example: Consider a huge population where 30% of the people are Democrats. Let X be the number of Democrats in a sample of size 1000. Compute the mean and standard deviation of X.

Remark: For large sample sizes, a $\operatorname{Binomial}(n, p)$ random variable is approximately $\operatorname{Normal}(\mu, \sigma)$, in which case the Empirical Rule may be used; details are in section 6.3.

