5 Discrete Probability Distributions

5.1 Random Variables

A variable may be categorical (qualitative) or numerical (quantitative).

Definition: A **random variable** assigns a **number** to each outcome in a population.

Two types of **random variables** are **discrete** and **continuous**.

What are some **discrete** random variables?

What are some **continuous** random variables?

Discrete distributions

Example: (*Discrete case*) Roll a (not necessarily fair) six-sided die once. The possible outcomes are the **faces** (i.e., dots) on the die.

A different die might have six colors for the six sides (like a Rubik's cube).

Example: (Discrete case) Toss a (not necessarily fair) coin once.

Definition: The **probability distribution** of a **discrete** random variable X consists of the possible values of X along with their associated probabilities.

We sometimes use the terminology population distribution.

Example: Fair (six-sided) die. Let X be the numerical outcome. Determine the probability distribution of X, graph this probability distribution, and compute the mean of the probability distribution.

Example: Toss a fair coin 3 times. Let X = number of heads.

Let Y = number of matching coins among the three tosses.

Terminology: The **expected value** of X is the **mean** of a random variable X.

- **Example:** (hypothetical) Suppose an airline often overbooks flights, because past experience shows that some passengers fail to show.
- Let the random variable X be the number of passengers who cannot be boarded because there are more passengers than seats.

x	P(x)
0	0.6
1	0.2
2	0.1
3	0.1
sum	1

- (a) Compute the expected value of X.
- (b) Suppose each unboarded passenger costs the airline \$100 in a ticket voucher. Compute the average cost to the airline per flight in ticket vouchers.

Law of Large Numbers

 \bar{X} "converges" to μ as n gets large.

Likewise, s^2 "converges" to the population variance, σ^2 , as n gets large.

Similarly, s "converges" to the population standard deviation, σ , as n gets large.

5.2 The Binomial Distribution

Finding Probabilities When Each Observation Has Two Possible Outcomes

The binomial distribution

Example: Toss an unfair coin 5 times, where p = P(heads) = 0.4. Let X be the number of heads. Suppose we want to determine P(X = 2).

A **Bernoulli** trial can have two possible outcomes, *success* or *failure*.

Definition of a **binomial** random variable X.

- 1. Let n, the number of Bernoulli trials, be **fixed** in advance.
- 2. The Bernoulli trials are **independent**.
- 3. The probability of success of a Bernoulli trial is *p*, which is the same for all observations.

Let X be the number of *successes*. Then, X is a binomial(n, p) random variable.

$$P(X = x) = \frac{n!}{x! (n - x)!} p^x (1 - p)^{n - x}, \quad \text{for } x = 0, 1, 2, \dots, n$$

Example: n = 5 tosses of an unfair coin.

Assume p = P(heads) = 0.4 (OR 40% Democrats from a huge population) Let X be the number of heads.

Determine the probability distribution of X and construct the line graph.

x	P(x)
0	0.07776
1	0.2592
2	0.3456
3	0.2304
4	0.0768
5	0.01024

Determine the probability of obtaining at least one heads among the five coin tosses.

In 100 tosses of this coin, on average, how many heads do you expect?

Mean and standard deviation of a binomial random variable

 $\mu = np, \qquad \sigma^2 = np(1-p), \qquad \sigma = \sqrt{np(1-p)}$

Example: Revisit. Let $X \sim \text{Binomial}(n = 5, p = 0.4)$. Compute the mean and standard deviation of X.

- **Example:** Consider a *huge* population where 30% of the people are Democrats. Let X be the number of Democrats in a sample of size 1000. Compute the mean and standard deviation of X.
- **Remark:** For large sample sizes, a Binomial(n, p) random variable is approximately $Normal(\mu, \sigma)$, in which case the Empirical Rule may be used; details are in section 6.3.