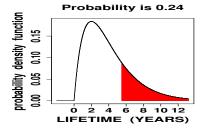
6 The Normal Distribution

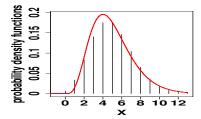
Continuous distributions and density curves

Rules for a continuous histogram.

- 1. The area of a histogram is 1.
- 2. The **probability** of the random variable taking a value in the interval from "a" to "b" is the **area** under the probability distribution curve within this interval.
- 3. The probability density function is nonnegative (cannot have negative probability).

Example: Let X be the lifetime of a computer CPU in years, as shown in the graph below. Determine the probability that a new CPU lasts at least 5.5 years.





Hence, in these above graphs of probability density functions, the *relative frequency* is represented by the **area** under the curve, NOT the **height** of the curve.

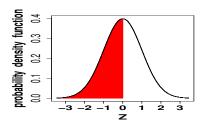
What is the total area under the density curve?

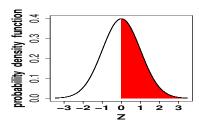
6.1 The Normal Curve

The normal distribution is bell-shaped and symmetric.

Notation: $Z \sim N(\mu_z = 0, \ \sigma_z = 1)$.

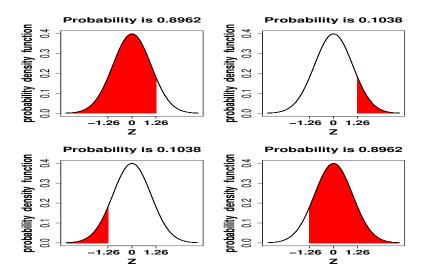
Example: Compute P(Z < 0), $P(Z \le 0)$, P(Z > 0), and $P(Z \ge 0)$.

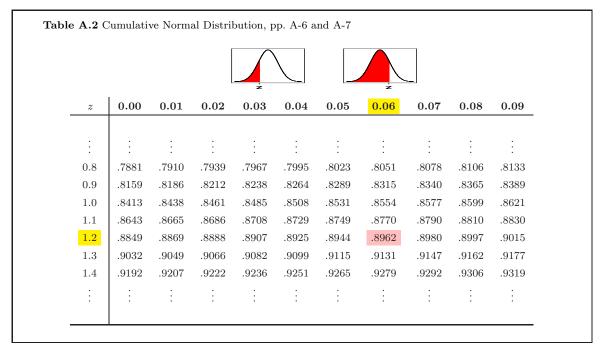




Example: Using the standard normal table. Let Z be a standard normal random variable.

- (a) Determine P(Z < 1.26).
- **(b)** Determine P(Z > 1.26).
- (c) Determine P(Z < -1.26).
- (d) Determine P(Z > -1.26).

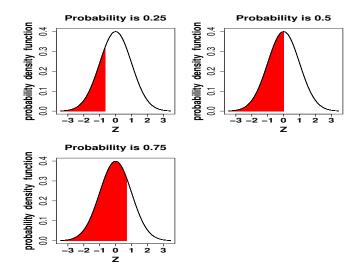


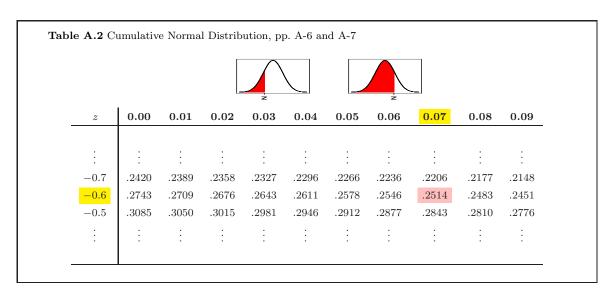


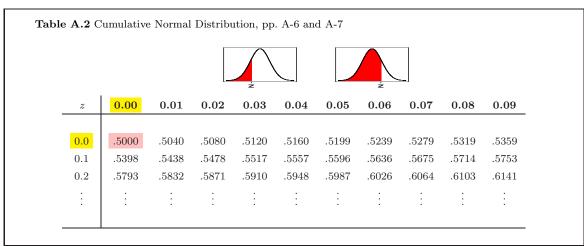
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
:	:	:	:	:	:	:	:	:	:	:
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
:	:	:	:	:	:	:	:	:	:	:

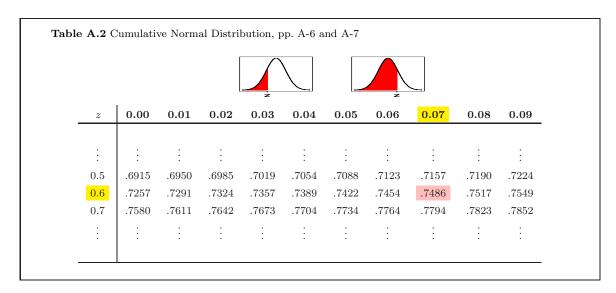
Example: Using the standard normal table in reverse. Let Z be a standard normal random variable.

- (a) Determine the 25th percentile of Z.
- (b) Determine the 50th percentile of Z.
- (c) Determine the 75th percentile of Z.









Finding Probabilities for Bell-Shaped Distributions

Here, we focus on the **normal distribution**, which exists in many applications (at least approximately).

Recall the **empirical rule** from section 3.2.

Empirical Rule

If a large number of observations are sampled from an approximately normal distribution, then (usually)

- 1. Approximately 68% of the observations fall within **one** standard deviation, σ , of the mean, μ .
- 2. Approximately 95% of the observations fall within **two** standard deviations, σ , of the mean, μ .
- 3. Approximately 99.7% of the observations fall within **three** standard deviations, σ , of the mean, μ .

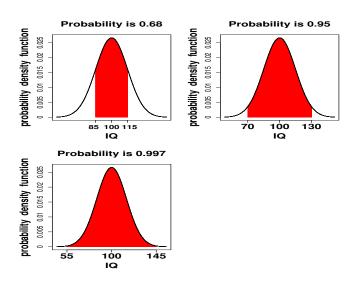
Suppose X has a normal distribution with mean μ and standard deviation σ .

Notation: $X \sim N(\mu, \sigma)$

$$P(\mu - \sigma < X < \mu + \sigma) = 0.68$$

 $P(\mu - 2\sigma < X < \mu + 2\sigma) = 0.95$
 $P(\mu - 3\sigma < X < \mu + 3\sigma) = 0.997$

Example: IQ scores of normal adults on the Weschler test have a symmetric bell-shaped distribution with a mean of 100 and standard deviation of 15.



Again, consider
$$X \sim N(\mu, \sigma)$$
.

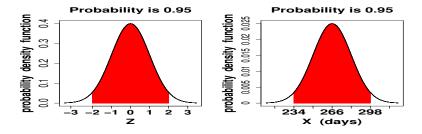
$$Z = \frac{X - \mu}{\sigma}$$

Reverse table look-up uses $X = \mu + \sigma Z$

$$X \leftrightarrow Z \leftrightarrow \text{probability}$$

Example: The length of human pregnancies from conception to birth varies according to a distribution which is approximately normal with mean 266 days and standard deviation 16 days.

(a) Show the empirical rule regarding 95%.



(b) What proportion of pregnancies last more than 245 days?

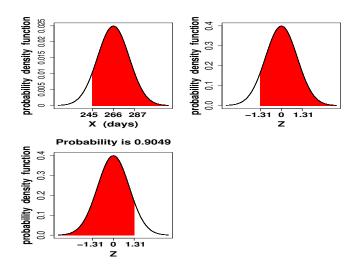
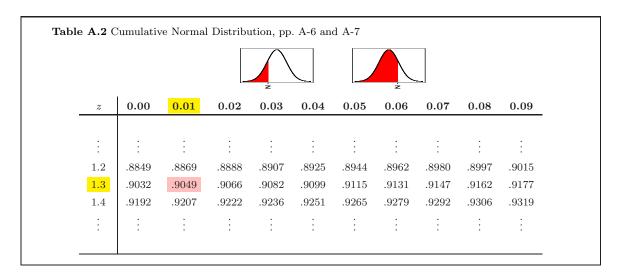
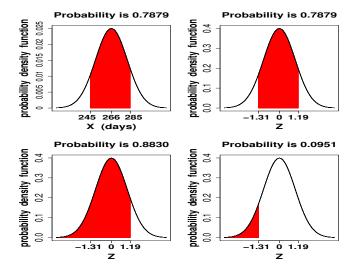
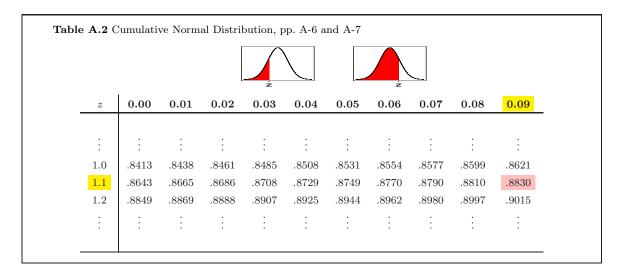


Table A.2 Cumulative Normal Distribution, pp. A-6 and A-7 0.00 0.01 0.020.03 0.04 0.050.06 0.070.08 0.09 -1.4.0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 -1.3.0968 .0951 .0934 .0918 .0869 .0853 .0838 .0823 .0901 .0885-1.2.1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

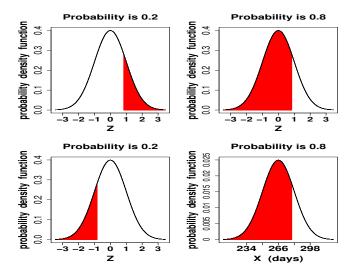


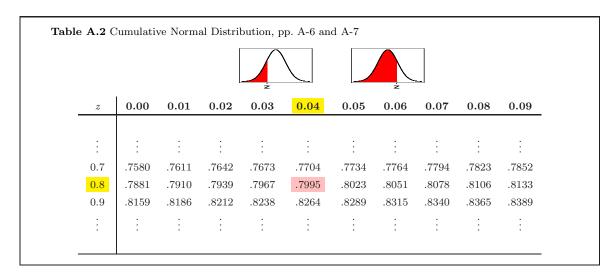
(c) What proportion of pregnancies last between 245 and 285 days?

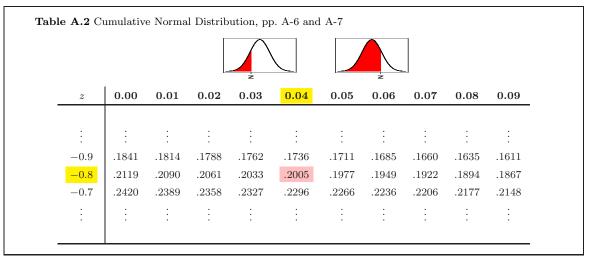




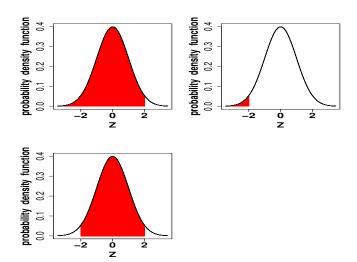
(d) How long do the longest 20% of pregnancies last?

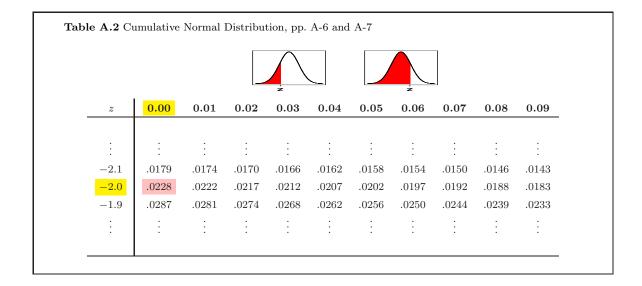


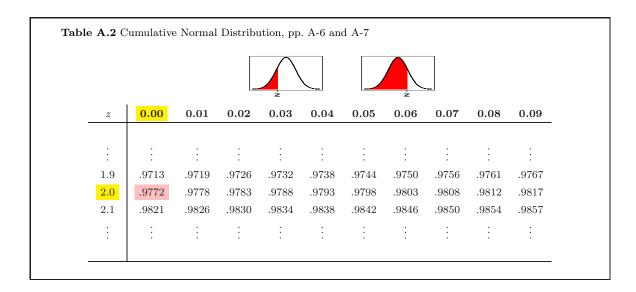




Example: Let $X \sim N(\mu, \sigma)$. Using the standard normal table, verify the empirical rule regarding 95%. In other words, compute $P(\mu - 2\sigma < X < \mu + 2\sigma)$ to four significant digits.

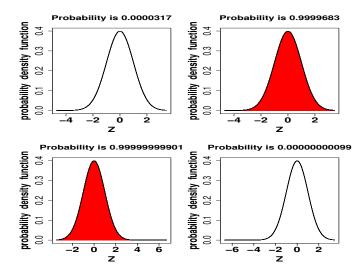


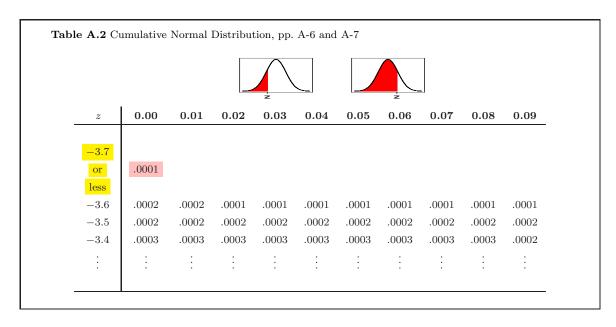


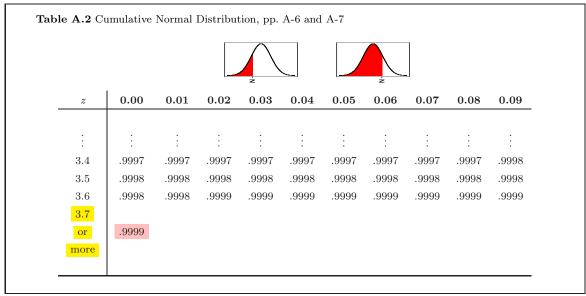


Example: (off the charts)

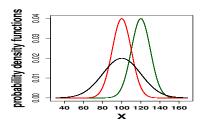
- (a) Determine P(Z < -4)
- (b) Determine P(Z > -4)
- (c) Determine P(Z < 6)
- (d) Determine P(Z < -6)







Example: Compare means and standard deviations in the graphs below.



6.2 Sampling Distributions and the Central Limit Theorem

The Sampling Distribution (of a Statistic)

Definition: (Recall) A **statistic** is a quantity computed from a sample.

Example:

Recall from section 5.1:

Definition: The **probability distribution** of a **discrete** random variable X consists of the possible values of X along with their associated probabilities.

Definition: The *probability distribution* of a **statistic** is called its **sampling** distribution.

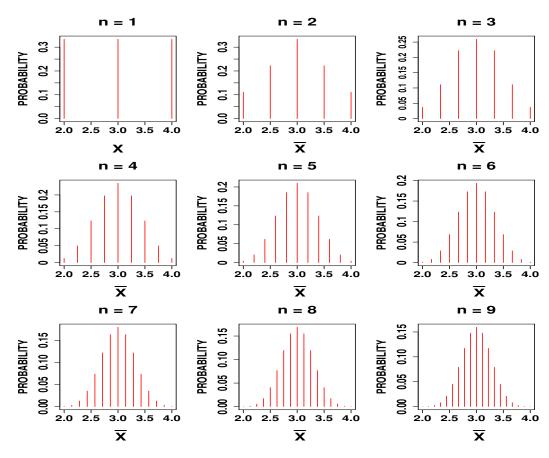
Hence, the **sampling distribution** of a **discrete** *statistic* consists of the possible values of the *statistic* along with their associated probabilities.

Example: Consider a population consisting of three cards, which are labeled as $\boxed{2}$, $\boxed{3}$, and $\boxed{4}$. Let x be the value of a card drawn.

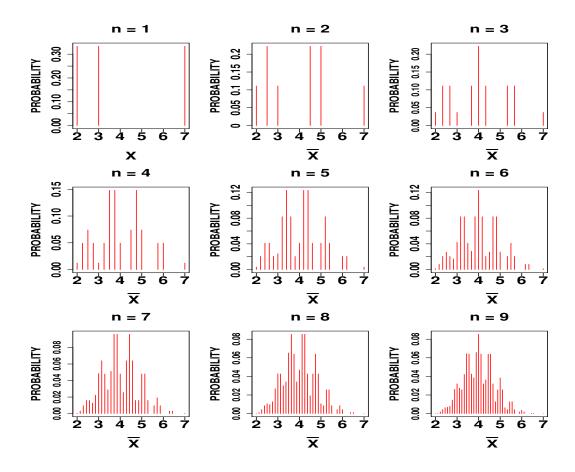
(a) Determine the **probability distribution** of X.

- (b) Graph the probability distribution of X.
- (c) Determine the mean of X.
- (d) Let \bar{X} be the sample mean, based on **two** observations independently sampled (i.e., **with** replacement) from this population. Determine the **sampling** distribution of \bar{X} .

- (e) Graph the sampling distribution of \bar{X} .
- (f) Determine the mean of \bar{X} .
- (g) Additional graphs of the sampling distribution of \bar{X} are below, based on independent observations and sample size n.



(h) Repeat part (g), using cards labeled 2, 3, and 7.



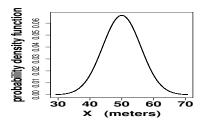
Case A: Sample with replacement. Hence, observations are independent.

Case B: Sample without replacement, but the population size is quite large compared to n; i.e., $N \geq 20n$. Hence, observations are nearly independent.

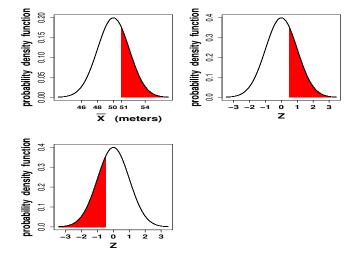
- (a) $\mu_{\bar{X}} = \mu \ always$.
- (b) $\sigma_{\bar{X}} = \sigma/\sqrt{n}$ (called the **standard error** of \bar{X}), exactly for Case A and approximately for Case B.
- (c) (A version of the Central Limit Theorem) The sample mean, \bar{X} , is approximately normally distributed for Cases A and B (and positive finite σ), for large n (usually n > 30, if neither tail of the distribution is too heavy).

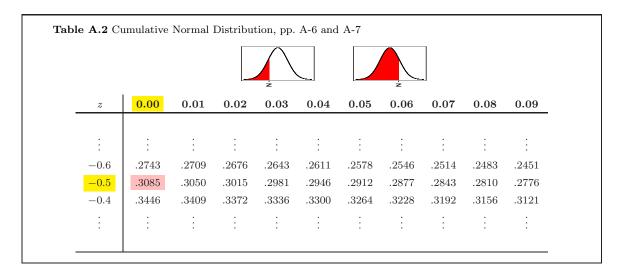
(d) (A special case) The sample mean, \bar{X} , is approximately normally distributed for Cases A and B (and positive finite σ), if the **original population** is approximately **normally distributed** (for **any** sample size n).

Example: Suppose $X \sim N(\mu = 50 \text{ meters}, \sigma = 6 \text{ meters})$. Sample nine independent observations of X.

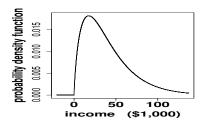


- (a) Determine the mean of \bar{X} .
- (b) Determine the standard deviation of \bar{X} ; i.e., the standard error of \bar{X} .
- (c) Determine the probability that \bar{X} exceeds 51 meters.

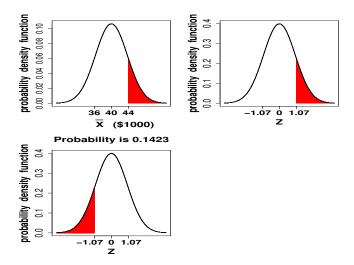


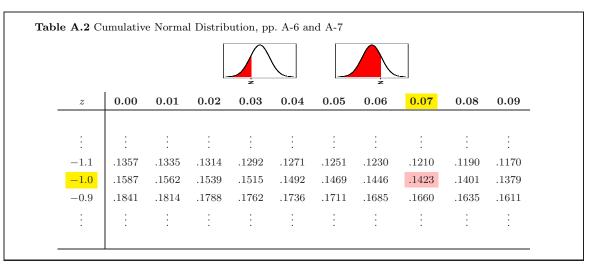


Example: Suppose personal income, X, in a large country has mean $\mu = \$40,000$ and standard deviation $\sigma = \$30,000$. Sample without replacement.

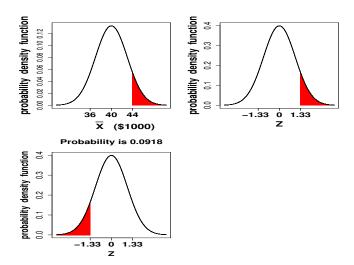


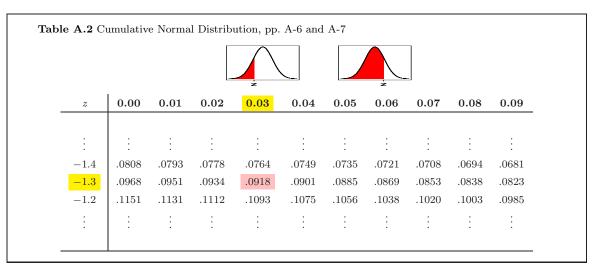
(a) Determine $P(\bar{X} > \$44,000)$, for n = 64.



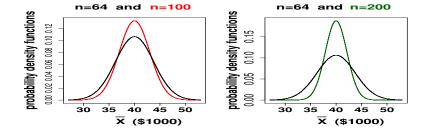


(b) Determine $P(\bar{X} > \$44,000)$, for n = 100.



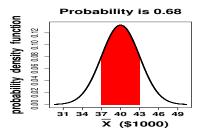


(c) What happens to $P(\bar{X} > \$44,000)$ as we increase n to 200?

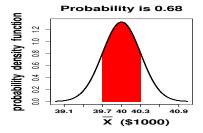


(d) Determine $P(\bar{X} > \$44,000)$, for n = 10.

(e) Determine the 68% part of the empirical rule for n = 100.



(f) Determine the 68% part of the empirical rule for n = 10,000.



6.3 The Central Limit Theorem for Proportions, \hat{p}

This section 6.3 includes some of the concepts from the next section 6.4, *The Normal Approximation to the Binomial Distribution*.

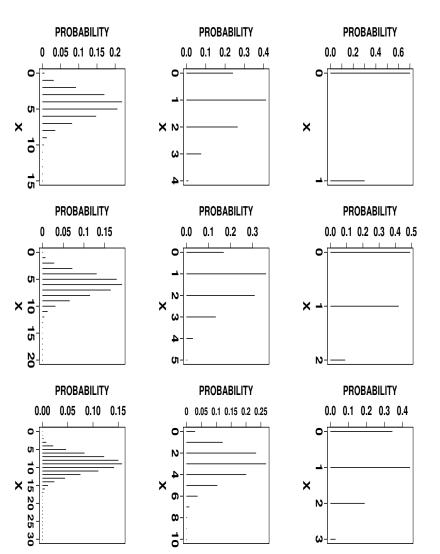
For large sample sizes (i.e., $np \ge 10$ and $n(1-p) \ge 10$), a binomial random variable

and a *sample proportion* are approximately **normally distributed** by the **Central Limit Theorem**.

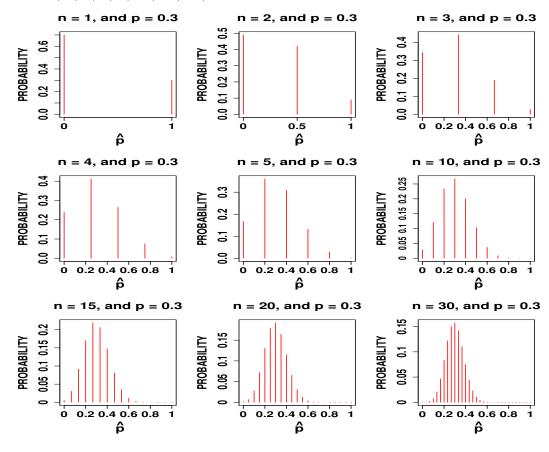
 \hat{p}

Example: Viewing the Central Limit Theorem

(a) Consider the graphs below for **binomial** random variables, using pand n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.||0.3

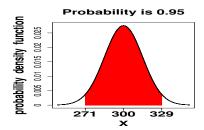


(b) Consider the graphs below for **sample proportions**, \hat{p} , using p = 0.3 and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.

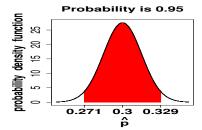


Example: Revisit the Democrats. Sample 1,000 independent observations from a large population which is 30% Democrat.

(a) Use the 95% part of the empirical rule on the binomial random variable.



(b) Use the 95% part of the **empirical rule** on the *sample proportion*.



The Sampling Distribution (of a Statistic)

Definition: (Recall) A **statistic** is a quantity computed from a sample.

Example:

The sampling distribution of a sample proportion, \hat{p}

Recall that a proportion is a special case of a mean.

Example: Revisit the Democrats. Sample independent observations from a large population which is 30% Democrat. Let \hat{p} be the sample proportion of Democrats.

(a) State the **population distribution** in a chart, and construct the *line* graph of the **population distribution**.

Let X = 0 if non-Democrat, and X = 1 if Democrat.

Note that the sampling distribution of \hat{p} for n = 1 is the same as the population distribution of X.

(b) For n = 2, state the **sampling distribution** of \hat{p} in a chart, and construct the *line graph* of the **sampling distribution** of \hat{p} .

(c) What happens to the sampling distribution of \hat{p} as the sample size, n, gets larger?

Example: Virginians who exercise. According to the Centers for Disease Control and Prevention, about 48% of Virginian adults achieved the recommended level of physical activity.

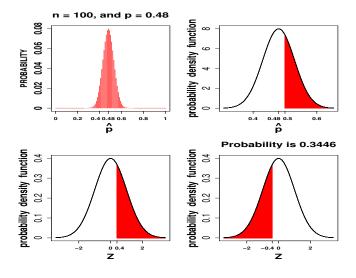
Recommended physical activity is defined as "reported moderate-intensity activities (i.e., brisk walking, bicycling, vacuuming, gardening, or anything else that causes small increases in breathing or heart rate) for at least 30 minutes per day, at least 5 days per week or vigorous-intensity activities (i.e., running, aerobics, heavy yard work, or anything else that causes large increases in breathing or heart rate) for at least 20 minutes per day, at least 3 days per week or both. This can be accomplished

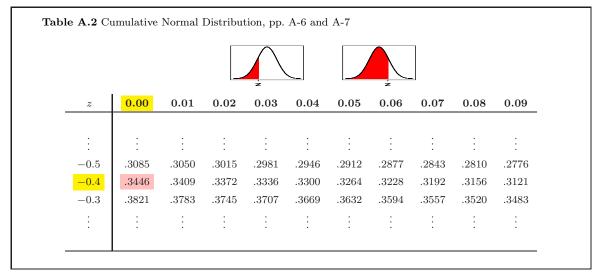
through lifestyle activities (i.e., household, transportation, or leisure-time activities)."

Take a sample of size n = 100, and let X be the number who achieved the recommended level of physical activity. What is the distribution of X?

- Case A: Sample with replacement. Hence, observations are independent.
- Case B: Sample without replacement, but the population size is quite large compared to n; i.e., $N \geq 20n$. Hence, observations are nearly independent.
- If n is a small percentage of the population size, then sampling without replacement is similar to sampling with replacement, since sampling the same person more than once would be quite unlikely.
 - (a) $\mu_{\hat{p}} = p \text{ always.}$
 - (b) $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$ (called the **standard error** of \hat{p}), exactly for Case A and approximately for Case B.
 - (c) (A version of the Central Limit Theorem) The sample proportion \hat{p} is approximately normal if {rule of thumb} $np \geq 10$ and $n(1-p) \geq 10$, for Cases A and B.

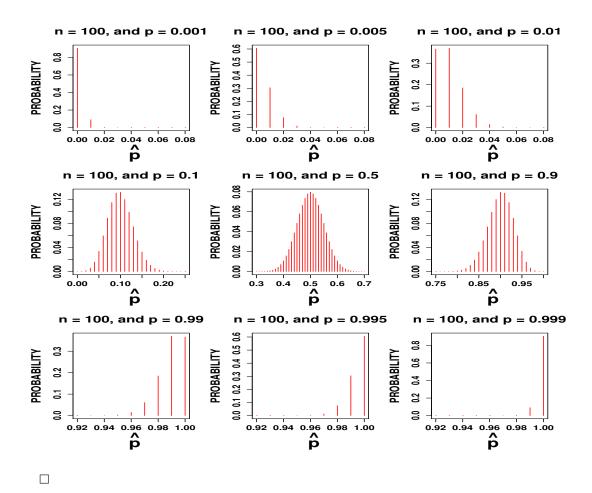
Example: Revisit Virginians who exercise. Determine the probability that a majority of Virginians in a sample of size 100 achieve the recommended level of physical activity.





Why is the rule of thumb needed?

Example: Consider the sampling distribution of \hat{p} , for n = 100 and various p.



Summary of Types of Distributions

The distribution of the original population is called the **population** distribution.

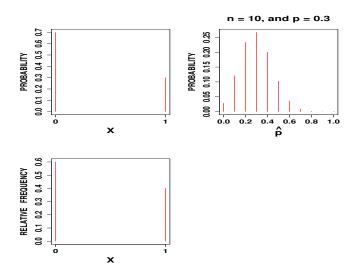
The distribution of a statistic, such as \hat{p} or \bar{X} , is called the **sampling** distribution.

The distribution of one particular data set is called the **data distribution**.

Example: Revisit the Democrats. Consider a large population which is 30% Democrat.

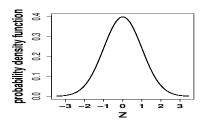
(a) Graph the **population distribution**, where a *one* represents a Democrat and a *zero* represents a non-Democrat.

- (b) Let \hat{p} be the sample proportion of Democrats in a sample of size n = 10. Graph the **sampling distribution** of \hat{p} .
- (c) In a sample of size 10, suppose that we have four Democrats, three Republicans, and three Independents. Graph the data distribution, where a one represents a Democrat and a zero represents a non-Democrat.



Brief review of formulas (for independent or nearly independent observations)

Notation: $Z \sim N(0,1)$



(a)
$$Z = \frac{X-\mu}{\sigma}$$
, if $X \sim N(\mu, \sigma)$

(b)
$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}, \quad \text{if } \bar{X} \sim N(\mu_{\bar{X}} = \mu, \sigma_{\bar{X}} = \sigma/\sqrt{n})$$

Here, we need either the original population to be approximately normal or a large sample size (usually n > 30, if neither tail of the distribution is too heavy).

Note that $\sigma_{\bar{X}}$, the **standard deviation** of \bar{X} , is also called the **standard error** of \bar{X} .

(c)
$$Z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$

Note that $\sigma_{\hat{p}}$, the **standard deviation** of \hat{p} , is also called the **standard error** of \hat{p} .

Here, we need both $np \ge 10$ and $n(1-p) \ge 10$.

6.4 The Normal Approximation to the Binomial Distribution

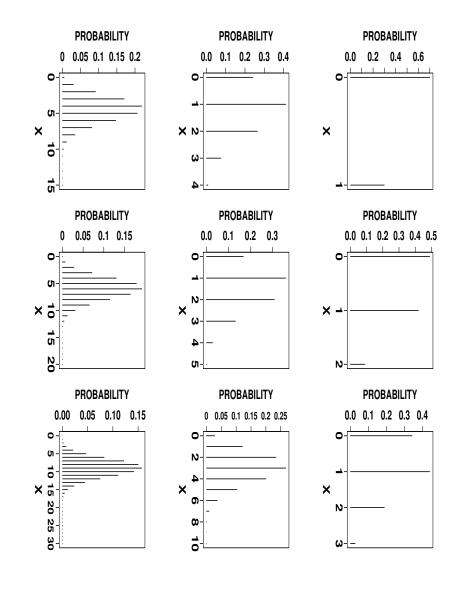
Suppose $X \sim \text{Binomial}(n, p)$.

Then,
$$\mu_x = EX = np$$
 and $\sigma_x = \sqrt{np(1-p)}$.

Rule of thumb: If min $\{np, n(1-p)\}$ is sufficiently large, say, at least 10, then X is approximately $N(\mu_x, \sigma_x)$.

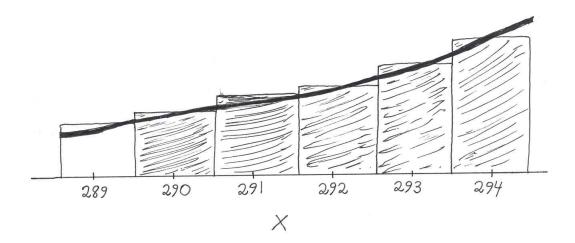
This result follows from the Central Limit Theorem (defined in section 6.2), since a Binomial random variable is a sample sum of Bernoulli random variables.

Example: Viewing the normal approximation to the binomial distribution. Consider the graphs below for **binomial** random variables, using p = 0.3 and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.



Example: of heads Toss a coin 1000 times where P(heads)= 0.3, and let X be the number

- (a) State the **exact** distribution of X.
- (b) Compute the **mean** and **standard deviation** of X.
- (c) Check the rule of thumb.
- (b) Calculate $P(290 \le$ continuity correction $X \leq 320$) using the normal approximation with



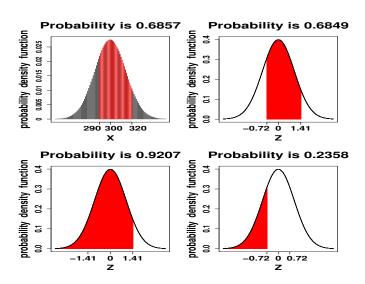
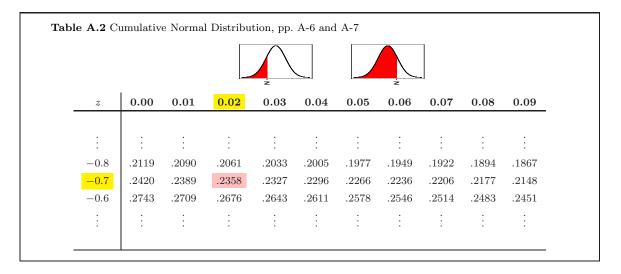


Table A.2 Cumulative Normal Distribution, pp. A-6 and A-7 0.00 0.01 0.020.030.040.050.060.07 0.080.09.9177 1.3 .9032 .9049.9066.9082.9099 .9115.9131.9147.91621.4 .9192.9207 .9222.9236 .9251 .9265.9279 .9292 .9306.9319 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441



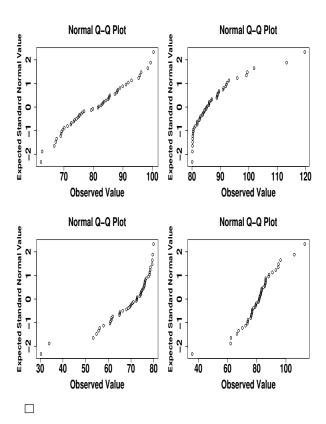
6.5 Assessing Normality

Normal-Quantile plots (also called Quantile-Quantile plots, or Q-Q plots)

How do we know if a sample is from an approximately normal population?

To construct a Q-Q plot, plot *typical* or *quantile* ordered values from a **normal** distribution against the ordered observations.

Example: Describe the distributions which likely generated the following Q-Q plots.



Other methods for detecting nonnormality include:

- * checking for outliers;
- * checking for skewness in a dotplot, stem-and-leaf plot, histogram, or boxplot;
- \ast checking for more than one distinct mode in a histogram.