11 Correlation and Regression

When comparing two variables, sometimes one variable (the explanatory variable) can be used to help predict the value of another variable (the response variable).

Often we are interested in the association (i.e., a relationship) between two or more variables.

Example:

Example: For the following pairs of variables, which is the explanatory variable, and which is the response variable?
(a) number of years of education and income
(b) blood pressure (systolic) and weight
(c) height of sons and height of fathers
(d) score on midterm exam and score on final exam
(e) score on SAT and final GPA in college
(f) deficit spending and interest rates
(g) temperature and ozone in atmosphere

Exploring the Association between Two Quantitative Variables

A scatterplot graphically illustrates the relationship between two quantitative variables.

Example: Heights of 1078 fathers and sons, England, around year 1900.

Example: In the Presidential Election of 2000, George W. Bush earned 537 votes more than Al Gore in Florida, granting the Presidency to Bush. However, the Palm Beach County, Florida, the "butterfly ballot" possibly caused some individuals to mistakenly vote for Pat Buchanan rather than Gore.

11.1 Correlation

How Can Summarize Strength of Association?

Correlation is a numerical measure of the linear association between two variables.

Real Grades from Math 220

Hypothetical Grades

Calculation of (Pearson's) correlation, \boldsymbol{r}, for n pairs of data (x, y).

$$
r=\frac{\frac{1}{n-1} \sum(x-\bar{x})(y-\bar{y})}{s_{x} s_{y}}
$$

The textbook gives the formula

$$
r=\frac{\sum z_{x} z_{y}}{n-1}
$$

where $z_{x}=(x-\bar{x}) / s_{x}$ and $z_{y}=(y-\bar{y}) / s_{y}$.

Example: Determine the correlation for the following data:

Exam \#1 score			Final score				
x			y				
68			60				
100			91				
89			77				
78			89				
60			73				
	X	Y	$X-\bar{X}$	$(X-\bar{X})^{2}$	$Y-\bar{Y}$	$(Y-\bar{Y})^{2}$	$(X-\bar{X})(Y-\bar{Y})$
	68	60	-11	121	-18	324	198
	100	91	21	441	13	169	273
	89	77	10	100	-1	1	-10
	78	89	-1	1	11	121	-11
	60	73	-19	361	-5	25	95
sum	395	390	0	1024	0	640	545

Remarks:

(a) Is r random or fixed?
(b) What are the units on r ?
(c) What are the possible values of r ?
(d) $r=1$ implies what type of correlation?
(e) $r=-1$ implies what type of correlation?
(f) Is selection of x and y relevant when calculating r ?
(g) r makes sense for linear associations only.
(h) A linear transformation on the data does not affect $|r|$.
(i) As the number of (x, y) data pairs becomes huge, r "converges" to the population correlation.

Assessing the Fit of a Line: r^{2}, the Coefficient of Determination

Definition: $\boldsymbol{r}^{\mathbf{2}}$ is the fraction of the variation in the values of y that is explained by the least-squares regression on x.

Example: (FIVE PAIRS OF GRADES) Return to the data for the grades of the five hypothetical students of (exam \#1 score, final score): (68, 60), (100, 91), (89, $77),(78,89)$, and $(60,73)$. Determine the fraction of the variation in the values of y that is explained by the least-squares regression on x.

Example: Under the lofty assumption that the final score is based upon 5 equally weighted INDEPENDENT exams with a common variance, then r^{2} (at least for the entire data set of 87 students) should be about what number (where r is the correlation between the first exam score and the final score)?

What are the possible values of r^{2} ?

Cautions in Analyzing Association Avoid extrapolation.

Association does not imply causation.

Example: Consider the two variables "weight of older brother at age 5" and "weight of younger brother at age 5."

A confounding variable or confounder is a third variable which confuses the relationship between the two variables of interest.

Example: Suppose in a large survey on alcohol consumption and lung cancer, it is determined that people who consume a lot of alcohol have a significantly higher rate of lung cancer than people who consume little or no alcohol.

Is it reasonable to conclude that heavy alcohol consumption causes lung cancer?
What might be a confounding variable?

11.2 The Least-Squares Regression Line

Examining the relationship between variables is called regression analysis.

Examining the linear relationship between two variables is called simple linear regression.

Two purposes of regression analysis:

1. explain
2. predict

Typically,
x is the explanatory variable.
y is the response variable.

Goal is to fit a reasonable line through the scatter plot.

The unique line which minimizes the sum of squares of the vertical distances is called
the least squares line or fitted regression line.

The equation of the least squares line can be written

$$
\hat{y}=b_{0}+b_{1} x .
$$

The slope of the least squares line can be shown to be

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=\frac{r s_{y}}{s_{x}}
$$

The intercept of the least squares line may be computed by noting that the least squares line goes through the point (\bar{x}, \bar{y}).

Example: (FIVE PAIRS OF GRADES) Return to the data for the grades of the five hypothetical students of (exam \#1 score, final score): (68, 60), (100, 91), (89, $77),(78,89)$, and $(60,73)$. Fit the regression line.

Predict a new value of y if x is 85 .

Estimate the mean of y if x is 85 .

Predict a new value of y if x is 40 .

Remark: The least squares line of y on x differs from the least squares line of x on y.

11.3 Inference on the Slope of the Regression Line

The Linear Model

For the entire population of (x, y) values, we define the (population) linear model as:

$$
\mu_{y \mid x}=\beta_{0}+\beta_{1} x
$$

where the population intercept β_{0} and the population slope β_{1} are unknown.
The sample slope b_{0} and the sample intercept b_{1} estimate β_{0} and β_{1}.
What is an interesting hypothesis test?

Recall: $b_{1}=r s_{y} / x_{x}$

Hypothesis test can be performed and confidence intervals can be constructed on β_{1} (or ρ) when all of the following hold.
(1) Observations (x, y) are sampled independently.
(2) The data follow a linear pattern.
(3) The y-values within a vertical strip are approximately normally distributed with the same standard deviation for each x, or the sample size is large ($n>30$).

Assumptions \#2 and \#3 may be checked using a residual plot (see p. 506), which plots the points $(x, y-\hat{y})$, where the values of $y-\hat{y}$ are called the residuals.

If the residual plot shows no obvious pattern, contains no outliers, and has roughly the same vertical spread for each x value, then assumptions $\# 2$ and $\# 3$ are valid.

Compute the test statistic $T=\left(b_{1}-\beta_{1}\right) / s_{b}$, which is t-distributed with $(n-2)$ degrees of freedom, when performing hypothesis tests on β_{1} (or ρ).

The confidence interval on β_{1} is $b_{1} \pm t_{n-2} s_{b}$.
The formula for $s_{b_{1}}$ is given in the textbook but is ugly, so we will use statistical software to calculate $s_{b_{1}}$.

Example: Is there a relationship between the size and the lifespan of butterflies? Test at level $\alpha=0.05$. The wingspan (in millimeters) and the lifespan in the adult state (in days) were measured for 22 species of butterfly. The summary statistics are $\bar{x}=28.309 \mathrm{~mm}, s_{x}=3.526 \mathrm{~mm}, \bar{y}=28.136$ days, $s_{y}=7.225$ days, $r=-0.412$, and $s_{b_{1}}=0.4175$ days $/ \mathrm{mm}$.

(a) State the null and alternative hypotheses.
(b) Discuss the assumptions needed to perform this hypothesis test.
(c) Determine the value of the estimated slope.
(d) Determine the value of the standardized test statistic.
(e) Determine the number of degrees of freedom.
(f) Determine the P-value.

Table A. 3 Critical Values for the Student's t Distribution, p. A-8										
Degrees of Freedom	0.40	0.25	0.10	0.05	Area in Right Tail					
					0.025	0.01	0.005	0.0025	0.001	0.0005
:	.	.	:	:	:	:	:	-	:	:
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
:	:	:	:	\vdots	:	:	:	\vdots	\vdots	\vdots

(g) State the conclusion in statistical terms.
(h) State the conclusion in regular English.

We fail to conclude that the slope parameter (change in lifetime per change in wingspan) is nonzero.

We fail to conclude that the correlation between wingspan and lifetime is statistically significant.
(i) Construct a 95% confidence interval on β_{1}.

Table A. 3 Critical Values for the Student's t Distribution, p. A- 8

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(j) Discuss the relevance of the relationship between your confidence interval and the number zero.

