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5 Joint Probability Distributions

and Random Samples

5.1 Jointly Distributed Random Variables

Instead of considering just one random variable X, we are interested in at least two

random variables, say, (X, Y ).

Discrete case

Definition: The joint probability mass function of discrete random

variables X and Y is

px,y(x, y) = P (X = x ∩ Y = y), and

P ( (X, Y ) ∈ A ) =
∑∑

(x,y)∈A
px,y(x, y).

Example: Roll a pair of fair 4-sided dice.

Let X denote the smaller of the two numbers on the dice.

Let Y denote the larger of the two numbers on the dice.

(a) List the outcomes of the two dice in a table.

(b) Are the outcomes of the two dice independent?

(c) Are X and Y independent?

(d) Compute P (X = Y = 1).

(e) Compute P (X = Y = 2), P (X = Y = 3), and P (X = Y = 4).
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(f) Compute P (X = 1 ∩ Y = 2).

(g) List the joint probability mass function of (X,Y ) in a table.

(h) List the joint probability mass function of (X,Y ) as a formula.

(i) Determine
∑

x

∑

y p(x, y).

✷

Definition: The marginal probability mass functions of X and Y are

px(x) = P (X = x) =
∑

y

px,y(x, y), and

py(y) = P (Y = y) =
∑

x

px,y(x, y).

Example: Revisit. Roll a pair of fair 4-sided dice.

Let X denote the smaller of the two numbers on the dice.

Let Y denote the larger of the two numbers on the dice.

(a) Determine the marginal pmf of X.

(b) Determine the marginal pmf of Y .

(c) List the marginal pmf of X and the marginal pmf of Y in a table.

✷

Continuous case

Definition: The joint probability density function, fx,y(x, y), of
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continuous random variables X and Y is defined by

P ( (X, Y ) ∈ A ) =

∫

A

∫

fx,y(x, y) dx dy,

for all two-dimensional sets A.

If A is a two-dimensional rectangle, then A can be written

A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d},

for some constants a, b, c, d.

If A is a two-dimensional rectangle, then

P ( (X, Y ) ∈ A ) =

∫

A

∫

fx,y(x, y) dx dy

=

∫ d

c

[
∫ b

a

fx,y(x, y) dx

]

dy =

∫ b

a

[
∫ d

c

fx,y(x, y) dy

]

dx.

Example: Consider random variables X and Y with joint probability density

function

fx,y(x, y) =







1/y, if 0 < x < y < 1

0, otherwise
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(a) Graph the domain, where the joint pmf is positive.

(b) Prove that fx,y(x, y) is a valid joint pmf.

✷

Definition: The marginal probability density functions of X and Y

are

fx(x) =

∫ ∞

−∞

fx,y(x, y) dy, and

fy(y) =

∫ ∞

−∞

fx,y(x, y) dx.

Example: Revisit. Consider random variables X and Y with joint probability

density function

fx,y(x, y) =







1/y, if 0 < x < y < 1

0, otherwise

(a) Compute the marginal pdf of X.

(b) Compute the marginal pdf of Y .

✷

Example: Bivariate uniform. Let

fx,y(x, y) =







1, if 0 < x < 1, 0 < y < 1

0, otherwise
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(a) Compute the marginal pdf of X.

(b) Compute the marginal pdf of Y .

(c) Compute P (X < 1/3, 1/4 < Y < 1/2).

✷

Independent Random Variables

Definition: Two random variables are independent if and only if

px,y(x, y) = px(x)py(y), when X and Y are discrete,

fx,y(x, y) = fx(x)fy(y), when X and Y are continuous,

for all x, y ∈ ℜ.

Definition: Two random variables which are NOT independent are called

dependent.

Example: Revisit. Consider random variables X and Y with joint probability

density function

fx,y(x, y) =







1/y, if 0 < x < y < 1

0, otherwise

Mathematically verify whether or not X and Y are independent.

✷

Example: Revisit bivariate uniform. Let

fx,y(x, y) =







1, if 0 < x < 1, 0 < y < 1

0, otherwise
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Mathematically verify whether or not X and Y are independent.

✷

Remark: The definition of independence can be generalized to an arbitrary

number of random variables.

Conditional distributions

Definition: (Continuous case.) Suppose X and Y have joint pdf fx,y(x, y). The

conditional pdf of Y given X = x is

fy|x(y|x) =
fx,y(x, y)

fx(x)
,

which exists if fx(x) > 0.

Definition: (Discrete case.) Suppose X and Y have joint pmf px,y(x, y). The

conditional pmf of Y given X = x is

py|x(y|x) =
px,y(x, y)

px(x)
,

which exists if px(x) > 0.

Suppose X and Y and independent and have joint pdf fx,y(x, y), then

fy|x(y|x) = fy(y).

Similarly, suppose X and Y and independent and have joint pmf px,y(x, y), then

py|x(y|x) = py(y).

Example: Revisit. Consider random variables X and Y with joint probability

density function

fx,y(x, y) =







1/y, if 0 < x < y < 1

0, otherwise
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(a) Compute the conditional pdf of Y given X.

(b) Compute the conditional pdf of Y given X = 1/3.

(c) Compute the conditional pdf of X given Y .

(d) Compute the conditional pdf of X given Y = 1/3.

✷

Example: Revisit bivariate uniform. Let

fx,y(x, y) =







1, if 0 < x < 1, 0 < y < 1

0, otherwise

(a) Compute the conditional pdf of Y given X.

(b) Compute the conditional pdf of X given Y .

Example: Revisit. Roll a pair of fair 4-sided dice.

Let X denote the smaller of the two numbers on the dice.

Let Y denote the larger of the two numbers on the dice.

Compute the conditional pmf of Y given X = 2.

✷

5.2 Expected Values, Covariance, and

Correlation

Let X and Y be jointly distributed random variables with pmf p(x, y) if discrete or

pdf f(x, y) if continuous.
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Let h(x, y) be a function of x and y. Then,

Eh(X, Y ) =







∑

x

∑

y h(x, y) p(x, y), if X and Y are discrete
∫∞

−∞

∫∞

−∞
h(x, y) f(x, y) dx dy, if X and Y are continuous

Definition: The covariance between random variables X and Y is

Cov(X, Y ) = E(X − µx)(Y − µy).

Prove that E(X + Y ) = EX + EY , if EX and EY are finite.

✷

Derive the shortcut formula (where σ2
x + σ2

y < ∞): Cov(X, Y ) = EXY − µxµy.

✷

Example: Revisit. Consider random variables X and Y with joint probability

density function

fx,y(x, y) =







1/y, if 0 < x < y < 1

0, otherwise

(a) Compute the mean of X.

(b) Compute the mean of Y .

(c) Compute the mean of XY .

(d) Compute the covariance between X and Y .

✷

Definition: The correlation coefficient of X and Y is

ρx,y = Corr(X, Y ) =
Cov(X, Y )

σx σy

,
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which exists if 0 < σx < ∞ and 0 < σy < ∞.

Exercise 5.28, p. 221: Suppose that X and Y are independent continuous

random variables.

(a) Prove that EXY = (EX)(EY ).

✷

(b) Apply the result from part (a) to exercise 5.25, p. 220.

✷

Exercise 5.33, p. 221: Suppose that X and Y are independent random

variables.

(a) Prove that Cov(X, Y ) = 0.

(b) Prove that Corr(X, Y ) = 0, if 0 < σx < ∞ and 0 < σy < ∞.

✷

Example: Revisit. Consider random variables X and Y with joint probability

density function

fx,y(x, y) =







1/y, if 0 < x < y < 1

0, otherwise

(a) Compute EX2.

(b) Compute the variance of X.

(c) Compute EY 2.

(d) Compute the variance of Y .
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(e) Compute the correlation of X and Y .

✷

Remarks:

(1) If X and Y are independent with 0 < σx < ∞ and 0 < σy < ∞, then

ρx,y = Corr(X, Y ) =
Cov(X, Y )

σx σy

= 0.

(2) −1 ≤ ρx,y ≤ 1 (follows from Schwarz inequality)

(3) If ρx,y = ±1, then Y = aX + b for constants a 6= 0 and b.

(4) Let a, b, c, and d be constants such that a 6= 0 6= c. (This is exercise 5.35, p.

221.)

(a) Then, Cov(aX + b, cY + d) = ac Cov(X, Y ) Prove it!

(b) Then,

Corr(aX + b, cY + d) =







Corr(X, Y ), if ac > 0

−Corr(X, Y ), if ac < 0

Prove it!

(5) ρ has no units.

(6) ρ is a population correlation coefficient and is often estimated by a sample

correlation coefficient, to be defined in section 12.5.
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(7) Cov(X,X) =

(8) For 0 < σx < ∞, Corr(X,X) =

(9) Correlation measure linear association between X and Y , NOT association

in general.

(10) Zero covariance or zero correlation does NOT imply independence, although

independence implies zero covariance and zero correlation (for 0 < σx < ∞
and 0 < σy < ∞).

Example: Compute the correlation of X and Y , where where the joint

pmf is

px,y(x, y) =







1/3 if (x, y) ∈ {(0, 0), (−1, 1), (1, 1)}
0, otherwise

(11) ρx,y = ρy,x
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5.3 Statistics and Their Distributions

Definition: Random variables X1, X2, . . . , Xn for a (simple) random

sample if these observations are independent and have the same probability

distribution.

A simple random sample consists of independent and identically distributed

(i.i.d.) random variables.

If the population size is huge compared to the sample size n, but sampling is

performed withOUT replacement, then the observations form an

approximate simple random sample, rather than an exact simple random

sample, since the observations are nearly or approximately independent.

Example: Sampling 1000 adults at random withOUT replacement from among

all American adults forms an approximate simple random sample.

Definition: A statistic is a quantity computed from a sample.

Example:

Recall from section 3.2:

Definition: The probability distribution of a discrete random variable

X consists of the possible values of X along with their associated probabilities.

Definition: The probability distribution of a statistic is called its sampling

distribution.

Hence, the sampling distribution of a discrete statistic consists of the possible

values of the statistic along with their associated probabilities.

The sampling distribution of a sample mean, X̄
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Example: Consider a population consisting of three marbles in an urn, where the

marbles are labeled as 2 , 3 , and 4 . Let x be the value of a marble drawn.

(a) Determine the probability distribution of X.

(b) Graph the probability distribution of X.

(c) Determine the mean of X.

(d) Let X̄ be the sample mean, based on two observations independently sampled

(i.e., with replacement) from this population. Determine the sampling

distribution of X̄.

(e) Graph the sampling distribution of X̄.

(f) Determine the mean of X̄.

(g) Additional graphs of the sampling distribution of X̄ are below, based on

independent observations and sample size n.
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(h) Repeat part (g), using marbles labeled 2 , 3 , and 7 .
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✷

The sampling distribution of a sample proportion, p̂

Recall that a proportion is a special case of a mean.

Example: Sample independent observations from a population which is 30%

Democrat. Let p̂ be the sample proportion of Democrats.

(a) State the population distribution in a chart, and construct the line

graph of the population distribution.

Let X = 0 if non-Democrat, and X = 1 if Democrat.
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Note that the sampling distribution of p̂ for n = 1 is the same as the

population distribution of X.

(b) For n = 2, state the sampling distribution of p̂ in a chart, and

construct the line graph of the sampling distribution of p̂.

Consider the graphs below for sample proportions, p̂, using p = 0.3 and

n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.
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(c) What happens to the sampling distribution of p̂ as the sample size, n, gets

larger?

✷
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5.4 The Distribution of the Sample Mean,

X̄

Recall: For random variables X and Y , E(X + Y ) = EX + EY , provided that

EX and EY are finite, whether X and Y are independent or dependent.

Example: Sample X1, X2, . . . , Xn either WITH or withOUT replacement from a

distribution with finite mean µ.

(a) Derive EX̄.

X̄ is unbiased for µ.

(b) Define the sample total T0 = X1+X2+ . . .+Xn. Determine the mean of T0.

✷

Let X1, X2, . . . , Xn be a simple random sample from a distribution with mean µ

and finite variance σ2.

(a) Derive the standard deviation of X̄.

(b) Define the sample total T0 = X1 +X2 + . . .+Xn. Determine the standard

deviation of T0.

✷

Remark: These formulas for means are exact, whether sampling is performed

WITH or withOUT replacement.

Remark: These formulas for standard deviations and variances are exact for

exact simple random samples (i.e., WITH replacement) and approximate for

approximate simple random samples.
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The Case of a Normal Population Distribution: If X1, X2, . . . , Xn are

a simple random sample from a N(µ, σ) population, then X̄ ∼ N(µ, σ/
√
n) and

T0 ∼ N(nµ, σ
√
n).

The Central Limit Theorem: Let X1, X2, . . . , Xn be a simple

random sample from a distribution with mean µ and positive finite variance σ2.

Then,

P

(

X̄ − µ

σ/
√
n

< z

)

= P

(

T0 − nµ

σ
√
n

< z

)

→ P (Z < z),

as n → ∞, where Z is a standard normal random variable.

Sample means and sample totals are approximately normal for sufficiently large n, for

most distributions of interest.

Rule of thumb: Usually n > 30 is considered sufficiently large.

The Central Limit Theorem holds approximately for an approximate simple

random sample.

However, distributions with at least one heavy tail often need n to be very large, in

order for the normal approximation to be reasonable.

Example: Suppose X ∼ N(µ = 50 meters, σ = 6 meters). Sample nine

independent observations of X.
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(a) Determine the mean of X̄.

(b) Determine the standard deviation of X̄; i.e., the standard error of X̄.

(c) Determine the probability that X̄ exceeds 51 meters.
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Standard normal table, pp. 722–723

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

-0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

-0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

-0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
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.

✷

Example: Suppose personal income, X, in the U.S. has mean µ = $40, 000 and

standard deviation σ = $30, 000. Sample without replacement.
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(a) Determine P (X̄ > $44, 000), for n = 64.
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(b) Determine P (X̄ > $44, 000), for n = 100.
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Standard normal table, pp. 722–723
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(c) What happens to P (X̄ > $44, 000) as we increase n to 200?
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(d) Determine P (X̄ > $44, 000), for n = 10.

(e) Determine the 68% part of the empirical rule for n = 100.
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(f) Determine the 68% part of the empirical rule for n = 10, 000.
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✷

For large sample sizes (i.e., np ≥ 10 and n(1− p) ≥ 10), a binomial random variable

and a sample proportion are approximately normally distributed by the

Central Limit Theorem.

✷

Example: Viewing the Central Limit Theorem.

(a) Consider the graphs below for binomial random variables, using p = 0.3

and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.
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✷

Example: Revisit the Democrats.

(a) Use the 95% part of the empirical rule on the binomial random variable.
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(b) Use the 95% part of the empirical rule on the sample proportion.



Section 5.4 The Distribution of the Sample Mean, X̄ May 27, 2015 25

0
5

10
15

20
25

Probability is 0.95

p̂

pro
bab

ility
  de

nsi
ty  

fun
ctio

n
0.271 0.3 0.329

✷

Example: Virginians who exercise. According to the Centers for Disease Control

and Prevention, about 48% of Virginian adults achieved the recommended level of

physical activity.

Recommended physical activity is defined as “reported moderate-intensity activities

(i.e., brisk walking, bicycling, vacuuming, gardening, or anything else that causes

small increases in breathing or heart rate) for at least 30 minutes per day, at least 5

days per week or vigorous-intensity activities (i.e., running, aerobics, heavy yard

work, or anything else that causes large increases in breathing or heart rate) for at

least 20 minutes per day, at least 3 days per week or both. This can be accomplished

through lifestyle activities (i.e., household, transportation, or leisure-time

activities).”

http://apps.nccd.cdc.gov/PASurveillance/StateSumV.asp?Year=2001

www.cdc.gov/nccdphp/dnpa/physical/stats/us physical activity/index.htm

Take a sample of size n = 100, and let X be the number who achieved the

recommended level of physical activity. What is the distribution of X?

✷

Case A: Sample with replacement from a common population. Hence, observations

are independent. The observations form an exact simple random sample.
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Case B: Sample without replacement from a common population, but the population

size is quite large compared to n. Hence, observations are nearly independent. The

observations form an approximate simple random sample.

If n is a small percentage of the population size, then sampling without replacement is

similar to sampling with replacement, since sampling the same person more than

once would be quite unlikely.

(a) µp̂ = p always.

(b) σp̂ =
√

p(1− p)/n (called the standard error of p̂), exactly for Case A

and approximately for Case B.

(c) (A version of the Central Limit Theorem) The sample proportion p̂ is

approximately normal if {rule of thumb} np ≥ 10 and n(1− p) ≥ 10, for Cases

A and B.

Example: Revisit Virginians who exercise. Determine the probability that a

majority of Virginians in a sample of size 100 achieve the recommended level of

physical activity.
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Standard normal table, pp. 722–723
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✷

Why is the rule of thumb needed?

Example: Consider the sampling distribution of p̂, for n = 100 and various p.
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✷

5.5 The Distribution of a Linear

Combination

In this section, let X1, X2, . . ., Xn be random variables, and let a1, a2, . . ., an be

constants. Then,

a1X1 + a2X2 + . . .+ anXn is a linear combination of the Xis.

What are some examples of linear combinations?

Previously we showed that E(X + Y ) = EX + EY for finite EX and EY , regardless

of whether X and Y are independent or dependent.

For the continuous case, evaluate EaX in terms of µ = EX, for a random variable X

with pdf fx(·) and mean µ, and a constant a.

Evaluate E(a1X1 + . . .+ anXn) in terms in the means µi = EXi, for i = 1, . . . , n.

Evaluate Var(a1X1 + . . .+ anXn) in terms in the individual variances (assumed finite)

and covariances.

Evaluate Var(a1X1 + . . .+ anXn) for uncorrelated Xis, in terms of the individual

variances (assumed finite).

Evaluate E(X1 −X2) in terms of µ1 and µ2 (both assumed finite).

Evaluate Var(X1 −X2) for independent Xis, in terms of the individual variances

(assumed finite).
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The Normal Distribution: A linear combination of

independent normal random variables is also normally distributed.

Example: Suppose X ∼ N(µ = 8, σ = 3) and Y ∼ N(µ = 2, σ = 4) such that X

and Y are independent. Determine the distribution of (X − Y ).

Example: Suppose X and Y are standard normal random variables.

(a) Determine the distribution of (X − Y )

(b) Suppose X and Y are independent. Determine the distribution of (X − Y )

(c) Suppose Y = −X with probability 1. Determine the distribution of (X − Y ).

(d) Suppose Y = X with probability 1. Determine the distribution of (X − Y ).


