5 Joint Probability Distributions and Random Samples

5.1 Jointly Distributed Random Variables

Instead of considering just one random variable X, we are interested in at least two random variables, say, (X, Y).

Discrete case

Definition: The **joint probability mass function** of discrete random variables X and Y is

$$p_{x,y}(x,y) = P(X = x \cap Y = y),$$
 and
 $P((X,Y) \in A) = \sum_{(x,y)\in A} p_{x,y}(x,y).$

Example: Roll a pair of fair **4**-sided dice.

Let X denote the **smaller** of the two numbers on the dice.

Let Y denote the **larger** of the two numbers on the dice.

- (a) List the outcomes of the two dice in a table.
- (b) Are the outcomes of the two dice independent?
- (c) Are X and Y independent?
- (d) Compute P(X = Y = 1).
- (e) Compute P(X = Y = 2), P(X = Y = 3), and P(X = Y = 4).

- (f) Compute $P(X = 1 \cap Y = 2)$.
- (g) List the joint probability mass function of (X, Y) in a table.
- (h) List the joint probability mass function of (X, Y) as a formula.
- (i) Determine $\sum_{x} \sum_{y} p(x, y)$.

Definition: The marginal probability mass functions of X and Y are

$$p_x(x) = P(X = x) = \sum_y p_{x,y}(x, y),$$
 and
 $p_y(y) = P(Y = y) = \sum_x p_{x,y}(x, y).$

Example: Revisit. Roll a pair of fair 4-sided dice.
Let X denote the smaller of the two numbers on the dice.
Let Y denote the larger of the two numbers on the dice.

- (a) Determine the marginal pmf of X.
- (b) Determine the marginal pmf of Y.
- (c) List the marginal pmf of X and the marginal pmf of Y in a table.

Continuous case

Definition: The joint probability density function, $f_{x,y}(x,y)$, of

continuous random variables X and Y is defined by

$$P((X,Y) \in A) = \int_A \int f_{x,y}(x,y) \, dx \, dy,$$

for all two-dimensional sets A.

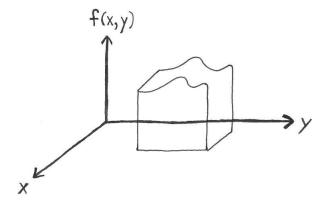
If A is a two-dimensional **rectangle**, then A can be written

$$A = \{ (x, y) : a \le x \le b, c \le y \le d \},\$$

for some constants a, b, c, d.

If A is a two-dimensional **rectangle**, then

$$P((X,Y) \in A) = \int_{A} \int f_{x,y}(x,y) \, dx \, dy$$
$$= \int_{c}^{d} \left[\int_{a}^{b} f_{x,y}(x,y) \, dx \right] dy = \int_{a}^{b} \left[\int_{c}^{d} f_{x,y}(x,y) \, dy \right] dx.$$



Example: Consider random variables X and Y with joint probability density function

$$f_{x,y}(x,y) = \begin{cases} 1/y, & \text{if } 0 < x < y < 1\\ 0, & \text{otherwise} \end{cases}$$

(a) Graph the domain, where the joint **pmf** is positive.

(b) Prove that $f_{x,y}(x, y)$ is a valid joint pmf.

Definition: The marginal probability density functions of X and Y are

$$f_x(x) = \int_{-\infty}^{\infty} f_{x,y}(x,y) \, dy, \quad \text{and}$$
$$f_y(y) = \int_{-\infty}^{\infty} f_{x,y}(x,y) \, dx.$$

Example: *Revisit.* Consider random variables X and Y with joint probability density function

$$f_{x,y}(x,y) = \begin{cases} 1/y, & \text{if } 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute the marginal pdf of X.
- (b) Compute the marginal pdf of Y.

Example: Bivariate uniform. Let

$$f_{x,y}(x,y) = \begin{cases} 1, & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute the marginal pdf of X.
- (b) Compute the marginal pdf of Y.
- (c) Compute P(X < 1/3, 1/4 < Y < 1/2).

Independent Random Variables

Definition: Two random variables are independent if and only if

 $p_{x,y}(x,y) = p_x(x)p_y(y)$, when X and Y are discrete,

 $f_{x,y}(x,y) = f_x(x)f_y(y)$, when X and Y are continuous,

for all $x, y \in \Re$.

- **Definition:** Two random variables which are NOT independent are called **dependent**.
- **Example:** Revisit. Consider random variables X and Y with joint probability density function

$$f_{x,y}(x,y) = \begin{cases} 1/y, & \text{if } 0 < x < y < 1\\ 0, & \text{otherwise} \end{cases}$$

Mathematically verify whether or not X and Y are independent.

Example: Revisit bivariate uniform. Let

$$f_{x,y}(x,y) = \begin{cases} 1, & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

Mathematically verify whether or not X and Y are independent.

Remark: The definition of independence can be generalized to an arbitrary number of random variables.

Conditional distributions

Definition: (Continuous case.) Suppose X and Y have joint pdf $f_{x,y}(x, y)$. The **conditional pdf** of Y given X = x is

$$f_{y|x}(y|x) = \frac{f_{x,y}(x,y)}{f_x(x)},$$

which exists if $f_x(x) > 0$.

Definition: (Discrete case.) Suppose X and Y have joint **pmf** $p_{x,y}(x, y)$. The **conditional pmf** of Y given X = x is

$$p_{y|x}(y|x) = \frac{p_{x,y}(x,y)}{p_x(x)},$$

which exists if $p_x(x) > 0$.

- Suppose X and Y and **independent** and have joint **pdf** $f_{x,y}(x, y)$, then $f_{y|x}(y|x) = f_y(y)$.
- Similarly, suppose X and Y and **independent** and have joint **pmf** $p_{x,y}(x, y)$, then $p_{y|x}(y|x) = p_y(y)$.
- **Example:** Revisit. Consider random variables X and Y with joint probability density function

$$f_{x,y}(x,y) = \begin{cases} 1/y, & \text{if } 0 < x < y < 1\\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute the conditional pdf of Y given X.
- (b) Compute the conditional pdf of Y given X = 1/3.
- (c) Compute the conditional pdf of X given Y.
- (d) Compute the conditional pdf of X given Y = 1/3.

Example: *Revisit bivariate uniform.* Let

$$f_{x,y}(x,y) = \begin{cases} 1, & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute the conditional pdf of Y given X.
- (b) Compute the conditional pdf of X given Y.

Example: Revisit. Roll a pair of fair 4-sided dice. Let X denote the **smaller** of the two numbers on the dice. Let Y denote the **larger** of the two numbers on the dice. Compute the conditional pmf of Y given X = 2.

5.2 Expected Values, Covariance, and Correlation

Let X and Y be jointly distributed random variables with pmf p(x, y) if discrete or pdf f(x, y) if continuous.

Let h(x, y) be a function of x and y. Then,

$$Eh(X,Y) = \begin{cases} \sum_{x} \sum_{y} h(x,y) \ p(x,y), & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) \ f(x,y) \ dx \ dy, & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

Definition: The **covariance** between random variables X and Y is $Cov(X, Y) = E(X - \mu_x)(Y - \mu_y).$

Prove that E(X + Y) = EX + EY, if EX and EY are finite.

Derive the shortcut formula (where $\sigma_x^2 + \sigma_y^2 < \infty$): Cov $(X, Y) = EXY - \mu_x \mu_y$.

Example: Revisit. Consider random variables X and Y with joint probability density function

$$f_{x,y}(x,y) = \begin{cases} 1/y, & \text{if } 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute the mean of X.
- (b) Compute the mean of Y.
- (c) Compute the mean of XY.
- (d) Compute the covariance between X and Y.

Definition: The correlation coefficient of X and Y is

$$\rho_{x,y} = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_x \sigma_y},$$

which exists if $0 < \sigma_x < \infty$ and $0 < \sigma_y < \infty$.

- Exercise 5.28, p. 221: Suppose that X and Y are independent continuous random variables.
 - (a) Prove that EXY = (EX)(EY).
 - (b) Apply the result from part (a) to exercise 5.25, p. 220.

- Exercise 5.33, p. 221: Suppose that X and Y are independent random variables.
 - (a) Prove that Cov(X, Y) = 0.
 - (b) Prove that $\operatorname{Corr}(X, Y) = 0$, if $0 < \sigma_x < \infty$ and $0 < \sigma_y < \infty$.

Example: Revisit. Consider random variables X and Y with joint probability density function

$$f_{x,y}(x,y) = \begin{cases} 1/y, & \text{if } 0 < x < y < 1\\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute EX^2 .
- (b) Compute the variance of X.
- (c) Compute EY^2 .
- (d) Compute the variance of Y.

Remarks:

(1) If X and Y are independent with $0 < \sigma_x < \infty$ and $0 < \sigma_y < \infty$, then

$$\rho_{x,y} = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_x \ \sigma_y} = 0.$$

- (2) $-1 \le \rho_{x,y} \le 1$ (follows from Schwarz inequality)
- (3) If $\rho_{x,y} = \pm 1$, then Y = aX + b for constants $a \neq 0$ and b.

- (4) Let a, b, c, and d be constants such that a ≠ 0 ≠ c. (This is exercise 5.35, p. 221.)
 - (a) Then, Cov(aX + b, cY + d) = ac Cov(X, Y) Prove it!
 - (b) Then,

$$\operatorname{Corr}(aX+b, \ cY+d) = \begin{cases} \operatorname{Corr}(X,Y), & \text{if } ac > 0\\ -\operatorname{Corr}(X,Y), & \text{if } ac < 0 \end{cases}$$

Prove it!

- (5) ρ has no units.
- (6) ρ is a **population** correlation coefficient and is often estimated by a **sample** correlation coefficient, to be defined in section 12.5.

- (7) Cov(X, X) =
- (8) For $0 < \sigma_x < \infty$, $\operatorname{Corr}(X, X) =$
- (9) Correlation measure linear association between X and Y, NOT association in general.
- (10) Zero covariance or zero correlation does NOT imply independence, although independence implies zero covariance and zero correlation (for $0 < \sigma_x < \infty$ and $0 < \sigma_y < \infty$).

Example: Compute the **correlation** of X and Y, where where the joint pmf is

$$p_{x,y}(x,y) = \begin{cases} 1/3 & \text{if } (x,y) \in \{(0,0), \ (-1,1), \ (1,1)\} \\ 0, & \text{otherwise} \end{cases}$$

(11) $\rho_{x,y} = \rho_{y,x}$

5.3 Statistics and Their Distributions

- **Definition:** Random variables $X_1, X_2, ..., X_n$ for a (simple) random sample if these observations are independent and have the same probability distribution.
- A simple random sample consists of independent and identically distributed (i.i.d.) random variables.
 - If the population size is huge compared to the sample size *n*, but sampling is performed **withOUT** replacement, then the observations form an **approximate** simple random sample, rather than an **exact** simple random sample, since the observations are **nearly** or **approximately** independent.
- **Example:** Sampling 1000 adults at random withOUT replacement from among *all* American adults forms an **approximate** simple random sample.

Definition: A **statistic** is a quantity computed from a sample.

Example:

Recall from section 3.2:

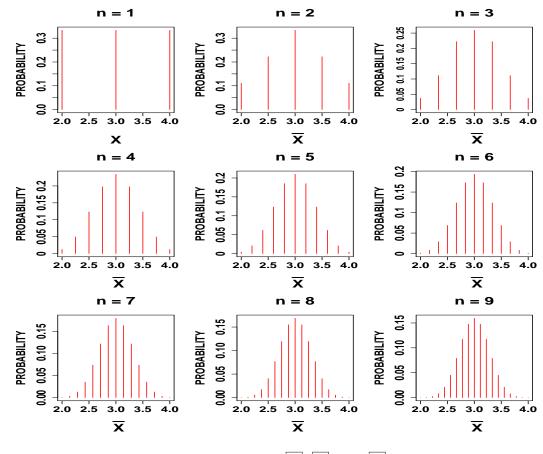
- **Definition:** The **probability distribution** of a **discrete** random variable X consists of the possible values of X along with their associated probabilities.
- **Definition:** The *probability distribution* of a **statistic** is called its **sampling distribution**.
- Hence, the **sampling distribution** of a **discrete** *statistic* consists of the possible values of the *statistic* along with their associated probabilities.

The sampling distribution of a sample mean, \bar{X}

Example: Consider a population consisting of three marbles in an urn, where the marbles are labeled as 2, 3, and 4. Let x be the value of a marble drawn.

(a) Determine the **probability distribution** of X.

- (b) Graph the *probability distribution* of X.
- (c) Determine the mean of X.
- (d) Let X be the sample mean, based on two observations independently sampled (i.e., with replacement) from this population. Determine the sampling distribution of X.
- (e) Graph the sampling distribution of \bar{X} .
- (f) Determine the mean of \bar{X} .
- (g) Additional graphs of the sampling distribution of \bar{X} are below, based on independent observations and sample size n.



(h) Repeat part (g), using marbles labeled 2, 3, and 7.



The sampling distribution of a sample proportion, \hat{p}

Recall that a proportion is a special case of a mean.

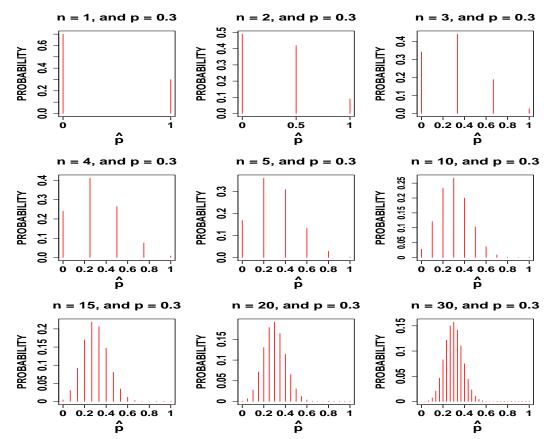
- **Example:** Sample *independent* observations from a population which is 30% Democrat. Let \hat{p} be the sample proportion of Democrats.
 - (a) State the population distribution in a chart, and construct the *line* graph of the population distribution.

Let X = 0 if non-Democrat, and X = 1 if Democrat.

Note that the sampling distribution of \hat{p} for n = 1 is the same as the population distribution of X.

(b) For n = 2, state the sampling distribution of p̂ in a chart, and construct the *line graph* of the sampling distribution of p̂.

Consider the graphs below for **sample proportions**, \hat{p} , using p = 0.3 and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.



(c) What happens to the sampling distribution of \hat{p} as the sample size, n, gets larger?

5.4 The Distribution of the Sample Mean, \bar{X}

- **Recall:** For random variables X and Y, E(X + Y) = EX + EY, provided that EX and EY are finite, whether X and Y are independent or dependent.
- **Example:** Sample X_1, X_2, \ldots, X_n either WITH or withOUT replacement from a distribution with finite mean μ .
 - (a) Derive $E\bar{X}$.
 - \overline{X} is **unbiased** for μ .
 - (b) Define the sample total $T_0 = X_1 + X_2 + \ldots + X_n$. Determine the mean of T_0 .
- Let X_1, X_2, \ldots, X_n be a **simple random sample** from a distribution with mean μ and finite variance σ^2 .
 - (a) Derive the standard deviation of \bar{X} .
 - (b) Define the sample total T₀ = X₁ + X₂ + ... + X_n. Determine the standard deviation of T₀.

- **Remark:** These formulas for **means** are **exact**, whether sampling is performed WITH or withOUT replacement.
- **Remark:** These formulas for standard deviations and variances are exact for exact simple random samples (i.e., WITH replacement) and approximate for approximate simple random samples.

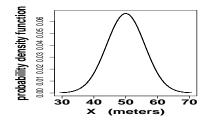
- The Case of a Normal Population Distribution: If $X_1, X_2, ..., X_n$ are a simple random sample from a $N(\mu, \sigma)$ population, then $\overline{X} \sim N(\mu, \sigma/\sqrt{n})$ and $T_0 \sim N(n\mu, \sigma\sqrt{n})$.
- The Central Limit Theorem: Let X_1, X_2, \ldots, X_n be a simple

random sample from a distribution with mean μ and positive finite variance σ^2 . Then,

$$P\left(\frac{X-\mu}{\sigma/\sqrt{n}} < z\right) = P\left(\frac{T_0 - n\mu}{\sigma\sqrt{n}} < z\right) \to P(Z < z),$$

as $n \to \infty$, where Z is a standard normal random variable.

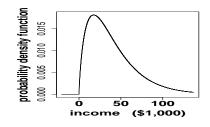
- Sample means and sample totals are approximately normal for sufficiently large n, for most distributions of interest.
- Rule of thumb: Usually n > 30 is considered sufficiently large.
- The *Central Limit Theorem* holds **approximately** for an **approximate** simple random sample.
- However, distributions with at least one **heavy tail** often need n to be very large, in order for the normal approximation to be reasonable.
- **Example:** Suppose $X \sim N(\mu = 50 \text{ meters}, \sigma = 6 \text{ meters})$. Sample nine independent observations of X.



- (a) Determine the mean of \overline{X} .
- (b) Determine the standard deviation of \bar{X} ; i.e., the standard error of \bar{X} .
- (c) Determine the probability that \bar{X} exceeds 51 meters.

probability density function	46 48 50 5 X (1	51 54 meters)	probability density function	-		1 2 3					
probability density function	-2 -1 9	1 2 3									
	_2 _1 0 Z										
	-2 -1 0 Z			St		lormal ta	ble, pp.	722-723			
	Z	.00	.01			normal ta	able, pp. .05		.07	.08	.09
			.01		andard r			722-723		.08	.09
	z	.00		.02	andard r .03	.04	.05	722-723 .06	.07		
	 :	<mark>.00</mark> :	:	.02 :	andard r .03 :	.04 :	.05 :	722–723 .06 :	.07 :	:	÷
	z : -0.6	.00 : .2743	: .2709	.02 : .2676	andard r .03 .2643	.04 : .2611	.05 : .2578	722–723 .06 .2546	.07 : .2514	: .2483	.2451

Example: Suppose personal income, X, in the U.S. has mean $\mu = $40,000$ and standard deviation $\sigma = $30,000$. Sample **without** replacement.



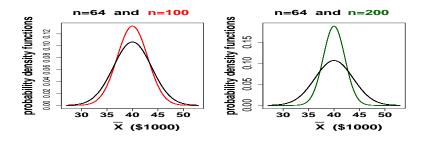
(a) Determine $P(\bar{X} > \$44, 000)$, for n = 64.

probability density function probability density function 0.0 0.1 0.2 0.3 0.4 0.00 0.02 0.04 0.05 0.00 0.10	36 40 X (9 bbability 1 -1.07 0 z	z is 0.1423										
					ź			ż				
	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
	÷	÷	÷	÷	:	÷	:	÷	•	÷	÷	
	-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170	
	-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379	
	-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611	
		÷	÷	:	:	÷	:	÷	:	:	÷	

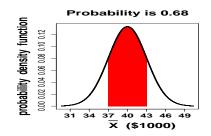
(b) Determine $P(\bar{X} > \$44,000)$, for n = 100.

probability density function probability density function 0.0 0.1 0.2 0.3 0.4 0.0 0.012 1 -	36 40 X (Probability	\$1000)	probability density function	00 01 02 03 04	-1.33 0 Z	1.33						
broba	-1.33 o z	1.33										
					ź			Ż				
				S	Standard 1	normal ta	able, pp.	722-723				
	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
	÷	÷	÷	:	÷	÷	:	÷	÷	:	÷	
	-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	
	-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823	
	-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985	
			:			:				•	<u> </u>	

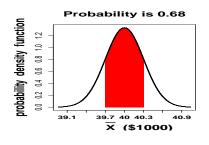
(c) What happens to $P(\bar{X} > \$44,000)$ as we increase n to 200?



- (d) Determine $P(\bar{X} > \$44,000)$, for n = 10.
- (e) Determine the 68% part of the empirical rule for n = 100.



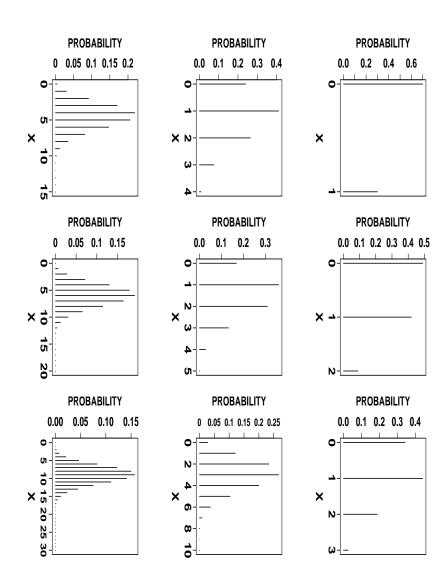
(f) Determine the 68% part of the empirical rule for n = 10,000.



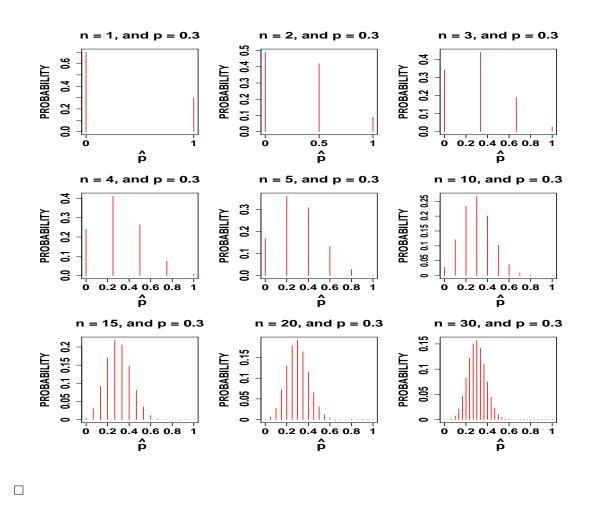
For large sample sizes (i.e., $np \ge 10$ and $n(1-p) \ge 10$), a binomial random variable and a sample proportion are approximately **normally distributed** by the **Central Limit Theorem**.

Example: Viewing the Central Limit Theorem.

(a) Consider the graphs below for **binomial** random variables, using p = 0.3 and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30.

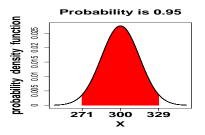


(b) Consider the graphs below for **sampling proportions**, \hat{p} , using p and n = 1, 2, 3, 4, 5, 10, 15, 20, and 30. ||0.3

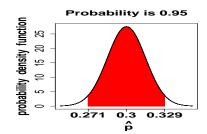


Example: *Revisit the Democrats.*

(a) Use the 95% part of the empirical rule on the binomial random variable.



(b) Use the 95% part of the empirical rule on the sample proportion.



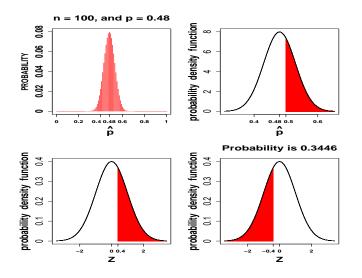
- **Example:** Virginians who exercise. According to the Centers for Disease Control and Prevention, about 48% of Virginian adults achieved the recommended level of physical activity.
- Recommended physical activity is defined as "reported moderate-intensity activities (i.e., brisk walking, bicycling, vacuuming, gardening, or anything else that causes small increases in breathing or heart rate) for at least 30 minutes per day, at least 5 days per week or vigorous-intensity activities (i.e., running, aerobics, heavy yard work, or anything else that causes large increases in breathing or heart rate) for at least 20 minutes per day, at least 3 days per week or both. This can be accomplished through lifestyle activities (i.e., household, transportation, or leisure-time activities)."

http://apps.nccd.cdc.gov/PASurveillance/StateSumV.asp?Year=2001 www.cdc.gov/nccdphp/dnpa/physical/stats/us_physical_activity/index.htm

Take a sample of size n = 100, and let X be the number who achieved the recommended level of physical activity. What is the distribution of X?

Case A: Sample with replacement from a common population. *Hence, observations are independent.* The observations form an **exact** simple random sample.

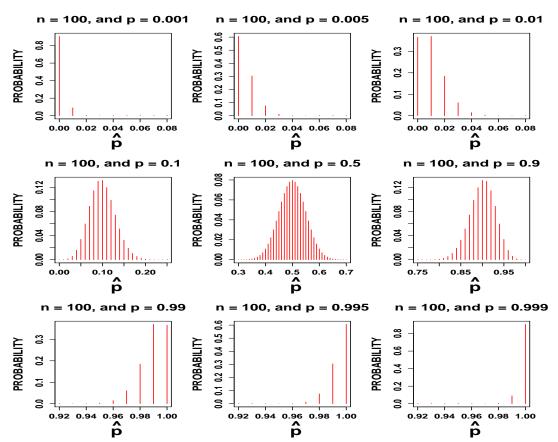
- Case B: Sample without replacement from a common population, but the population size is quite large compared to n. Hence, observations are nearly independent. The observations form an **approximate** simple random sample.
- If n is a small percentage of the population size, then sampling without replacement is similar to sampling with replacement, since sampling the same person more than once would be quite unlikely.
 - (a) $\mu_{\hat{p}} = p$ always.
 - (b) $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$ (called the **standard error** of \hat{p}), exactly for Case A and approximately for Case B.
 - (c) (A version of the Central Limit Theorem) The sample proportion p̂ is approximately normal if {rule of thumb} np ≥ 10 and n(1 − p) ≥ 10, for Cases A and B.
- **Example:** Revisit Virginians who exercise. Determine the probability that a majority of Virginians in a sample of size 100 achieve the recommended level of physical activity.



				ż			ż			
			\mathbf{St}	andard r	normal ta	able, pp.	722-723	3		
\mathbf{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
:	:	:	:	÷	:	•	:	:	:	:
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
÷	:	:	÷	÷	÷	:	÷	÷	÷	÷
	:	:				:		:		

Why is the rule of thumb needed?

Example: Consider the sampling distribution of \hat{p} , for n = 100 and various p.



5.5 The Distribution of a Linear Combination

In this section, let X_1, X_2, \ldots, X_n be random variables, and let a_1, a_2, \ldots, a_n be constants. Then,

 $a_1X_1 + a_2X_2 + \ldots + a_nX_n$ is a **linear combination** of the X_i s.

What are some examples of linear combinations?

- Previously we showed that E(X + Y) = EX + EY for finite EX and EY, regardless of whether X and Y are independent or dependent.
- For the **continuous** case, evaluate EaX in terms of $\mu = EX$, for a random variable X with pdf $f_x(\cdot)$ and mean μ , and a constant a.
- Evaluate $E(a_1X_1 + \ldots + a_nX_n)$ in terms in the means $\mu_i = EX_i$, for $i = 1, \ldots, n$.
- Evaluate $Var(a_1X_1 + \ldots + a_nX_n)$ in terms in the individual variances (assumed finite) and covariances.
- Evaluate $\operatorname{Var}(a_1X_1 + \ldots + a_nX_n)$ for **uncorrelated** X_i s, in terms of the individual variances (assumed finite).

Evaluate $E(X_1 - X_2)$ in terms of μ_1 and μ_2 (both assumed finite).

Evaluate $\operatorname{Var}(X_1 - X_2)$ for **independent** X_i s, in terms of the individual variances (assumed finite).

The Normal Distribution: A linear combination of

independent normal random variables is also normally distributed.

Example: Suppose $X \sim N(\mu = 8, \sigma = 3)$ and $Y \sim N(\mu = 2, \sigma = 4)$ such that X and Y are **independent**. Determine the distribution of (X - Y).

Example: Suppose X and Y are standard normal random variables.

- (a) Determine the distribution of (X Y)
- (b) Suppose X and Y are independent. Determine the distribution of (X Y)
- (c) Suppose Y = -X with probability 1. Determine the distribution of (X Y).
- (d) Suppose Y = X with probability 1. Determine the distribution of (X Y).