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6 Point Estimation

6.1 Some General Concepts of Point

Estimation

Definition: An estimator θ̂ is an unbiased estimator of θ if Eθ̂ = θ.

Definition: The bias of an estimator θ̂ is (Eθ̂ − θ).

Example: Let X1, . . . , Xn be a simple random sample with finite mean µ.

Determine a reasonable estimator of µ along with its bias.

Example: Let X ∼ Binomial(n, p). Based on a sample of size 1, determine a

reasonable estimator of p along with its bias.

Example: Let X1, . . . , Xn be a simple random sample with mean µ and finite

variance σ2.

(a) Consider the estimator

σ̂2

1
= s2 =

1

n− 1

n
∑

i=1

(Xi − X̄)2.

Prove that s2 is unbiased for σ2.

(b) Consider another estimator

σ̂2

2
=

1

n

n
∑

i=1

(Xi − X̄)2.

Compute the bias of σ̂2

2
when estimating σ.
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(c) Is s unbiased for σ?

Definition: The standard error of an estimator is σ
θ̂
.

When the formula for σ
θ̂
is a function of unknown parameters, we often estimate these

unknown parameters and then determine the estimated standard error.

Example: Let X1, . . . , Xn be a simple random sample with mean µ and finite

variance σ2.

(a) Determine the standard error of the sample mean, X̄.

(b) Determine the estimated standard error of the sample mean, X̄ (for

unknown σ).

Example: Let X ∼ Binomial(n, p).

(a) Determine the standard error of the sample proportion, p̂.

(b) Determine the estimated standard error of the sample proportion, p̂

(for unknown p).

Remark: The standard error measures variability in the estimator and typically

decreases as n gets large.

Remark: Estimators with small (perhaps zero) bias and small standard error

typically are preferable.

6.2 Methods of Point Estimation

The Method of Moments
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Definition: For a simple random sample X1, . . . , Xn, the kth sample moment is

(1/n)
∑

n

i=1
Xk, for k = 1, 2, . . ..

Definition: For a randomly sampled observation X from some population, the

kth population moment is EXk, for k = 1, 2, . . ..

The method of moments estimator of some parameter θ is determine by setting

the kth sample moment to the kth population moment, and then solving for

θ.

Remark: When computing method of moments estimators, typically we start

with k = 1, then k = 2, and so on.

Example: Let X1, X2, . . . , Xn be a simple random sample from an Exponential(λ)

population, where

f(x) =







λ e−λ x, if x ≥ 0

0, otherwise

for a constant λ > 0. Compute a method of moments estimator of λ.

0

0
λ

x

f ( x
 )

Example: Let X1, X2, . . . , Xn be a simple random sample from a Bernoulli(p)

population. Compute a method of moments estimator of p.

Example: Let X1, X2, . . . , Xn be a simple random sample from a N(µ, σ)

population.



Section 6.2 Methods of Point Estimation June 1, 2015 4

(a) Compute a method of moments estimator of µ.

(b) Compute a method of moments estimator of σ2.

(c) Compute a method of moments estimator of σ.

Maximum Likelihood Estimation

Let x1, x2, . . . , xn be a simple random sample from a population with pdf f(x; θ),

where θ is an unknown parameter. The likelihood function is

L(θ) = f(x1, x2, . . . , xn; θ) = f(x1; θ) f(x2; θ) · · · f(xn; θ).

The value, say θ̂, which maximizes the likelihood function is called the maximum

likelihood estimator of θ.

Hint: Often, instead of maximizing L(θ) with respect to θ, maximize log L(θ), since

the logarithm function is monotonic.
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Example: Let x1, x2, . . . , xn be independent observations from an Exponential(λ)

distribution with pdf

f(x) =







λ e−λ x, if x ≥ 0

0, otherwise

for a constant λ > 0.
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(a) Determine the maximum likelihood estimator of λ.

0 ^
λ λ

log
  L 

(λ
)

(b) Determine the maximum likelihood estimator of the population mean of

X, where X ∼Exponential(λ).

Remark: A function of a maximum likelihood estimator is also a maximum

likelihood estimator.

Remark: The notion of maximum likelihood estimators may be extended to

more than one variable.

Example 6.17, p. 247: Let X1, X2, . . . , Xn be a simple random sample from a

N(µ, σ) distribution, where both µ and σ are unknown. The joint maximum

likelihood estimator of (µ, σ) is µ̂ = X̄ and σ̂2 =
∑

n

i=1
(Xi − X̄)2/n.

What is the maximum likelihood estimator of σ?

✷


