6 Point Estimation

6.1 Some General Concepts of Point Estimation

Definition: An estimator $\hat{\theta}$ is an **unbiased** estimator of θ if $E\hat{\theta} = \theta$.

Definition: The **bias** of an estimator $\hat{\theta}$ is $(E\hat{\theta} - \theta)$.

- **Example:** Let X_1, \ldots, X_n be a simple random sample with finite mean μ . Determine a reasonable estimator of μ along with its bias.
- **Example:** Let $X \sim \text{Binomial}(n, p)$. Based on a sample of size 1, determine a reasonable estimator of p along with its bias.
- **Example:** Let X_1, \ldots, X_n be a simple random sample with mean μ and finite variance σ^2 .
 - (a) Consider the estimator

$$\hat{\sigma}_1^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Prove that s^2 is **unbiased** for σ^2 .

(b) Consider another estimator

$$\hat{\sigma}_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Compute the **bias** of $\hat{\sigma}_2^2$ when estimating σ .

(c) Is s unbiased for σ ?

Definition: The standard error of an estimator is $\sigma_{\hat{\theta}}$.

- When the formula for $\sigma_{\hat{\theta}}$ is a function of unknown parameters, we often estimate these unknown parameters and then determine the **estimated standard error**.
- **Example:** Let X_1, \ldots, X_n be a simple random sample with mean μ and finite variance σ^2 .
 - (a) Determine the standard error of the sample mean, \bar{X} .
 - (b) Determine the estimated standard error of the sample mean, \bar{X} (for unknown σ).

Example: Let $X \sim \text{Binomial}(n, p)$.

- (a) Determine the standard error of the sample proportion, \hat{p} .
- (b) Determine the estimated standard error of the sample proportion, \hat{p} (for unknown p).
- **Remark:** The standard error measures variability in the estimator and typically decreases as n gets large.
- **Remark:** Estimators with small (perhaps zero) bias and small standard error typically are preferable.

6.2 Methods of Point Estimation

The Method of Moments

- **Definition:** For a simple random sample X_1, \ldots, X_n , the *k*th sample moment is $(1/n) \sum_{i=1}^n X^k$, for $k = 1, 2, \ldots$
- **Definition:** For a randomly sampled observation X from some population, the *k*th population moment is EX^k , for k = 1, 2, ...
- The **method of moments** estimator of some parameter θ is determine by setting the **kth sample moment** to the **kth population moment**, and then solving for θ .
- **Remark:** When computing **method of moments** estimators, typically we start with k = 1, then k = 2, and so on.
- **Example:** Let X_1, X_2, \ldots, X_n be a simple random sample from an Exponential(λ) population, where

$$f(x) = \begin{cases} \lambda \ e^{-\lambda \ x}, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

for a constant $\lambda > 0$. Compute a **method of moments** estimator of λ .

Example: Let X_1, X_2, \ldots, X_n be a simple random sample from a Bernoulli(p) population. Compute a **method of moments** estimator of p.

Example: Let X_1, X_2, \ldots, X_n be a simple random sample from a $N(\mu, \sigma)$ population.

- (a) Compute a method of moments estimator of μ .
- (b) Compute a method of moments estimator of σ^2 .
- (c) Compute a method of moments estimator of σ .

Maximum Likelihood Estimation

Let $x_1, x_2, ..., x_n$ be a simple random sample from a population with pdf $f(x; \theta)$, where θ is an unknown parameter. The **likelihood function** is

$$L(\theta) = f(x_1, x_2, \dots, x_n; \ \theta) = f(x_1; \theta) \ f(x_2; \theta) \cdots f(x_n; \theta).$$

- The value, say $\hat{\theta}$, which maximizes the likelihood function is called the **maximum** likelihood estimator of θ .
- **Hint:** Often, instead of maximizing $L(\theta)$ with respect to θ , maximize log $L(\theta)$, since the logarithm function is monotonic.

Example: Let x_1, x_2, \ldots, x_n be independent observations from an Exponential (λ) distribution with **pdf**

$$f(x) = \begin{cases} \lambda \ e^{-\lambda \ x}, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

for a constant $\lambda > 0$.

(a) Determine the maximum likelihood estimator of λ .

- (b) Determine the maximum likelihood estimator of the population mean of X, where X ~Exponential(λ).
- **Remark:** A function of a maximum likelihood estimator is also a maximum likelihood estimator.
- **Remark:** The notion of **maximum likelihood estimators** may be extended to more than one variable.
- **Example 6.17, p. 247:** Let $X_1, X_2, ..., X_n$ be a simple random sample from a $N(\mu, \sigma)$ distribution, where both μ and σ are unknown. The joint **maximum** likelihood estimator of (μ, σ) is $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \sum_{i=1}^n (X_i \bar{X})^2/n$.

What is the maximum likelihood estimator of σ ?