$3 \boldsymbol{K}$-Sample Methods

General hypothesis test:
$H_{0}: F_{1}(x)=F_{2}(x)=\ldots=F_{k}(x)$
$H_{a}:$ For each $(i, j): F_{i}(x) \leq F_{j}(x), \forall x$, or $F_{i}(x) \geq F_{j}(x), \forall x$,
with strict inequality holding for at least one x and at least one pair (i, j).

Special case: The populations in H_{a} might differ only by location; i.e.,
$H_{a}: F_{i}(x)=F\left(x-\mu_{i}\right)$
In this special case of H_{a}, we may write

$$
X_{i j}=\mu_{i}+\varepsilon_{i j}
$$

where $X_{i j}$ is the j th observation for the i th treatment, and the $\varepsilon_{i j} \mathrm{~S}$ are independent and have the same distribution.

3.1.1 The F Statistic

Suppose $k \geq 2$ and the $\varepsilon_{i j}$ are independent $N(0, \sigma)$.

We test for equality of all population means using an F-statistic, via one-way analysis of variance (ANOVA, from Math 321).

Let \bar{X} be the overall mean.
Let \bar{X}_{i}, s_{i}, and n_{i} be the sample mean, sample standard deviation, and sample size, respectively, for the i th sample, for $i=1, \ldots, k$.

Define the F-test statistic by:

$$
F=\frac{\sum_{i=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} /(k-1)}{\sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2} /(N-k)} \quad \text { (need not memorize). }
$$

Under H_{0}, the F-statistic has an F-distribution with $(k-1)$ degrees of freedom for the numerator and $(N-k)$ degrees of freedom for the denominator, where N is the total sample size.

Regarding power, do we prefer degrees of freedom to be large or small?

Graph the pdf for the following F-distributions: $F_{2,10}, F_{3,10}, F_{4,20}$.

Intuitively,

$$
F=\frac{\text { variation between the treatment means, weighted by } n_{i}}{\text { variation among individuals within the same treatment }}
$$

Do we prefer a large value of F or a small value of F ?

At which tail would rejection of H_{0} occur?

Problem 3.1.1 (corn and tobacco; quite hypothetical),

 problem3.1.1.txt: A farmer has three brands of fertilizer, and is testing if the different brands of fertilizer result in different mean yields of corn. Each fertilizer will be tested on four plots of land, so twelve similar plots of land will be involved in the experiment.In a separate (independent) experiment, the three brands of fertilizer also are tested on a tobacco crop.

The data are given in the table below.
(a) Graph the data, and explain which crop, corn or tobacco, seems to be more influenced by the brand of fertilizer. Intuitively argue which crop should have the larger value of F.

Fertilizer	Corn yield	Tobacco yield
1	26	25
1	23	15
1	24	33
1	28	52
2	14	35
2	13	17
2	15	23
2	12	49
3	39	28
3	37	19
3	38	50
3	35	37

```
> z = read.table(
    "http://educ.jmu.edu/~garrenst/math324.dir/datasets/problem3.1.1.txt",
    header=TRUE )
> z = read.table2( "problem3.1.1.txt", header=TRUE )
> fertilizer = z[ , 1 ]
> corn = z[ , 2 ]
> tobacco = z[ , 3 ]
> plot( fertilizer, corn )
> plot( fertilizer, tobacco )
```

(b) How many degrees of freedom are associated with each test?
(c) Assume independent and identically distributed normal errors $\varepsilon_{i j}$ in the model:

$$
X_{i j}=\mu_{i}+\varepsilon_{i j}, j=1, \ldots, n_{i} ; i=1,2,3 .
$$

Test if the population mean corn yield is the same for all three brands of fertilizer versus the alternative that at least two of the mean corn yields are different.
> perm.f.test(corn, fertilizer, 0)
(d) Under the assumption of normal errors, test if the mean tobacco yield is the same for all three brands of fertilizer versus the alternative that at least two of the mean tobacco yields are different.
> perm.f.test(tobacco, fertilizer, 0)

Suppose the error terms (with positive finite standard deviation) are NOT normally distributed, but the sample size of each treatment is large. Is the approximation to the F-distribution still valid?

3.1.2 Steps in Carrying Out the Permutation F Statistic

For a permutation F-test, we use the same F-statistic, but we do not approximate the distribution of the F-statistic by an F-distribution.

Instead, p-values are based on the permutation distribution of the F-statistic.
To obtain this p-value:
\odot Compute the value of F based on the original data.
\odot Permute the treatments (or responses) to obtain a permuted F-statistic.
\odot The observed F-statistic is compared to the values of the F-statistic under either all permutations or a large number of simulated permutations.
\odot The p-value is the proportion of permuted F-statistics which are at least as large as the observed F-statistic.

How many groupings of the treatments are possible (for the sake of obtaining the exact p-value from the permutation F-test)?

Revisit Problem 3.1.1 (corn and tobacco), problem3.1.1.txt:

However, this time, do NOT assume that the three populations for crop yield are approximately normal.

How many groupings of the treatments are possible (for the sake of obtaining the exact p-value from the permutation F-test)?
(a) Test if the population mean corn yield is the same for all three brands of fertilizer versus the alternative that at least two of the mean corn yields are different.
(b) Test if the population mean tobacco yield is the same for all three brands of fertilizer versus the alternative that at least two of the mean tobacco yields are different.

F, chi-square, and normal distributions

Plot the $\chi_{1}^{2}, \chi_{2}^{2}$ and χ_{3}^{2} probability density functions.

Plot the $\chi_{4}^{2}, \chi_{5}^{2}$ and χ_{6}^{2} probability density functions.

Plot the $\chi_{10}^{2}, \chi_{20}^{2}$ and χ_{30}^{2} probability density functions.

For large degrees of freedom, what distribution does a χ^{2} distribution approximate?
\diamond
Recall that the ANOVA F-test has $(k-1)$ degrees of freedom for the numerator and
$(N-k)$ degrees of freedom for the denominator, where k is the number of treatments and N is the sample size.

Consider $k=2$ treatments and sample sizes of $N=3$ or $N=4$ or $N=5$.
Plot the $F_{1,1}, F_{1,2}$ and $F_{1,3}$ probability density functions.

For fixed $k=2$ but large N, what distribution does an F-distribution approximate?

For any fixed k but large N, what distribution does $(k-1) F$ approximate, where F has an F-distribution with $(k-1)$ and $(N-k)$ degrees of freedom?

Homework p. 105: Exercises 3.1*, 3.2

Hints for homework exercise 3.1*: State H_{0}, H_{a}, and conclusion in statistical terms and in regular English, and define any notation used. Either retype your p-value as a comment using " $\#$ ", or highlight the p-value in yellow. Remember to COMPARE your p-values. Introduce the question number as a comment using "\#" or in red using .html code; e.g., Exercise 3.1 .

3.2 The Kruskal-Wallis Test

Are the permutation F-test and ANOVA F-test heavily influenced by outliers?

The Kruskal-Wallis test statistic is based on ranks.

Here, the populations are assumed to be identical, except for possibly location, and we test for equality of medians (or means, if finite).

Idea: Convert the original N observations to their appropriate ranks: $1,2,3, \ldots, N$. Then, perform the permutation F-test using these ranks to obtain the right-tailed p-value. This p-value is the same one obtained when permuting the Kruskal-Wallis test statistic.

The Kruskal-Wallis test statistic is:

$$
\mathrm{KW}=\frac{12}{N(N+1)} \sum_{i=1}^{k} n_{i}\left(\bar{R}_{i}-\frac{N+1}{2}\right)^{2} \quad(\text { need not memorize }),
$$

where \bar{R}_{i} is the average rank for the i th sample.

The modified formula for KW based on ties is given in section 3.2.2.

To obtain the Kruskal-Wallis p-value:
\odot Compute the value of KW based on the original ranks.
\odot Permute the treatments (or ranks) to obtain a permuted KW-statistic.
\odot The observed KW-statistic is compared to the values of the KW-statistic under either all permutations or a large number of simulated permutations.
\odot The p-value is the proportion of permuted KW-statistics at least as large as the observed KW-statistic.

The textbook shows that a strictly monotone increasing relationship exists between the permutation F-statistic based on ranks and the Kruskal-Wallis test statistic.

For large sample sizes (with fixed k) under H_{0}, the KW-test statistic is approximately χ^{2} distributed, with how many degrees of freedom?

Is the Kruskal-Wallis test heavily influenced by outliers?

Revisit Problem 3.1.1 (corn and tobacco), problem3.1.1.txt:

(a) Read in the data, to perform tests based on the TOBACCO data.
> z = read.table2("problem3.1.1.txt", header=TRUE)
> fertilizer = $\mathrm{z}[\mathrm{l}$]
> tobacco = z[,3]
(b) Determine the value of the Kruskal-Wallis test statistic, without using the function kruskal.test.

```
> ranks = rank(tobacco)
```

> ni $=c(4,4,4)$
$>\mathrm{N}=\operatorname{sum}(\mathrm{ni})$
> mean.rank.i = $c($ mean(ranks[1:4]), mean(ranks[5:8]), mean(ranks[9:12]))
$>\mathrm{KW}=12 / \mathrm{N} /(\mathrm{N}+1) * \operatorname{sum}(\mathrm{ni} *($ mean.rank.i-(N+1)/2) ~2)
(c) Approximate the p-value of the Kruskal-Wallis test, using the function perm.f.test.
(d) How many degrees of freedom are associated with the Kruskal-Wallis test?
(e) Determine the asymptotic p-value of the Kruskal-Wallis test statistic, without using the function kruskal.test.
(f) Obtain the Kruskal-Wallis statistic and p-value using kruskal.test.
> ?kruskal.test

Problem 3.2.1 (Birth conditions and IQ), problem3.2.1.txt: Steel (1959, Biometrics) presented the data below for testing whether certain conditions are associated with a lowering of IQ. The IQ score was obtained for 24 girls of which six each are healthy, anoxic, premature, and $R h$ negative.

Healthy	103	111	136	106	122	114
Anoxic	119	100	97	89	112	86
Rh negative	89	132	86	114	114	125
Premature	92	114	86	119	131	94

(a) Graph the data. Intuitively, do the four populations of birth conditions seem to differ regarding IQ?
> IQ $=$ scan2 ("problem3.2.1.txt") \# Read in data as a vector.
> birth.condition $=\operatorname{rep}(1: 4$, each=6)
> plot(birth.condition, IQ)
(b) Assume independent and identically distributed errors $\varepsilon_{i j}$ with mean zero in the model:

$$
X_{i j}=\mu_{i}+\varepsilon_{i j}, j=1, \ldots, n_{i} ; i=1, \ldots, 4 .
$$

Formulate the null and alternative hypotheses for testing if the mean $I Q$ scores are the same for all four types of birth conditions versus the alternative that at least two of the mean $I Q$ scores are different.
(c) How many degrees of freedom are associated with the Kruskal-Wallis test?
(d) Perform the Kruskal-Wallis test.
(e) How many degrees of freedom are associated with the ANOVA F-test?
(f) Perform the ANOVA F-test.
(g) Perform the permutation F-test.
(h) For which test(s), Kruskal-Wallis test, ANOVA F-test, or permutation F-test, is the assumption of normal errors $\varepsilon_{i j}$ least relevant?

Homework p. 105: Exercise 3.3*

Hints for homework exercise 3.3* : State H_{0}, H_{a}, and conclusion in statistical terms and in regular English, and define any notation used. Either retype your p-value as a comment using " $\#$ ", or highlight the p-value in yellow. Remember to COMPARE your p-values. Introduce the question number as a comment using "\#" or in red using .html code; e.g., Exercise 3.3 .

1 The data are samples from three simulated distributions.

Group 1	2.9736	0.9448	1.6394	0.0389	1.2958
Group 2	0.7681	0.8027	0.2156	0.074	1.5076
Group 3	4.8249	2.2516	1.5609	2.0452	1.0959

a Apply the permutation F-test to the data.
b Compare the results in part a with the results of the usual one-way analysis of variance.
2 The following data from the National Transportation Safety Administration are the left femur loads on driver-side crash dummies for automobiles in various weight classes. Apply the permutation F-test and the ANOVA F-test to the data, and compare p-values. Does it appear that the data are normally distributed? The complete data set may be obtained from the Data and Story Library at http://lib.stat.cmu.edu/DASL/.

Vehicle Weight Classification				
1700 lb	2300 lb	2800 lb	3200 lb	3700 lb
574	791	865	998	1154
976	1146	775	1049	541
789	394	729	736	406
805	767	1721	782	1529
361	1385	1113	730	1132
529	1021	820	742	767
	2073	1613	1219	1224
	803	1404	705	314
	1263	1201	1260	1728
	1016	205	611	
	1101	1380	1350	
	945	580	1657	
	139	1803	1143	

3 Refer to the data in Exercise 1. Apply the Kruskal-Wallis test to the data, and compare the conclusions with those obtained in Exercise 1.
4 Obtain the permutation distribution of the Kruskal-Wallis statistic when $n_{1}=n_{2}=n_{3}=2$.
5 An agronomist gave scores from 0 to 5 to denote insect damage to wheat plants that were treated with four insecticides. The data are given in the following table. Use the KruskalWallis test with ties to test whether or not there is a difference among the treatments.

