5 Tests for Trends and Associations

5.1 A Permutation Test for Correlation and Slope

Sample data pairs $\left(X_{i}, Y_{i}\right)$, for $i=1, \ldots, n$.
The population correlation coefficient is defined by $\rho=\sigma_{x, y} /\left(\sigma_{x} \sigma_{y}\right)$,
where $\sigma_{x, y}=E\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)$.
ρ measures the strength of the linear relationship between two variables.

The Pearson sample correlation coefficient is defined by

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}}} .
$$

Examples (interpreting \boldsymbol{r}): For the following models, generate 100 pairs of observations, determine the sample correlation coefficient, and plot the data.
(a) $X \sim N(0,1), Y=X+\varepsilon$, where the ε are independent $N(0,0.5)$.
(b) $X \sim N(0,1), Y=-X+\varepsilon$, where the ε are independent $N(0,0.5)$.
(c) $X \sim N(20,1), Y=X+\varepsilon$, where the ε are independent $N(30,0.5)$.
(d) $X \sim N(0,1), Y=X+\varepsilon$, where the ε are independent $N(0,0.2)$.
(e) $X \sim N(0,1), Y=5 X+37$
(f) $X \sim N(0,1), Y=-5 X+37$
(g) $X \sim N(20,5), Y=X+\varepsilon$, where the ε are independent $N(60,5)$.

How much variability in Y can be explained by the linear relationship between X and $Y ?$
(h) $X \sim N(20,5), Y=\varepsilon$, where the ε are independent $N(60,5)$.
(i) $X \sim \operatorname{Unif}(10,30), Y=-5(X-20)^{2}+\varepsilon$, where the ε are independent $N(900,25)$.

Problem \#5.1.1 (crying babies and IQ scores),

problem5.1.1.txt: (This data set is from Karelitz et al. (1964), Child
Development.) To test whether children who cry more actively as babies later tend to have higher IQs, a cry count was taken for a sample of 38 children aged five days and was later compared with their Stanford-Binet IQ scores at age three with the results shown below:

Cry count	10	20	17	12	12	15	19	12	14	23
IQ score	87	90	94	94	97	100	103	103	103	103
Cry count	15	14	13	27	17	12	18	15	15	23
IQ score	104	106	106	108	109	109	109	112	112	113
Cry count	16	21	16	12	9	13	19	18	19	16
IQ score	114	114	118	119	119	120	120	124	132	133

(a) Plot the data.
> z = read.table2("problem5.1.1.txt", header=TRUE)
(b) Determine the sample correlation coefficient.
(c) What is an interesting hypothesis test for this data set?

Define $t_{\text {corr }}=r \sqrt{(n-2) /\left(1-r^{2}\right)}$ (need not memorize).
If $\rho=0$, and if the (x, y) are based on a simple random sample from a bivariate normal distribution, then $t_{\text {corr }}$ is t-distributed with $(n-2)$ degrees of freedom.

Revisit problem \#5.1.1 (crying babies and IQ scores),
problem5.1.1.txt: (This data set is from Karelitz et al. (1964), Child
Development.) To test whether children who cry more actively as babies later tend to have higher IQs, a cry count was taken for a sample of 38 children aged five days and was later compared with their Stanford-Binet IQ scores at age three.
(a) State the null and alternative hypotheses.
(b) Determine the value of the standardized test statistic for the parametric test, using hand-calculations.
(c) Determine the asymptotic p-value of this test using hand-calculations, and state the conclusion.
(d) Plot the asymptotic distribution of your standardized test statistic under H_{0}, and shade in the appropriate region corresponding to the p-value.
(e) Determine the asymptotic p-value of this test using cor.test.
(f) What is the 95% lower confidence bound on ρ ?
(g) Does association imply causation?

5.1.2 Slope of the Least Squares Line

A simple linear regression model is defined by

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

where the ε s are independent and identically distributed random variables with mean zero and positive finite variance.

However, if the ε and X are normal and mutually independent, then X and Y are bivariate normal.

We define the least squares estimates of β_{0} and β_{1} by:

$$
\hat{\beta}_{1}=r s_{y} / s_{x} \text { and } \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
$$

(memorize these two formulas).

The least squares line, $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$, is the line which minimizes the sum of the squares of the vertical distances between the observations and the line.

For large n, what are the asymptotic values in the formula $\hat{\beta}_{1}=r s_{y} / s_{x}$?
problem5.1.1.txt: (This data set is from Karelitz et al. (1964), Child
Development.) To test whether children who cry more actively as babies later tend to have higher IQs, a cry count was taken for a sample of 38 children aged five days and was later compared with their Stanford-Binet IQ scores at age three.
(a) Which variable should be X, and which should be Y ?
(b) Determine the least squares equation using hand-calculations.
(c) Plot the least squares line on the scatterplot.
(d) Predict the child's IQ at age three years if the cry count at age five days was 25 .
(e) Determine the least squares equation using the function lm.
(f) Verify that the least squares equation goes through the sample means.
(g) Regarding the simple linear regression model, what is an interesting hypothesis test?

5.1.3 The Permutation Test

Specifically, this permutation correlation test is for nonzero, negative, or positive Pearson correlation (or slope).

If the simple linear regression model holds, and the null hypothesis of $\beta_{1}=0$ holds, what can we say about X and Y ?

How should a permutation test be performed?

Problem 5.1.2: In the data set below, test for negative Pearson correlation.

x	11	15	21
y	139	143	87

(a) State the null and alternative hypotheses.
(b) Determine the permutation distribution of $\hat{\beta}_{1}$ and r.

$X_{1}=11$	$X_{2}=15$	$X_{3}=21$		
Y_{1}	Y_{2}	Y_{3}	$\hat{\beta}_{1}$	r
87	139	143	5.21	0.839
87	143	139	4.74	0.763
139	87	143	1.11	0.178
139	143	87	-5.53^{*}	-0.890^{*}
143	87	139	0.316	0.051
143	139	87	-5.84	-0.941

$\hat{\beta}_{1}$	r	probability
-5.84	-0.941	$1 / 6$
-5.53^{*}	-0.890^{*}	$1 / 6$
0.316	0.051	$1 / 6$
1.11	0.178	$1 / 6$
4.74	0.763	$1 / 6$
5.21	0.839	$1 / 6$
sum		1

(c) Determine the p-value of the permutation correlation test, using hand-calculations.
(d) What would be the p-value for a two-sided test?
(e) Obtain the simulated p-value using the function perm.cor.test.
(f) What assumptions were needed to perform this test from part (e)?
(g) Using the one-sided hypothesis test and the parametric approach, determine the p-value.
(h) What assumptions were needed to perform this test from part (g)?
(i) Are the assumptions needed to perform this test reasonable?

In general, for n data pairs, how many permutations (groupings) exist when performing the permutation correlation test?

Homework p. 189: Exercise 5.1*

Hints for homework exercise 5.1*: Let x be height and y be weight.
Show all R-code and R-output used for generating the permutation distribution.
You do NOT need to state H_{0}, H_{a}, p-value, or conclusion. Introduce the question number as a comment using "\#" or in red using .html code; e.g., Exercise 5.1 .

5.1.4 Large-Sample Approximation for the Permutation Distribution of \boldsymbol{r}

Suppose n independent pairs of observations (X, Y) are sampled from distributions with positive finite variances such that X and Y are independent.

What is ρ, the population Pearson correlation coefficient?

What is r, the sample Pearson correlation coefficient?

Consider the permutation distribution of r.
What is $E r$ (where the expectation is taken conditionally on the permutation distribution)?
$\operatorname{var}(r) \approx 1 /(n-1)$, conditional on the permutation distribution.

Example: Sample n independent pairs of observations (X, Y) from distributions with positive finite variances such that X and Y are independent, where n is large.
(a) Determine r_{n} (a fixed function of n) such that there is approximately a 95% chance that r (the sample correlation coefficient) will be between $-r_{n}$ and r_{n}.
(b) Set $n=100$ in part (a).
(c) Set $n=400$ in part (a).
(d) Set $n=1000$ in part (a).
(e) Set $n=10,000$ in part (a).

5.2 Spearman Rank Correlation

Problem 5.2.1: Consider the following data set.

X	0	2	3	4	6
Y	0	16	81	256	1296

(a) Determine the Pearson correlation coefficient.
$>x=c(0,2,3,4,6)$
> $y=c(0,16,81,256,1296$)
$>\operatorname{cor}(\mathrm{x}, \mathrm{y})$
(b) Is r, the Pearson correlation coefficient, a reasonable measure?
(c) Compare the ranks of X with the ranks of Y.

5.2.1 Statistical Test for Spearman Rank Correlation

The Spearman rank correlation, r_{s}, is the Pearson correlation coefficient applied to ranks.

Thus, the Spearman rank correlation is not heavily influenced by outliers.
The Spearman rank correlation measures the association between two variables.

Revisit problem 5.2.1:

(a) Determine the Spearman rank correlation for this data set.
$>\mathrm{x}=\mathrm{c}(0,2,3,4,6)$
$>y=c(0,16,81,256,1296)$
(b) Test if the association between the two variables is positive, using the Spearman rank correlation and hand-calculations.
(c) Test if the population Spearman rank correlation is positive, using the function cor.test.

Revisit problem 5.1.2: In the data set below, test for negative Spearman correlation.

x	11	15	21
y	139	143	87

$\operatorname{rank}(x)$	1	2	3
$\operatorname{rank}(y)$	2	3	1

(a) State the null and alternative hypotheses.
(b) Determine the permutation distribution of r_{s}.

$\operatorname{rank}\left(X_{1}\right)=1$	$\operatorname{rank}\left(X_{2}\right)=2$	$\operatorname{rank}\left(X_{3}\right)=3$	
$\operatorname{rank}\left(Y_{1}\right)$	$\operatorname{rank}\left(Y_{2}\right)$	$\operatorname{rank}\left(Y_{3}\right)$	r_{s}
1	2	3	1
1	3	2	0.5
2	1	3	0.5
2	3	1	-0.5^{*}
3	1	2	-0.5
3	2	1	-1

r_{s}	probability
-1	$1 / 6$
-0.5^{*}	$2 / 6$
0.5	$2 / 6$
1	$1 / 6$
sum	1

(c) Determine the p-value of the Spearman correlation test, using hand-calculations.
(d) Determine the p-value of the Spearman correlation test, using the function cor.test.
(e) What would be the p-value for a two-sided test?
(f) Obtain the simulated p-value using the function perm.cor.test.
(g) What assumptions were needed to perform this test?

Homework p. 189: Exercises 5.2 (Spearman only), 5.3 (Pearson and Spearman only)

5.2.2 Large-Sample Approximation

Recall from section 5.1.4 that for large n (and finite positive variances) and
independent X and Y, the distribution of $Z=r \sqrt{n-1}$ is approximately standard normal, where r is the sample Pearson correlation coefficient.

Adjustment for Ties

Two options:

\odot Apply the Pearson correlation to the ranks adjusted for ties.
\odot Use the normal approximation.

Revisit problem \#5.1.1 (crying babies and IQ scores),

 problem5.1.1.txt: (This data set is from Karelitz et al. (1964), Child Development.) To test whether children who cry more actively as babies later tend to have higher IQs, a cry count was taken for a sample of 38 children aged five days and was later compared with their Stanford-Binet IQ scores at age three.(a) Determine the sample Spearman correlation coefficient.
(b) State the null and alternative hypotheses.
(c) Estimate the exact p-value of this test using simulations, and state the conclusion.
(d) Determine the value of the standardized test statistic for the large-sample test, using hand-calculations.
(e) Determine the asymptotic p-value of this test using hand-calculations.
(f) Plot the asymptotic distribution of your standardized test statistic under H_{0}, and shade in the appropriate region corresponding to the p-value.
(g) Determine the asymptotic p-value of this test using cor.test.

Caution in Using the Pearson or Spearman Correlation

Caution: Time-dependent data may invalidate the independence between the (X, Y) data pairs.

Example: Suppose x is the year, and y is the average ocean temperature for the year.

5.4 Permutation Tests for Contingency Tables

Scenario: We have two categorical variables, and we enter the data into a table.

5.4.1 Hypotheses to be Tested and the Chi-Square Statistic

Problem 5.4.1 (gender and handedness; hypothetical data): The following hypothetical data are based on gender and the preferred hand for writing among 10-year-old children.

Observed	Left	Right	total
Girls	5	83	88
Boys	7	65	72
total	12	148	160

The hypothesis test will be a test for association.
(a) What is the hypothesis test of interest?
(b) Estimate the expected (i.e., average) number of left-handed girls under H_{0}.
(c) Estimate the expected (i.e., average) number of right-handed girls under H_{0}.
(d) Estimate the expected (i.e., average) number of left-handed boys under H_{0}.
(e) Estimate the expected (i.e., average) number of right-handed boys under H_{0}.

Expected	Left	Right	total
Girls	6.6	81.4	88
Boys	5.4	66.6	72
total	12	148	160

(f) What is the general rule for computing these expected cell frequencies under H_{0} ?

Formula: The chi-square test statistic is defined as:

$$
V=\sum_{i=1}^{r} \sum_{j=1}^{c}\left(n_{i j}-e_{i j}\right)^{2} / e_{i j} .
$$

(g) Compute the chi-square test statistic for this data set.

Asymptotic result: For large sample sizes (i.e. if $e_{i j} \geq 5$ for all cells) and
independent observations, the test statistic V has approximately a χ^{2} distribution with degrees of freedom equal to (number of rows -1$) \times($ number of columns -1$)$.
(h) How many degrees of freedom are associated with this test?
(i) Determine the asymptotic p-value associated with this test.
(j) Plot the asymptotic distribution of your test statistic under H_{0}, and shade in the appropriate region corresponding to the p-value.
(k) Determine the asymptotic p-value using the function chisq.test.

Example (gender and handedness; real data): In a survey of Scottish school children, aged approximately ten to twelve years, the teacher observed
whether the pupil wrote with the left or right hand, with the following results (Clark, 1957, Left Handedness, University of London Press, London).

Observed	Left	Right	Percentage left
Girls	1,478	25,045	5.57
Boys	991	12,629	7.28

Problem 5.4.2 (Roosevelt), problem5.4.2.txt: The following results were obtained in a 1948 study of the 1944 Presidential election in Elmira, New York (McCarthy, 1957, Introduction to Statistical Reasoning, McGraw-Hill).

	Individual Interviewed on			Percentage reached 1944 Pres. vote
First call	Second or later call	Total	on first call	
Roosevelt	138	217	355	38.9
Dewey	124	200	324	38.3
Did not vote	90	142	232	38.8
Other or too young	39	78	117	33.3
Total	391	637	1028	38.0

Test the hypothesis that the distribution of responses is the same for individuals reached on the first call as for those interviewed on the second or later calls.

5.4.2 Permutation Chi-Square Test

Herein, we use the same chi-square test statistic,

$$
V=\sum_{i=1}^{r} \sum_{j=1}^{c}\left(n_{i j}-e_{i j}\right)^{2} / e_{i j} .
$$

However, we do NOT use the χ^{2}-distribution to approximate the p-value.
Instead, the permutation distribution of the test statistic is determined exactly or is simulated.

Determining the permutation distribution:

Revisit problem 5.4.1 (gender and handedness; hypothetical data): The following hypothetical data are based on gender and the preferred hand for writing among 10-year-old children.

Observed	Left	Right	total
Girls	5	83	88
Boys	7	65	72
total	12	148	160

\odot Fix all of the margin totals: $12,148,88,72,160$.

Is our observed table rare under H_{0} ?

Under these fixed margins, what are other possible values of the table? Specifically, what are the possible values for X, the number of left-handed girls?

Based on a permutation involving, say, 10 left-handed girls, complete the rest of the table.
\odot How many degrees of freedom are associated with this test?
\odot The chi-square test statistic, V, may be determined for each value of X, the number of left-handed girls, for $X=0,1, \ldots, 12$.
\odot To obtain the permutation distribution of V under these fixed margins, the probabilities of V (or X) may be determined based on the hypergeometric distribution. A hypergeometric distribution is similar to a binomial distribution, except that a hypergeometric distribution is based on sampling withOUT replacement.

Example (aside): Suppose a classroom has 10 female students and 7 male students. Sample 5 students (withOUT replacement) at random, and let W be the number of female students in the sample. Then W has a hypergeometric distribution.
\odot The p-value for this permutation distribution is based on either all possible permutations of V or a large number of simulated permutations of V.

5.5 Fisher's Exact Test for a 2×2

Contingency Table

Fisher's exact test is similar to the permutation chi-square test, except the permutations are based on X (say, the number of left-handed girls), rather than V, where

$$
V=\sum_{i=1}^{r} \sum_{j=1}^{c}\left(n_{i j}-e_{i j}\right)^{2} / e_{i j} .
$$

The permutation probabilities of X are again determined by the hypergeometric distribution under the fixed margin totals.

Revisit problem 5.4.1 (gender and handedness; hypothetical

 data): The following hypothetical data are based on gender and the preferred hand for writing among 10-year-old children.| Observed | Left | Right | total |
| :---: | :---: | :---: | :---: |
| Girls | 5 | 83 | 88 |
| Boys | 7 | 65 | 72 |
| total | 12 | 148 | 160 |

Let X (the test statistic) be the number of left-handed girls.
What does a large value of X suggest?

What does a small value of X suggest?

Test if the proportion of girls who are left-handed is smaller than the proportion of boys who are left-handed.

Example (Bush vs. Gore, Election of 2000):

Summary: The Presidential Election between George W. Bush and Albert Gore took place on November 7, 2000. The vote was quite close in Florida, the winner of which would win the election. On November 8 the count resulted in a small lead for Bush. Gore sought a manual recount in several Florida counties, so the process of recounting votes began, as permitted by the Florida Supreme Court. Bush argued that recounting only certain counties violated the equal protection clause of the fourteenth amendment to the U.S. Constitution, and Bush also argued that Florida's electors should be selected by the December 12 deadline.

On December 11, a 5-4 majority of the U.S. Supreme Court ruled that no constitutionally-valid recount could be completed by the December 12 deadline, effectively ending the recounts.

Is there statistically significant evidence that the U.S. Supreme Court Justices tended to favor their own political parties (i.e., according to the political party of the President who appointed the Justice)?

Use Fisher's exact test.

Justice	Appointed by President	Decision
William Rehnquist	Reagan	End recount
Sandra Day O'Connor	Reagan	End recount
Antonin Scalia	Reagan	End recount
Anthony Kennedy	Reagan	End recount
Clarence Thomas	G. H. W. Bush	End recount
John Paul Stevens	Ford	Continue recount
David Souter	G. H. W. Bush	Continue recount
Ruth Ginsburg	Clinton	Continue recount
Stephen Breyer	Clinton	Continue recount

Is the proportion of Republican-appointed Justices who voted to end the recount significantly large?

The U.S. Census contains error, in that some individuals are not counted, quite often in regions dominated by Democrats. The statistical technique of sampling could greatly reduce this error, and consequently could affect the apportionment in the House of Representatives in favor of the Democrats. The Clinton administration wanted to use sampling, but the Republicans opposed the use of sampling, for determining seats in the House of Representatives. On January 25, 1999, the U.S. Supreme Court ruled 5 to 4 against the use of sampling in the Census for the purpose of apportioning seats in the House of Representatives among the states.

Is there statistically significant evidence that the U.S. Supreme Court Justices tended to favor their own political parties (i.e., according to the political party of the President who appointed the Justice)?

Use Fisher's exact test.

Justice	Appointed by President	Use sampling?
William Rehnquist	Reagan	no
Sandra Day O'Connor	Reagan	no
Antonin Scalia	Reagan	no
Anthony Kennedy	Reagan	no
Clarence Thomas	G. H. W. Bush	no
John Paul Stevens	Ford	yes
David Souter	G. H. W. Bush	yes
Ruth Ginsburg	Clinton	yes
Stephen Breyer	Clinton	yes

p. 189

1 Find the permutation distribution of the slope of the least squares line for the height and weight data in the table.

Height	68	70	74
Weight	145	155	160

2 Generate the permutation distributions of Spearman's r_{s} (see Section 5.2) and Kendall's τ (see Section 5.3) for the data in Exercise 1.

3 The data in the table are the ages (in days) of concrete cylinders and the compressive strengths of the cylinders.

Age	3	7	15	24	85	180	360
Strength	2500	3200	4300	5300	5900	6700	6900

a Plot the data to show a nonlinear relationship. Compute Pearson's correlation, Spearman's correlation, and Kendall's tau.
b Test for significant association using each of the measures of association in part a.

