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Abstract

In this study we mathematically describe a cancer initiation/continuous promotion
mechanism and estimate the related biological parameters. The data on Swiss CD-1
and B6C3F; mice was collected by NTP(Design A, 1994). These mice were initiated
with DMBA and then promoted with TPA on a weekly basis. By varying the dosage of
DMBA and the type of mice, we analyze four different subsets of the original data. This
study identifies a working model to describe the mutation of normal cells to papillomas,
then the final mutation of papillomas into carcinomas for each of the subsets. Our
model assumes that there are multiple stages from initiation to papilloma. For each
stage of the mutation, we assume any single cell will either mutate or not. Therefore,
the underlying probability distribution of the number of papillomas at the initiated
stage is binomial. For similar reasons, at the final stage after promotion, the probability
distribution of the number of carcinomas is also binomial. We try to ascertain a general
model, which would account for the data from all four groups. Finally, we compare the
cell birth rate for the papilloma model between two strains of mice for the same dosage
of DMBA. We also compare the birth rates for different dosage of DMBA within each
strain of mice.
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1 Introduction

An initiation/continuous promotion study typically involves a single sub-threshold appli-
cation of a carcinogen substance, followed by repeated applications of a non-carcinogen
substance. This type of study is usually conducted on mice because they are a far more
responsive model for skin initiation/promotion studies than other rodent species. At the
same time, not all strains of mice are equally sensitive to the initiation/promotion protocol
[2].

The data for this paper have been obtained from a one-year study conducted by NTP
(National Toxicology Program, Study Design A in 1994). In that study, groups of 30 male and
30 female mice were administered 7,12-dimethylbenz(a) anthracene (DMBA) as an initiator
treatment in the first week of the 52-week study period, followed by weekly application of
12-O-tetradecanoyl-phorbol-13-acetate(TPA) as a promoter treatment for the remaining 51
weeks. Different doses of DMBA in combination with different doses of TPA were used
for three different strains of mice. For the purpose of our study, however, we use only the
data on two different strains (Swiss CD-1 and B6C3F;) of mice. We compare the sensitivity
of Swiss CD-1 and B6C3F; mice strains in terms of the number of papillomas. We also
compare different doses of DMBA ( 2.5 and 25.0pg). Each group has the same repeated
typical application of TPA (5 ug) Therefore, in our study, we have the following four groups:

Swiss CD-1 DMBA: 25ug TPA: 5 pug
Swiss CD-1 DMBA: 25.0ug TPA: 5 pug
B6C3F, DMBA: 2.5ug TPA: 5 ug
B6C3F, DMBA: 25.0ug TPA: 5 ug

Consistency of the data was maintained by the standard method of recording clinical
observations, whereby the appearance and progression of any tumor development on the
skin were recorded. When a skin tumor first appeared, it was considered a tissue mass, until
it became at least 1 mm in diameter and had been present for 14 days. Then, the tissue mass
was considered a papilloma. Furthermore, when a papilloma became necrotic in appearance
and was attached to the underlying tissue, it was recorded as a carcinoma. In addition,
microscopic evaluations were carried out to confirm the state of carcinoma.

2 The Model

The design of our model is two-fold, incorporating growth of papilloma and then carcinoma.
First, we focus on modeling the growth of a papilloma (see Figure 1) and then substitute
the papilloma model into the overall model of the probablility of a normal cell forming
a carcinoma. In Figure 2, the papilloma stage is represented by “Initiated Cells.” The
meanings of the parameters of the model are explained below.
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Figure 1: Model of a Normal Cell Generating a Papilloma.
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Figure 2: Model of a Normal Cell Generating a Carcinoma.

Bo: the birth rate of a normal cell (set equal to 0)
do: the death rate of a normal cell (set equal to 0)
B1: the birth rate of an initiated cell
d1: the death rate of an initiated cell
to: the mutation rate of a cell from the normal to initiated state
u1: the mutation rate of a cell from the initiated state to malignant state
v: the instantaneous mutation rate from the normal to initiated state
m: the number of the normal cells at the beginning for each animal
M: the minimal number of initiated cells needed to comprise a detectable papilloma

Let I; represent the ith initiated stage; i.e., the stage in papilloma development with ;
initiated cells present, and let Q;nr(s,t) represent the probability that a unit at stage I; at
time ¢ — s will not reach the stage I, before the time .



We now describe mathematically the model for the papilloma data (see Figure 1). We
make the following assumptions:

Assumption 1: Initiated cells follow a linear birth-death process with con-
stant rates.

Assumption 2: The minimal number of initiated cells, M, is large enough
that we may ignore stages after I,.

Assumption 3: One normal cell yields at most one papilloma.

Under these assumptions the papilloma stage of our two-stage model can be described
by the following system of differential equations with initial conditions (see Appendix for
derivations):

CZQ%S(SJ) = —Qom(s,t)po + Quar(s, 1) o (1)
%S(S’t) = Qam(s,1)B1 — Qum(s,t)(B1 + 1) + 01 (2)
WMD) Qe 0B — iQuels. (B +6) + Qa0 (9
QMM(S,t) = 0, Vs,t (4)

Qin(0,1) = 1, i=0,1,...,M —1. (5)

The system (2) — (5) can be solved analytically [8], and the solution can be written as

- —(B1—901)s M-1
1_(51— )Ml(l— (8 6))
Qum(s,t) = (6us) M[ﬁ1 — e~ B 51)5]

(14 Bis)M”

Now we use equation (1) to solve for Qops(s,t).

Figure 1 illustrates that, when starting from m normal cells, the number of papillomas
has a binomial distribution since each normal cell can either evolve into a papilloma or not.
Now consider the incidence of papilloma over time.

’ 517&ﬁ1
o =P

Pyp(t) = P(1 normal cell reaching stage Ijs (papilloma) before ¢, starting at time 0)
= P(1 normal cell — papilloma before ¢ | no mutation at ¢ = 0)
X P(no mutation at time 0)
+ P(1 normal cell — papilloma before ¢ | mutation at t = 0) x P(mutation at time 0)

= [1= Qon(t,)](1 = v) +[1 — Quar(t, t)]w

For a particular group and a particular mouse, let X (¢) be the number of papilloma
before ¢, starting with m normal cells at time 0. Then

PIX () = 2] = (’;) (Pyp())*(1 — Pyp())™®,  2=0,1,2,...m

4



and

BIX ()] = mPyp(t) = m([1 = Qoar(t,)](1 = v) +[1 = Quu (¢, 1)]v).

For the carcinoma incidence analysis, we have to treat the two-stage model as one system
(see Figure 2). To describe the system, two ordinary differential equations are needed. Let
Py2(s,t) denote the probability of one normal cell not reaching carcinoma before time ¢,
starting at time ¢t — s and Pio(s, t) the probability of one initiated cell not reaching carcinoma
before time ¢, starting at time ¢ — s. Then

dPF, t
% = BoPoa(s, )% + 60 + 110Pro(5, 1) — (Bo + 8o + 110) Poo (5, 1)
dP t
% = BiPia(s,t)* + 01 + 1 Pos(s,t) — (BL + 61 + 1) Pia(s, 1)

Similarly to the papilloma stage, we have several conditions:

Bo=103 =0, Py0,t) =P(0,t) =1, Py(s,t)=0.

After simplification, we obtain

Py (s, t

% — /_j,oplg(s,t) - /J/OPOQ(S?t)

Py (s, t

% = BiPis(s,8)? + 81 — (B1 + 61 + 1) Pra(s, 1).

For a certain group, a certain mouse, consider the random variable Y'(¢) define by Y (¢) =
1, if carcinoma is detected before time ¢ starting from m normal cells at time 0; Y'(¢) = 0,
otherwise. By the definition of Py5(t,t), Pye(t,t) and v, we know that the probability of one
normal cell not reaching carcinoma before time ¢, starting from time 0 is vPo(¢,t) + (1 —
v)Pya(t,t). So P[Y(t) =1] =1 — [vPa(t,t) + (1 — v)Pya(t, t)|™, since we assume m normal
cells act independently.

We now use the method of maximum likelihood to derive estimators for the parameters
of our model.

1.

The Papilloma Stage

Let z;;; represent the number of papillomas for the ;—th animal in the j—th experi-
mental group at the time k. The likelihood function for the number of papillomas can

then be expressed as
i j ok

Taking the natural logarithm of (6) yields

i 7k

Lijk

Since we are maximizing Li, or equivalently In(L;), with respect to Pyp, the constant
term can be ignored, leaving

Z Z ;[.T”k In PNP + (m — xijk) 10g(1 - PNP)]-



2. The Carcinoma Stage

Let y;x represent the number of malignant tumors in the j—th experimental group at
the time k. The likelihood function is then defined as

L, = Hl;[ PIY(t) = yj]

having corresponding natural logarithm

InLy =33 InP[Y () =yl

To attain estimators {Bl, b1, flo, i, v}, the function In Ly + In Ly is maximized over all
possible values of {f1, 01, o, pi1, v}

After achieving the optimally estimated parameters, we can calculate the incidence of
papilloma Pyp(t), expected number of papilloma E[X (¢)], the incidence of carcinoma
1 — Pya(t,t)™, etc. Then we can compare the difference of all these values among
different groups.(i.e. different initiators, promotors, doses, strains, etc.)

3. Likelihood Ratio Test

The likelihood ratio test statistic is used for testing the null-hypothesis Hy : 8 € O
versus H; : 6 € ©f. The corresponding statistic is

L)
M =16

where z is the data, ép = fy(z) is obtained by maximizing L(f|z) over the parameter
subspace Oy and § = 0(z) is obtained by maximizing L(f|z) over the whole parameter
space ©.

The asymtotic distribution of the statistic —2log A(z) is a x? distribution with degrees
of freedom being the difference in number of parameters of the two hypotheses.|[1].

We apply this theory to test the hypothesis that the cell birth rates between the two
strains of mice in our study are equal. Thus for our problem

Hy : B =p43% Hy :H,is not true,

where the superscript s stands for Swiss CD-1 and b for B6C3F;. These hypotheses
yield ©g = {B1, 65, s, v°, 6%, ul, v°}, and © = {35, 6%, s, v*, B°, 6%, ub, v°}, and therefore

log \(z) = [log L(f|z) — log L(6]z)] .

The value of —2log A(x) is compared with x?(1). At 0.05 level of significance, the null
hypothesis will be rejected if —2log A\(z) > x?(1) = 3.84. In this case, the conclusion
will be that the birth rates of initiated cells are not same for the two different strains
of mice. The results are summarized in Section 3.



3 Results

The method of maximum likelihood method was used to obtain expressions for estimators
of the biological parameters of the initiation/promotion model of skin cancer. The initial
values for the parameters were obtained from the work of Kopp-Schneider and C.J. Portier
[4]. In their work, they found that the cell-cycle time of an initiated cell with promotion is
20 hours. Since our data are the numbers of papillomas per week for each mouse, the initial
values for the biological parameters of an initiated cell with promotion translate into:

Bo = 10 births/week B1 = 10 births/week
dp = 10 deaths/week d; = 10 deaths/week
to = 1 mutation/week p1 = 1 mutation/week

v, = probability of instantaneous mutation

Table 1: B6C3F; Mice.

2.5 ug DMBA 25.0 uyg DMBA
5 1.22 %107 9.5402 x 10~*
b 3.933 3.9089
& 3.9463 3.9779
P 3.5584  10~* 8.0428 x 1073

Table 2: Swiss CD-1 Mice.

2.5 ug DMBA 25.0 1g DMBA
it 0.0713 0.0275
B3 5.922 4.1881
63 5.2961 4.2696
D3 0.1015 0.8059

In our model, we considered the number of normal cells to be m = 12 * 10° and number
of initiated cells needed to form a visible papilloma to be M = 387 [3]. Maximum likeli-
hood estimates for the parameters related to B6C3F; and Swiss CD-1 mice are presented in
Tables 1 and 2 respectively.

Analysis of the Results

1. Figures 3 and 4 depict the graphs of the empirical average (observed) and expected
numbers of papillomas (under the model) for B6C3F; mice with DMBA dosage of 2.5
and 25.0 ug respectively. For DMBA dosage of 2.5 ug, the fit appears to be reasonably
good after the 27-th week (Fig. 3). The poor fit in the early stages of the study may
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be due to the assumption of zero birth and death rate of normal cells in our model.
The fit appears to be quite good for DMBA dosage of 25.0 ug (Fig. 4).
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Figure 3: Model fit to the papilloma count for B6C3F; mice initiated with 2.5 ug DMBA.
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Figure 4: Model fit to the papilloma count for B6C3F; mice initiated with 25.0 ug DMBA.



2. Figures 5 and 6 depict the graphs of the empirical average and expected numbers of
papillomas (under our model) for Swiss CD-1 mice with DMBA dosage of 2.5 and 25.0
g respectively. The fit appears to be quite good for both DMBA dosages of 2.5 ug
(Fig. 5) and 25.0 pg (Fig. 6).
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Figure 5: Model fit to the papilloma count for Swiss CD-1 mice initiated with 2.5 g DMBA.
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Figure 6: Model fit to the papilloma count for Swiss CD-1 mice initiated with 25.0 ug
DMBA.



3. In order to find out whether the two different strains of mice are significantly different
with respect to their birth rates, we use the likelihood ratio test statistic [1] to test the
following hypotheses:

Hy: Swiss CD-1 and B6C3F; mice have equal birth rates.
H,: Swiss CD-1 and B6C3F; mice have unequal birth rates.

Swiss CD-1 and BGC3F1, initiator: 25 pg, Promoter: 5 pg
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Figure 7: Model fit to the papilloma count for Swiss CD-1 and B6C3F; mice assuming
different birth rates (both groups were initiated by 25.0 ug DMBA).
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Figure 8: Model fit to the papilloma count for Swiss CD-1 and B6C3F; mice assuming equal
birth rates (both groups were initiated by 25.0 ug DMBA).
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From Figures 7 and 8, the difference in birth rates is apparent. Moreover the difference
in likelihoods is 10.448 (1.5077104 x 10° — 1.507605952 x 10°), is significant having a
p-value of 0.0012. Therefore, the null hypothesis is rejected. We can conclude that the
Swiss CD-1 and B6C3F; mice have unequal birth rates.

4. To find out whether different levels of initiation dosage have any effect on the same
strain of mice, we test the following hypotheses

Hy: Equal birth rates for DMBA dosages of 2.5 and 25.0 pg in Swiss CD-1 mice
H,: Unequal birth rates for DMBA dosages of 2.5 and 25.0 ug in Swiss CD-1 mice

The observed difference in likelihoods under two hypotheses is 55.5981 (2.30463021 x
10° —2.3040742297 x 10°), which is significant having a p-value that is less than 0.0001.
Therefore, we reject the Hy and conclude that different initiator dosages produce dif-
ferent birth rates for the Swiss CD-1 mice.

4 Discussion

In this study we identify a general model which describes the mutation of normal cells to
papilloma. We studied two different strains of mice under two separate initiator dosages.
We present 4 different working models for these four cases. The underlying model is the
same for all four cases based on the binomial distribution likelihood function. It should
be noted that in all of these four cases the promotor and its dosage is the same (TPA 5
1g). The estimated values for the parameters tested significantly different for all four cases.
Specifically we have tested for the equality of birth rate between two different strains of mice,
both strains were initiated with 25 pg of DMBA. It is observed that Swiss CD-1 and B6C3F,
mice have different birth rates even when the initiator dosage is the same. We also try to
determine whether initiator dosage affects birth rates. In particular for Swiss CD-1 mice, we
performed the test for the equality of birth rates under two different initiator dosages. Birth
rates were found to be unequal for Swiss CD-1 mice for 2.5 and 25 ug DMBA.

The carcinoma data available to us were in the form of a set of summary statistics,
giving insufficient information about carcinoma to conduct a meaningful maximum likelihood
analysis. Therefore our likelihood function is only based on papilloma data. Once we get
relevant carcinoma data, the likelihood function can be directly applied to the data, since we
have derived the incidence of the carcinoma in our model. One advantage of our model is that
we assume the numbers of papilloma and carcinoma have binomial distributions instead of
Poisson distributions. This allows us to describe the process more accurately. Based on our
model, it will be very easy to expand to a multi-stage model using a multinomial distribution.
This approach should fit the data better, since it takes into account the different stages a
normal cell goes through to reach the stage of papilloma. From the biological viewpoint,
since there always exists some uncertainty, one may try to describe the process with a system
of stochastic differential equations or with a continuous time Markov chain.

Overall, it appears that our model works quite well in the present setting and can be
applied to a more general situation. However, it may be of interest to add more parame-
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ters in the model in order to account for inherent biological complexities, such as cellular
interactions, regression of papillomas etc.
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A Appendices

The system of ordinary differential equations derived in this section represents the probability
of a normal cell forming a papilloma. Correspondingly, this derivation does not include the
malignant stage. The derivation of the ordinary differential equations for the probabilities of
two-stage mutation of normal cells into malignant cells has been done previously by Marjo
V. Smith and Christopher J. Portier [8]. We apply this tecnique to the probability of a
normal cell forming a papilloma. The difference is that we consider forming a papilloma
to be a multistage process (as described in Section 2) and thus the result of our derivation
is a system of differential equations rather than a single equation. As done by Smith and
Portier, we will assume that cells act independently and set the normal-cell birth rate (5)
and death rate (dg) to zero (because the size of the initial sample remains constant). In
the notation introduced in Section 2, the following events may happen over a time interval
[t —s— As,t—s]:

1. A normal cell mutates with probability As pqg.
2. A normal cell does not change with probability 1 — As(8y + 0o + 1o)-
3. An initiated cell replicates with probability Asp;.
4. An initiated cell dies with probability Asd;.
5. An initiated cell does not change with probability 1 — As(8; + 01).
We first derive the equations for two special cases, Qonr(s,t) and Q1 (s, 1), followed by the

general case, Qinr(s,1),i=2,3,...,M — 1.

A.1 The Equation for Qou(s,t)

Following [8], there are only four events that may happen to a single normal cell over the
interval [t — s — As,t — s]:

e nothing may happen, so there is still one normal cell at the time ¢ — s;
e the normal cell may replicate, so that there are two normal cells at time ¢ — s;
e the normal cell may die, so the probability of no papilloma is 1;

e the normal cell may mutate, so the stage I; is achieved.
Thus we have:

Qon (s + As,t) = P(no papilloma is visible at ¢ | one normal cell I at t — s — As)
= P(no papilloma is visible at ¢ | one normal cell I at t — s)
x P(one normal cell Iy at t — s |one normal cell [y at t — s — As)

+P(no papilloma is visible at ¢ | two normal cells I at t — s)
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x P(two normal cells Iy at ¢t — s|one normal cell I; at t — s — As)

+P(no papilloma is visible at ¢ |no normal cells Iy at ¢ — s)

x P(no normal cells Iy at ¢ — s | one normal cell I; at ¢t — s — As)

+P(no papilloma is visible at ¢ | one initiated cell I; at t — s)

X P(one initiated cell I; at t — s |one normal cell [y at t — s — As)
= Qonm(s,1)[1 — As(Bo + o + o))

+(Qonr(8,))>AsBy + Adg - 1 + Quas (s, ) As po

Subtracting Qo (s, t) from both sides, dividing by As, and taking the limit as As — 0, we
obtain

dQOM(37 t)

ds = (Qorr(5,1))*Bo — Qonr (s, 1) (Bo + S0 + 10) + S0 + Quar(s, t) o (7)

Since [y = g = 0, equation 7 becomes

dQon(s,1)

Is = —Qonm (5, ) o + Qi (8, 1) po- (8)

A.2 The equations for Qi (s,1)

In this case, there are only three events that may happen to a single initiated cell at the
stage I over the interval [t — s — As,t — s

e nothing may happen, so there is still one initiated cell at the time ¢t — s;
e the initiated cell may replicate, so that there are two initiated cells at time ¢ — s;
e the initiated cell may die, so the probability of no papilloma is 1.

Thus, we have:

Qim(s+ As,t) = P(no papilloma is visible at ¢ | I; at t — s — As)

= P(no papilloma is visible at ¢ | I; at t — s)
XxP(I; at t —s| I at t — s — As)
+P(no papilloma is visible at ¢ | I at ¢t — s)
XP(Iyatt—s| I at t — s — As)
+P(no papilloma is visible at ¢ |no cells I; at ¢t — s)
xP(mo cells I} at t —s| I at t — s — As)

= Qum(s,t)(1 — As(B1 +61)) + Qan (s, t)Aspy + Asoy - 1.

Subtracting Q1(s,t) from both sides, dividing by As, and taking the limit as As — 0,

we obtain:
dQinm(s,1)

s = Qam(s,1)B1 — Quum(s,t)(Br + 61) + 1. 9)
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A.3 The Equations for Q;u(s,t), 1 =2,3,...., M —1

In this case, there are only three events that may happen to the initiated cells at the stage
I; over the interval [t — s — As, t — s]:

e nothing may happen, so there are still 7 initiated cells at the time ¢ — s;

e any one of the ¢ initiated cells may replicate, so that there are ¢ + 1 initiated cells at
the time t — s and the stage [, is achieved;

e any one of the 7 initiated cell may die, so that there are 7 — 1 initiated cells at the time
t — s and the process returns to the stage ;1.

Thus, we have:

QiM(S —+ AS, t) = QiM(S; t)(l — ZAS(Bl + 51))
+iQi+1,M(5, t)ASﬁl + iQi_l,M(s, t)AS 61.

Subtracting Q;nr(s,t) from both sides, dividing by As, and taking the limit as As — 0, we

obtain: p .
Qi]:i[is(s’) = iQir1,m (8, 1) B1 — iQine (8, 1) (B + 61) + 1Qi—1,1(8, )01 (10)

Finally, to complete the system (8)-(10), we need initial conditions for Q;(s,t). Since
we consider the papilloma stage irreversible, we have

Quum(s,t) =0, forall s,t,

and, by definition,
Qin(0,8) =1, i=0,1,...,M —1.
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