
PERMUTATIONS, PATTERN AVOIDANCE, AND THE CATALAN
TRIANGLE

DEREK DESANTIS, CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS
REBECCA FIELD, JAMES MADISON UNIVERSITY

WESLEY HOUGH, HANOVER COLLEGE
BRANT JONES, JAMES MADISON UNIVERSITY

REBECCA MEISSEN, WORCESTER POLYTECHNIC INSTITUTE
JACOB ZIEFLE, THE COLLEGE OF NEW JERSEY

Abstract. In the study of various objects indexed by permutations, a natural notion of min-
imal excluded structure, now known as a permutation pattern, has emerged and found diverse
applications. One of the earliest results from the study of permutation pattern avoidance in
enumerative combinatorics is that the Catalan numbers cn count the permutations of size n that
avoid any fixed pattern of size three. We refine this result by enumerating the permutations that
avoid a given pattern of size three, and have a given letter in the first position of their one-line
notation. Since there are two parameters, we obtain triangles of numbers rather than sequences.
Our main result is that there are two essentially different triangles for any of the patterns of
size three, and each of these triangles generalizes the Catalan sequence in a natural way. All of
our proofs are bijective, and relate the permutations being counted to recursive formulas for the
triangles.

MSC2000 05 Combinatorics
Keywords Pattern avoidance, Integer sequences, Catalan triangle

1. Introduction

A permutation is a bijection from a finite set to itself. The symmetric group on n letters,
denoted Sn, is the group of all permutations of an n-element set {1, 2, . . . , n}, where composition
is the group operation. In this paper, we will denote a particular permutation w by its one-line
notation,

w = [ w1 w2 . . . wn ]
where wi is the image of 1 ≤ i ≤ n under the bijection w.

Given w ∈ Sn and p ∈ Sk with k < n, we say w contains the pattern p if there exists
i1 < i2 < · · · < ik such that the subsequence wi1 , wi2 , . . . , wik of the one-line notation of w is in
the same relative order as p1, p2, . . . , pk, in the sense that wia < wib if and only if pa < pb for all
1 ≤ a, b ≤ n. If w does not contain p, then we say w avoids the pattern p; equivalently, there
exist a and b with wia < wib and pa > pb. For example, it is straightforward to check that [25143]
avoids [123] as there is no triple of values that are all increasing from left to right.

Let Sn(p) denote the set of all permutations in Sn that avoid a given pattern p. Then we have
an integer sequence sn(p) := |Sn(p)| that counts the number of p-avoiding permutations of size n.
When sn(p) = sn(q) for all n, then we say that the permutations p and q are Wilf equivalent.
For example, we have that

{sn([12])}∞n=1 = (1, 1, 1, . . .)
as there is a unique permutation of each size with no pair of entries increasing from left to right.
Moreover, it is not hard to see that [12] and [21] are Wilf equivalent.
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If we represent our permutations as matrices by placing a 1 in position (i, wi) and 0 elsewhere,
then pattern containment corresponds to containment of a sub permutation matrix. The dihedral
group action on these square matrices gives rise to three symmetry operations that preserve
Wilf equivalence: reverse, complement and inverse. Given a permutation w, we define the reverse
of w to be wr = [wnwn−1 · · ·w1], the complement of w to be wc = [(n + 1 − w1) (n + 1 −
w2) · · · (n+ 1− wn)], and we let w−1 denote the compositional inverse of w. Then, we have

sn(p) = sn(pc) = sn(pr) = sn(p−1)

since w avoids p if and only if wc avoids pc, and so on. For example, [1324]c = [4231], so the
integer sequences sn([1324]) and sn([4231]) are equal.

These definitions are elementary, but have been used to describe or explain phenomena from
far flung topics including: stack sorting algorithms from computer science [Knu73, Tar72], ge-
ometry of algebraic groups [BL00, WY08], intersection cohomology [BW01], Mahonian statistics
[BS00], statistical mechanics [TL71, Wes95b], and various generating functions in enumerative
combinatorics [Bón04].

Simion and Schmidt [SS85] were among the first to consider the relationships among various
permutation patterns, and they gave a bijective proof that S3 is a single Wilf equivalence class
by establishing an explicit bijection between Sn([132]) and Sn([123]). The result immediately
follows because every other size three permutation is related to one of these two by a symmetry
operation. The corresponding sn(p) is the Catalan sequence cn = 1

n+1

(2n
n

)
. This sequence can

also be defined recursively as

(1) cn+1 =
n∑

k=0

cn−kck for n ≥ 0 where c0 = 1.

Because this recursion conveys a very natural phenomenon that objects of size n are built from
pairs of objects with complementary sizes, the Catalan numbers arise frequently in combinatorics;
Stanley [Sta99] gives over 100 objects that are counted by the Catalan numbers.

In this work, we refine the Simion–Schmidt classification by considering permutations that
avoid a given pattern of size three, and have a given letter in the first position of their one-line
notation. That is, we let S(i)

n = {w ∈ Sn : w1 = i} and define S(i)
n (p) = Sn(p)

⋂
S

(i)
n . For example,

S
(2)
4 ([123]) = {[2143], [2413], [2431]}. Since there are two parameters n and i, we now have a

“triangle” of numbers sn,i(p) := |S(i)
n (p)| for each pattern p. Our main result is that for p of size

three, there are only two essentially different triangles and each of these generalizes the Catalan
sequence in a natural way. All of our proofs are bijective, and relate the permutations being
counted to recursive formulas for the triangles.

This first-letter refinement of Sn is a natural construction that facilitates recursive arguments:
each S(i)

n
∼= Sn−1 by dropping the first entry and then applying the bijection from {1, 2, ..., î, ..., n}

to {1, 2, ..., n − 1}, where the hat indicates omission. This results in the decomposition Sn =∐n
i=1 S

(i)
n . This decomposition has been used extensively for permutation pattern enumeration,

in the form of generating trees introduced by West [Wes95a]. Our work began from an attempt to
understand how structures such as Bruhat order behave under this decomposition when restricted
to a pattern-avoiding subset. We expect that the tools developed in enumerating these first-letter
pattern classes will be helpful in such investigations. It would also be interesting to determine
the number of first-letter Wilf equivalence classes in Sn for n ≥ 4, and to see if there is a way
to determine these from knowledge of the classical Wilf equivalence classes in a particular Sn.
Moreover, there are notions of pattern avoidance in other Coxeter types [BP05], and it should be
possible to generalize our results to this setting using parabolic subgroups.
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In Section 2, we introduce some preliminary results and reduce our first-letter Wilf classification
problem to determining sn,i([213]), sn,i([123]) and sn,i([132]). These are proved in Sections 3, 4,
and 5, respectively.

2. Catalan triangles and complements

We begin with a classical result; see [SS85] for a bijective proof.

Theorem 2.1. (Knuth, Simion–Schmidt) Let cn denote the Catalan sequence, and sn(p)
denote the number of p-avoiding permutations in Sn. For any p ∈ S3, we have sn(p) = cn for all
n.

There are two different number triangles of general interest that relate to the Catalan numbers.
We will distinguish the two by their shapes. We call the first the right Catalan triangle. This is
A009766 in the On-Line Encyclopedia of Integer Sequences [Slo].

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
...

...
...

...
...

...
. . .

We denote each entry in the triangle as cn,k, where n is the row and k is the column of the
entry. Notice that the n-th row of the triangle has n entries. To generate the triangle, we start
with c0,0 = c1,1 = 1. The triangle’s entries are generated recursively by summing the entries
directly above and to the left. If either of these two positions are vacant, we add zero for the
corresponding position(s). Extending this recursion generates

cn,k =
k∑

`=1

cn−1,`.

Note that cn,n = cn−1, and the entries in row n sum to the nth Catalan number cn.
We call the other triangle of interest the isosceles Catalan triangle. This is A078391 in the

On-Line Encyclopedia of Integer Sequences [Slo].

1

1 1

2 1 2

5 2 2 5

14 5 4 5 14

. ..
...

...
...

...
. . .

We denote the elements of this triangle as tn,k. Here, n denotes the row while k indicates the
position in the row. For example, t5,2 = 5. As with the right Catalan triangle, the n-th row
has n entries. Starting with c0 = c1 = 1, we construct the triangle by setting tn,k = cn−k−1ck.
Note that each tn,k is one of the summands from the formula (1) for the n-th Catalan number.
Therefore, the nth row will sum to the nth Catalan number.

In the classification of Wilf equivalence classes for Sn(p), the dihedral symmetries were a useful
tool. However, it turns out that only the complement symmetry extends to sn,i(p).

3



Lemma 2.2. Let p ∈ S3. Then, the complement function is a bijection between S
(k)
n (p) and

S
(n−k+1)
n (pc).

Proof. Since (wc)c = w, the complement is invertible. Let w be an arbitrary permutation in
S

(k)
n (p). Then, w avoids p if and only if wc avoids pc. Note that w1 = k by definition of S(k)

n (p).
Since wc

1 = n− w1 + 1 = n− k + 1, we have wc ∈ S(n−k+1)
n (pc). �

Our strategy will be to enumerate sn,k([213]), sn,k([123]) and sn,k([132]). The remaining pat-
terns p ∈ {[231], [321], [312]} are then enumerated as

sn,k([231]) = sn,n−k+1([213]), sn,k([321]) = sn,n−k+1([123]), sn,k([312]) = sn,n−k+1([132]).

Throughout our proofs, we will use the following auxiliary sets.

Definition 2.3. Let w = [ w1 w2 . . . wn ] be an arbitrary permutation in S
(i)
n (p). Then

w<i = { wj | wj < i }, w>i = { wj | wj > i },
w≤i = { wj | wj ≤ i }, w≥i = { wj | wj ≥ i }.

3. The pattern [213]

This pattern has the relation of the isosceles Catalan triangle.

Theorem 3.1. For all n, we have∣∣∣S(i)
n ([213])

∣∣∣ = ci−1cn−i for 1 ≤ i ≤ n.

Proof. Let w = [ w1 w2 . . . wn ] ∈ S(i)
n ([213]). Since w1 = i, every element of w<i must appear

after every element of w>i, for otherwise w does not avoid [213]. Therefore we can relabel w as

(2) [ i wb1 wb2 . . . wbn−i
wa1 wa2 . . . wai−1 ]

where waj ∈ w<i and wbj
∈ w>i and the sequences (waj ) and (wbj

) each avoid [213].

In fact every permutation of the form (2) whose subsequences each avoid [213] lies in S(i)
n ([213]).

To see this, note that since each wai < wbj
, there cannot exist a [213] instance between the

subsequences (w1) = [i], (wa) = [ wa1 wa2 . . . wai−1 ], and (wb) = [ wb1 wb2 . . . wbn−i
]. For

example, subsequences of the form [wbj
, wbk

, wal
] have wal

< wb while subsequences of the form
[wbj

, wak
, wal

] have wbj
> wa so neither are [213] instances.

There are (i−1) elements in the (wa) subsequence, and (n−i) elements in the (wb) subsequence.
By Theorem 2.1, there are ci−1 [213]-avoiding subsequences that can be assigned to (wa) and
cn−i [213]-avoiding sequences that can be assigned to (wb), so

∣∣∣S(i)
n ([213])

∣∣∣ = ci−1cn−i. �

4. The pattern [123]

We now proceed to classify S
(i)
n ([123]). The enumeration of these sets is more complicated

than of the case p = [213]. To aid us in this endeavor, we will define a class of functions which
‘extend’ a permutation in Sn−1 beginning with k to a permutation in Sn beginning with i.

Definition 4.1. Fix n, i and 1 ≤ k ≤ i. Define f : S(k)
n−1 → S

(i)
n by

f(w) =
®
g(w) := [ w1 n w2 . . . wn−1 ] if k = i,
h(w) := [ i w1 + δ1 w2 + δ2 . . . wn−1 + δn−1 ] otherwise

where δj = 1 if wj ≥ i, and 0 otherwise.
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Example 4.2. Let w = [2431] ∈ S(2)
4 . We can embed w into S(2)

5 as

f(w) = g(w) = [ w1 n w2 w3 . . . wn−1 ] = [25431].

We can embed w into S(4)
5 as

f(w) = h(w) = [ i w1 +δ1 w2 +δ2 . . . wn−1 +δn−1 ] = [ 4 (2+0) (4+1) (3+0) (1+0) ] = [42531].

Lemma 4.3. Let w ∈ S(k)
n−1. For all 1 ≤ s, t ≤ n − 1 we have ws < wt if and only if ws + δs <

wt + δt.

Proof. Let ws and wt be entries in w. Without loss of generality, assume ws < wt. Then since
ws and wt are distinct we have

ws ≤ ws + δs ≤ wt ≤ wt + δt.

If ws + δs = wt + δt then we must have δs = 1 and δt = 0, but this implies that i ≤ ws < wt < i,
a contradiction. �

We now consider pattern avoidance under f(w).

Lemma 4.4. If w avoids [123], then f(w) avoids [123].

Proof. Let w = [ w1 w2 . . . wn−1 ] ∈ S(k)
n−1([123]). We have that w avoids [123] if and only if for

every 3-letter subsequence 1 ≤ j1 < j2 < j3 < n, we have wj1 > wj2 or wj2 > wj3 . To prove that
f(w) avoids [123], we must show g(w) and h(w) both avoid [123].

Claim 1. g(w) avoids [123].
Let 1 ≤ j1 < j2 < j3 ≤ n be indices for a 3-letter subsequence in u = g(w).

Case 1.1. ujk
= n for some jk = 1, 2 or 3.

We have either j1 = 1 and j2 = 2, meaning [uj1 uj2 uj3 ] = [k n wj3−1], or j1 = 2, meaning
[uj1 uj2 uj3 ] = [n wj2−1 wj3−1]. Neither are [123] instances since w ∈ Sn−1 so n > wj−1 for all
2 ≤ j ≤ n.

Case 1.2. ujk
6= n for j = 1, 2 or 3.

Note that uj = wj−1 for j ≥ 3 and u1 = w1, so [uj1 uj2 uj3 ] = [wl1 wl2 wl3 ] for some 1 ≤ l1 <
l2 < l3 ≤ n− 1. Since w avoids [123] by assumption, this is not a [123]-instance.

Claim 2. h(w) avoids [123].
Let 1 ≤ j1 < j2 < j3 ≤ n be indices for a 3-letter subsequence in u = h(w). By Lemma 4.3, any

subsequence in [ w1 + δ1 . . . wn−1 + δn−1 ] will have the same relative ordering as in w. Since
w avoids [123], there cannot be any [123] instances in [w1 + δ1 . . . wn−1 + δn−1 ]. Thus, we
need only concern ourselves with three-letter subsequences that begin with i. So let uj1 = u1 = i.

Case 2.1. uj2 ∈ w<i or uj3 ∈ w<i.
Since u1 = uj1 = i, if either uj2 ∈ w<i or uj3 ∈ w<i, then i = uj1 > uj2 or i = uj1 > uj3 . Hence,
[uj1 uj2 uj3 ] is not a [123]-instance.

Case 2.2. uj2 ∈ w≥i and uj3 ∈ w≥i.
Recall that by the definition of f(w) we have w1 = k < i so u2 = w1 +δ1 = w1. Hence, j2 ≥ 3. By
assumption, we have [uj1 uj2 uj3 ] = [i wj2 +1 wj3 +1]. Since w avoids [123] and w1 = k < i ≤ wjl

,
it must be that wj2 > wj3 and therefore uj2 = wj2 + 1 > wj3 + 1 = uj3 . Hence, the sequence
[uj1 uj2 uj3 ] is not a [123] instance.

�
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We now observe that the function f is a bijection.

Lemma 4.5. For all n and for all i < n, we have that f is a bijection of
⋃i

k=1 S
(k)
n−1([123]) onto

S
(i)
n ([123]).

Proof. Let u ∈ S(i)
n ([123]), and define f−1(u) by

f−1(u) =
®
g−1(u) := [ u1 u3 u4 . . . un ] if u2 = n,
h−1(u) := [ u2 − ε2 u3 − ε3 u4 − ε4 . . . un − εn ] if u2 < n,

where εj = 1 if uj > i, and 0 otherwise.
Observe that f(w) = g(w) = u only if u2 = n; otherwise, f(w) = h(w). Also note that

f−1(u) ∈ S(k)
n−1([123]) with k ≤ i = u1 and u2− ε2 < i, for otherwise u2− ε2 ≥ i and so i < u2 < n

forms a [123] instance in u, which is a contradiction.
Hence, it suffices to show that for all w ∈ ⋃i

k=1 S
(k)
n−1([123]) and all u ∈ S(i)

n ([123]), we have
g−1(g(w)) = w, g(g−1(u)) = u, h−1(h(w)) = w, and h(h−1(u)) = u. These properties follow
directly from the definitions as δj = εj+1 for 1 ≤ j ≤ n− 1.

�

Now, we can calculate the number of elements in each S(i)
n ([123]) by way of recursion. In fact,

the recursion developed in Lemmas 4.4 and 4.5 is the same recursion as the right Catalan Triangle
recursion.

Theorem 4.6. |S(i)
n ([123])| = cn,i, the entry in the right Catalan triangle in row n, column k for

n ≥ k ≥ 1.

Proof. Notice that S(1)
1 = {[1]}. Since the permutation [1] consists of only one letter, it clearly

avoids [123]. Thus,
∣∣∣S(1)

1 ([123])
∣∣∣ = 1. Notice that c1,1 = 1 as well. By Lemmas 4.4 and 4.5,

∣∣∣S(i)
n ([123])

∣∣∣ =

∣∣∣∣∣∣
i⋃

k=1

S
(k)
n−1([123])

∣∣∣∣∣∣ =
i∑

k=1

∣∣∣S(k)
n−1([123])

∣∣∣ =
i∑

k=1

cn−1,k = cn,i

�

5. The pattern [132]

Next, we consider S(i)
n ([132]). To enumerate these sets, we will require the following function

similar to Definition 4.1.

Definition 5.1. Let w ∈ S(k)
n−1. Define H : S(k)

n−1 → S
(i)
n with 1 ≤ k ≤ i by

H(w) = [ i w1 + δ1 w2 + δ2 . . . wn−1 + δn−1 ]

where δj = 1 if wj ≥ i, and 0 otherwise. Note that this is the same function h from Definition 4.1;
however, we have extended its domain to include permutations where k = i.

Lemma 5.2. If w avoids [132], then H(w) avoids [132].

Proof. We have that w avoids [132] if and only if for every subsequence j1 < j2 < j3, we have
wj1 > wj2 , wj1 > wj3 , or wj3 > wj2 . Let 1 ≤ j1 < j2 < j3 ≤ n be indices for a 3-letter
subsequence in u = H(w). By Lemma 4.3, any subsequence in [ w1 + δ1 . . . wn−1 + δn−1 ]
will have the same relative ordering as in w. Since w avoids [132], there cannot be any [132]
instances in [w1 + δ1 . . . wn−1 + δn−1 ]. Thus, we need only concern ourselves with three-
letter subsequences that begin with i. So let uj1 = u1 = i.
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Case 2.1. uj2 ∈ w<i or uj3 ∈ w<i.
Since uj1 = i, if either uj2 or uj3 is less than i, then [uj1 uj2 uj3 ] will avoid [132].

Case 2.2. uj2 ∈ w>i and uj3 ∈ w>i.
By definition, we have u2 = w1 + δ1 with w1 ≤ i. If w1 < i, then u2 < i. On the other hand if
w1 = i, then u2 = i + 1. In either case, we have u2 < uj2 and u2 < uj3 since uj2 , uj3 ∈ w>i and
all of the uj are distinct. Consequently if w avoids [132], then uj2 < uj3 . Therefore, [uj1 uj2 uj3 ]
is not a [132]-instance.

�

Lemma 5.3. For all n and for all i < n, we have that H is a bijection of
⋃i

k=1 S
(k)
n−1([132]) onto

S
(i)
n ([132]).

Proof. The inverse of H is given by

H−1(u) = [u2 − ε2 u3 − ε3 u4 − ε4 . . . un − εn],

where εj = 1 if wj > i and 0 otherwise, just as in the proof of Lemma 4.5.
We also note that H−1(u) ∈ S

(k)
n−1([132]) with k ≤ i = u1, for otherwise u2 − ε2 > i, so

u2 > i+ 1, and i < u2 < i+ 1 forms a [132] instance in u, which is a contradiction. �

Theorem 5.4. |S(i)
n ([132])| = cn,i, the entry in the right Catalan triangle in row n, column k

such that n ≥ k ≥ 1.

Proof. Again, notice that S(1)
1 = {[1]}. Since the permutation [1] consists of only one letter, it

clearly avoids [132]. Thus,
∣∣∣S(1)

1 ([132])
∣∣∣ = 1. Recall that c1,1 = 1 as well. By Lemmas 5.2 and

5.3, ∣∣∣S(i)
n ([132])

∣∣∣ =

∣∣∣∣∣∣
i⋃

k=1

S
(k)
n−1([132])

∣∣∣∣∣∣ =
i∑

k=1

∣∣∣S(k)
n−1([132])

∣∣∣ =
i∑

k=1

cn−1,k = cn,i.

�
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