Seeing the (game) trees for the forest

Brant Jones (James Madison University)
Spring MAA MD-DC-VA Section Meeting April 13, 2019

(Transcript available at bit.ly/gametrees)

What is a game?

- moves (made by players)
- outcomes
- intermediate board positions;
- eventually win, lose, or tie

Examples of "games?"

\(\left.\begin{array}{|c|}\hline chess, checkers, go, mancala, tic-tac-toe

rock-paper-scissors

poker\end{array}\right\}\)| card games such as hearts, spades or war |
| :---: |
| jigsaw puzzles |
| pencil games such as sudoku |
| lottery |
| pub trivia, trivial pursuit |
| video games with a range of motion, race car driving |
| picking a winning stock |
| soccer, football |
| battleship, stratego |

Taxonomy?

- There may be 1,2 , or many players.
- Moves may be alternating or simultaneous.
- Moves may be finite or continuous.
- Outcomes may be finite or continuous.
- Games can be deterministic or non-deterministic.
- Games can have perfect information or partial information.

Taxonomy?

- There may be $\mathbf{1 , 2}$, or many players.
- Moves may be alternating or simultaneous.
- Moves may be finite or continuous.
- Outcomes may be finite or continuous.
- Games can be deterministic or non-deterministic.
- Games can have perfect information or partial information.

Math problem?

- A strategy is a complete guide for how a player should move in every possible situation.
(In common language, we tend to blur this with heuristics: incomplete advice about how to move in certain situations.)
- A winning strategy guarantees a win for the player using it, regardless of how the other player moves.

21-flags

- Begin with 21 flags.
- Two players take turns removing 1,2, or 3 flags.
- The player that takes the last flag (whether alone or part of a group) wins.

Does it matter how many are taken initially? Is there a winning strategy? For which player?

21-flags

- Moves: remove 1, 2, or 3 flags. Goal: remove last flag.

If current player faces	then they should remove	to achieve
1 flag	1 flag	win
2 flags	2 flags	win
3 flags	3 flags	win
4 flags	doesn't matter $\quad(1 \rightarrow 3$, $2 \rightarrow 2,3 \rightarrow 1)$	all lose

21-flags

- Moves: remove 1, 2, or 3 flags. Goal: remove last flag.

If current player faces	then they should remove	to achieve
5 flags 6 flags 7 flags 8 flags	1 flag 2 flags 3 flags doesn't matter $2 \rightarrow 6,3 \rightarrow 5)$	opp. faces 4 flags opp. faces 4 flags opp. faces 4 flags all (eventually) lose
$4 k+i$ $4 k$	$i \neq 0$ doesn't matter	opp. faces 4k flags all lose
21 flags	1 flag	opp. faces 20 flags

Generalizations

21-flags has a winning corner strategy,
\longrightarrow Same for Nim, but corners are defined with binary/xor (Bouton, 1901),
\longrightarrow Same for any (alternating, finite, perfect information) impartial move game! (Sprague, 1935; Grundy, 1939).

Example

Benesh-Ernst-Sieben, 2018, consider the game in which two players alternately select elements from a finite group until their union generates the group. Found Nim correspondence (hence, winning strategy) for cyclic, abelian, dihedral, symmetric, alternating, nilpotent,

Combinatorial game theory (Berlekamp-Guy-Conway, 1970's), tries to generalize these ideas to partisan move games.

Game trees

To analyze a game we:

- play forward, recording all possible outcomes/moves

$$
21 \rightarrow 20 \rightarrow 19 \rightarrow 18 \rightarrow \cdots \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0
$$

- solve backwards, finding best outcome for current player

$$
21 \rightarrow 20 \rightarrow 19 \rightarrow 18 \rightarrow \cdots \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0
$$

Theorem (Zermelo, 1913; von Neumann-Morgenstern, 1944)
This procedure finds the optimal strategy for any deterministic game with alternating finite moves and perfect information.
https://xkcd.com/832/

COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES
YOUR MOVE IS GIVEN BY THE POSITION OF THE LARGEST RED SMBBL ON THE GRID. WHEN YOUR OPPONENT PCKS A MOVE, ZCOM IN ON THE REGION OF THE GRID WHERE THEY WENT. REPEAT.

MAP FOR X:

Computational results

Game	Optimal strategy	Team who computed the game tree
Tic-tac-toe	tie	
21-flags, Nim	win for player not in a corner state	Bouton (1901)
Connect Four	win for first player Checkers	Allen and Allis (1988)
Mancala	win for the first player	Schaeffer (2007) Irving, Donkers and Uiterwijk (2000), Carstensen (2011)
Chess	$?$	
Go	$?$	

Checkers game tree has

$$
500,000,000,000,000,000,000 \text { nodes }
$$

which required running a program on more than 50 computers for over 18 years.

Hex (Nash-Hein, 1950's)

- Moves = label hexagon with your initial
- First player win = path connecting top and bottom
- Second player win = path connecting left and right

Hex (Nash-Hein, 1950's)

- Moves = label hexagon with your initial
- First player win = path connecting top and bottom
- Second player win = path connecting left and right

Hex (Nash-Hein, 1950's)

There are no ties, so winning strategy exists for one player.
Suppose (for contradiction) it is Second player.
Then, First player can make dual board (ignore first F; transpose all positions) and "steal" Second's strategy.

Mancala (North American Kalah)

In Mancala play, pick up all the seeds in a bin and sow them, placing one seed in each bin to the right.

If the last seed lands in the store then play again.
Win if you have more seeds in your store than your opponent.

Mancala

Sowing move:

Mancala

$$
4
$$

Mancala

$$
\left(\begin{array}{lllllll}
+1 & +1 & +1 & +1 & +1 & -5 & \\
4 & 4 & 4 & 5 & 5 & 5 & 5 \\
4 & 4 & 0 & 5 & 5 & 0 & 2
\end{array}\right.
$$

$$
\left(\begin{array}{llllll}
1 & 5 & 5 & 6 & 6 & 0 \\
4 & 4 & 0 & 5 & 5 & 0
\end{array}\right\}
$$

Tchoukaillon (Gautheron, 1970's)

Sweep moves:

(o)
(0) (3) (1)

Tchoukaillon (Gautheron, 1970's)

Sweep moves:

Tchoukaillon

"In any mancala game that includes the rule that a player can move again if a sowing ends in [their] own store, these [Tchoukaillon] positions are important. These games include Kalah, Dakon, Ruma Tchuka and many others. ... Also mancala games that use the 2-3 capture rule and have no stores (like Wari and Awale) benefit from Tchoukaillon positions."
-Jeroen Donkers, Jos Uiterwijk, Alex de Voogt,
"Mancala games - Topics in Mathemathics and Artificial Intelligence", The Journal of Machine Learning Research, 2001

Tchoukaillon

Some data:

b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	n	ℓ
0	0	0	0	0	1	1	1
0	0	0	0	2	0	2	2
0	0	0	0	2	1	3	2
0	0	0	3	1	0	4	3
0	0	0	3	1	1	5	3
0	0	4	2	0	0	6	4
0	0	4	2	0	1	7	4
0	0	4	2	2	0	8	4
0	0	4	2	2	1	9	4
0	5	3	1	1	0	10	5
0	5	3	1	1	1	11	5
6	4	2	0	0	0	12	6

Easy facts from "playing" backwards:

- There exists a unique vector for every nonnegative n.

Tchoukaillon $(n)=\frac{d}{d x}[n \bmod x]$

Unexpected pattern with attractive slogan!

Example

Say $n=17$. Find representatives for $n \bmod x$ that are increasing:

x	2	3	4	5	6	7	8	9	\cdots
$n \bmod x$	1	2	1	2	5	3	1	8	
$n \bmod x$	1	2	5	7	11	17	17	17	
$\Delta[n \bmod x]$	1	1	3	2	4	6	0	0	

Data check:

b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	n
0	0	0	3	1	1	5
6	4	2	0	0	0	12
6	4	2	3	1	1	17

Tchoukaillon

b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	n	ℓ	c_{7}	c_{6}	c_{5}	c_{4}	c_{3}	c_{2}
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	2	0	2	2	2	2	2	2	2	0
0	0	0	0	2	1	3	2	3	3	3	3	3	1
0	0	0	3	1	0	4	3	4	4	4	4	1	0
0	0	0	3	1	1	5	3	5	5	5	5	2	1
0	0	4	2	0	0	6	4	6	6	6	2	0	0
0	0	4	2	0	1	7	4	7	7	7	3	1	1
0	0	4	2	2	0	8	4	8	8	8	4	2	0
0	0	4	2	2	1	9	4	9	9	9	5	3	1
0	5	3	1	1	0	10	5	10	10	5	2	1	0
0	5	3	1	1	1	11	5	11	11	6	3	2	1
6	4	2	0	0	0	12	6	12	6	2	0	0	0

Theorem (J.-Taalman-Tongen)
For all $n, b_{i}(n)=c_{i}(n)-c_{i-1}(n), \quad$ and $\quad c_{i}(n)=\sum_{j=2}^{i} b_{j}(n)$.
Corollary
For all $i, \quad\left(b_{2}(n), b_{3}(n), \ldots, b_{i}(n)\right)_{n=0}^{\infty}$ is periodic with period $\operatorname{lcm}(2,3, \ldots, i)$.

Theorem (Broline-Loeb)
As $n \rightarrow \infty, \ell(n) \sim \sqrt{\pi n}$.

Open: Circular/Affine Tchoukaillon?

Example

Best choice problem

Given a uniformly random permutation of N, with entries revealed sequentially, choose the best (maximum) value.

Example

What is the optimal strategy and probability of success?
Theorem (Lindley, 1961; Flood-Robbins, 1950's)
Reject the first $N /$ e entries, and select the next left-to-right
maximum. This succeeds $1 / e \approx 37 \%$ of the time.

Best choice problem

Given a uniformly random permutation of N, with entries revealed sequentially, choose the best (maximum) value.

Example

What is the optimal strategy and probability of success?
Theorem (Lindley, 1961; Flood-Robbins, 1950's)
Reject the first $N /$ e entries, and select the next left-to-right maximum. This succeeds $1 / e \approx 37 \%$ of the time.

$N=4$ prefix tree

New directions

Consider non-uniform distributions on permutations:

- Avoid a permutation pattern (of size 3).

- Weight permutations by a statistic: $\frac{\theta^{c(\pi)}}{\sum_{\pi \in \mathfrak{G}_{N}} \theta^{c(\pi)}}, \quad \theta \in(0, \infty)$
- Mallows: $c(\pi)=\#$ of inversions in π
- Ewens: $c(\pi)=\#$ of left-to-right maxima in π
- Opportunity cost: $c(\pi)=$ position of N in π = \# "wasted" interviews

Weighted games of best choice

Choose $\pi \in \mathfrak{S}_{N}$ with probability $\frac{\theta^{c(\pi)}}{\sum_{\pi \in \mathfrak{S}_{N}} \theta^{c(\pi)}} \quad\left(\theta \in \mathbb{R}_{+}\right)$.
If change in $c(\pi)$ from permuting a prefix remains the same when we restrict to the prefix, say c is sufficiently local.

Example

$c(\pi)=\#$ inversions (pairs $\pi_{i}>\pi_{j}$ with $i<j$) are suff. local:
Consider $\pi=\pi_{1} \pi_{2} \cdots \pi_{k} \mid \pi_{k+1} \pi_{k+2} \cdots \pi_{m}$.
But $c(\pi)=\# 321$-instances is not: $c(2468 \mid 1357)=0$ yet $c(4268 \mid 1357)=1$ even though $c(2468)=0=c(4268)$.

Theorem (J.)

For a weighted game of best choice defined using a sufficently local statistic, the optimal strategy is always positional (reject r and accept next best).

In the stacks...

\rightarrow Merrill R. Flood, letter written in 1958, a copy of which can be found in the Martin Gardner papers at Stanford University Archives, series 1, box 5, folder 19.
(Many thanks to JMU librarian Alyssa Valcourt and special collections at Stanford!)

In the stacks...

\rightarrow Merrill R. Flood, letter written in 1958, a copy of which can be found in the Martin Gardner papers at Stanford University Archives, series 1, box 5, folder 19.
(Many thanks to JMU librarian Alyssa Valcourt and special collections at Stanford!)

In the stacks...

THE UNIVERSITV OF MICHIGAN

engineering research institute
ANN ARBOR MICHIGAN

$$
5 \text { Mey } 1958
$$

ADDEESS PEF, Y TC
YPSILA.,IG. MIV HIOAN

Professor Leonard Gilman Department of Mathematics Purdue Iniversity
Iafayette, Indiana
Dear Professur Glman:

Harry Goode brought back to Michigan the decision proklem that you had posed to him. Harry suggested that I write to yu rergarding my solution of the problem. I became interested in it slso because f pcssible applications.

Problem. $I \equiv\left(1_{1} 1_{2} \ldots 1_{n}\right)$ is a random permutation n the first n positive intesers. A game is played in which the ! layer attempts to identify the position of the integer n.

On the first move the referee asks the player if $i_{1}=n$. The payoff is 1 if the player says yes and $1_{1}=n$. The payoff is O if the player says yes and $i_{1} \neq \mathrm{n}$, or if the player says no and $1_{1}=n$. If the pliyer says no and
$i_{1} \neq \mathrm{n}$, then the referee asks next $1 f i_{2}=\mathrm{n}$ but also tells the player whether

In the stacks...

All that remains to establish the solution is to show that the optimal strategy is of the stated form, namely consisting of a sequence of no y times followed by a yes at the next large integer. INo proos of this is given here, for I have none, but Max Woodbury assures me that a general theorem of Kuhn on behavior strategies settles this point neatly; I also suspect that it really is obvious, and I am chagrined to admit that it is not yet obvious to me. An outline proof of this by R. Palermo is attached.

I asked Max Woodbury about this problem, and its likely origins, when I saw him in Cleveland recently. He tells me that Herbert Robbins, of Columbia University, has solved it and that it has sometimes been known as the "secretary problem". I suspect that Herb told me about the problem a few years ago when I posed my "husband bunting problem" to him, namely how should a young girl decide whether to marry her plance or to find and try a new boy to see if he is better. It may even be that Herb solved this mathematical problem as one representing my husband hunting problem, since I first posed it in a talk in 1949. At any rate, I am interested now in other possible

In the stacks...

This is an outline of a proof that the optimal strategy is among the class of strategies considered in the letter.

Let $y \approx " y$ randomly chosen integers" (selected from $\{1,2, \ldots, n\}$)
Let $x \equiv$ "the integer under consideration"

If $x>\max y$, then there exists $P_{x, y}$ where

$$
\begin{aligned}
P_{x, y} & =\text { probability that } x \text { is } n \\
& =P_{y}(x=n)
\end{aligned}
$$

Note: (1) $P_{x, y}$ is the probability of winning if the integer x is played
(2) $P_{x, y}$ is a monotone increasiag function of y
(3) If we let $\bar{P}_{x, y}=$ the probability of winning if x is not played then $\overline{\mathrm{P}}_{x, y}$ if a monotone decreasing function of y .

Opportunity cost model

Set $\theta<1$ and weight each π by $\theta^{\pi^{-1}(N)-1}$ to obtain uniform game with varying payoffs:
hire best immediately, $\theta^{\circ}=1$
hire best after one interview, $\theta^{1}=0.95$
hire best after two interviews, $\theta^{2}=0.9025$, etc.

Find a recurrence, solve it, divide by the full generating
function. and then take the limit. to get asvmptotic succes
probability for the strategy that initially rejects r candidates:

Opportunity cost model

Set $\theta<1$ and weight each π by $\theta^{\pi^{-1}(N)-1}$ to obtain uniform game with varying payoffs:
hire best immediately, $\theta^{\circ}=1$
hire best after one interview, $\theta^{1}=0.95$
hire best after two interviews, $\theta^{2}=0.9025$, etc.
Define

$$
W_{N, r}(\theta)=\sum_{r \text {-winnable } \pi \in \mathfrak{S}_{N}} \theta^{\pi^{-1}(N)-1}
$$

Find a recurrence, solve it, divide by the full generating function, and then take the limit, to get asymptotic success probability for the strategy that initially rejects r candidates:

$$
\operatorname{Pr}(\theta):=\lim _{N \rightarrow \infty} W_{N, r}(\theta)=r(1-\theta) \sum_{i=r}^{\infty} \frac{\theta^{i}}{i}
$$

$r=$	is optimal for $\theta \in$	success probability
0	$(0,0.6321]$	$1 / e \approx 0.36788$
1	$[0.6321,0.7968]$	0.323805
2	$[0.7968,0.8609]$	0.309256
3	$[0.8609,0.8945]$	0.302113

Lemma. For each r, the intersection of P_{r-1} and P_{r} coincides with the maximum value of P_{r}.

Opportunity cost model

Let

$$
E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t
$$

Consider $F(x)=x E_{1}(x)$ on $(0, \infty)$.

Define α and β be defined by $\boldsymbol{F}^{\prime}(\alpha)=0$ and $\boldsymbol{F}(\alpha)=\beta$. Then, $\alpha \approx 0.43481821500399293$ and $\beta \approx 0.28149362995691674$.

Theorem (Crews-J.-Myers-Taalman-Urbanski-Wilson) As $\theta \rightarrow 1^{-}$, the optimal strategy is $\left(\frac{\alpha}{1-\theta}\right)$-positional. This strategy has a success probability of β.

To optimize $\operatorname{Pr}(\theta)=r(1-\theta) \sum_{i=r}^{\infty} \frac{\theta^{i}}{i}$ we estimate the series,

$$
\int_{t=r}^{\infty} \frac{\theta^{t}}{t} d t<\sum_{i=r}^{\infty} \frac{\theta^{i}}{i}<\int_{t=r}^{\infty} \frac{\theta^{t-1}}{t-1} d t=\int_{t=r-1}^{\infty} \frac{\theta^{t}}{t} d t .
$$

So $\widetilde{P}_{r}(\theta)=r(1-\theta) \int_{t=r}^{\infty} \frac{\theta^{t}}{t} d t$ has error less than $r(1-\theta) \frac{\theta^{r-1}}{r-1}<4(1-\theta) \theta^{r}$.

Next, we change variables from r to $c=(1-\theta) r$, and from t to $u=(1-\theta) t$ in the integral. We obtain $d u=(1-\theta) d t$ so

$$
\widetilde{P}_{c}(\theta)=c \int_{u=c}^{\infty} \frac{\left(\theta^{1 /(1-\theta)}\right)^{u}}{u} d u .
$$

and our error estimate for $|\boldsymbol{P}-\widetilde{\boldsymbol{P}}|$ becomes $4 \theta^{c /(1-\theta)}(1-\theta)$.
Take $\theta \rightarrow 1$, using $\lim _{\theta \rightarrow 1} \theta^{1 /(1-\theta)}=1 / e$.

Origins

of G / Q is generated in degree 2, i.e., $I(G / Q)$ is generated as an ideal by
 ther, and an id Thus at tl Proj
 ated as $w), L)$. (even nes in

There are similar results for multi-cones over Schubert varieties [81], [71], [72]. For a maximal parabolic subaroun P_{i}, we have that Pic $\left(G / P_{i}\right)$
 Let us den \quad)

Singular Loci

 of Schubert Varieties
Springer SclancotBunimess Medth, ue

 Jennifet Morse - Anne Schilling,
Mark Shimozono Mike Zabrocki lenote k-Schur Functions and Affine Schubert Calculus

$$
C_{Q}(w)=H^{0}\left(\mathcal{H}_{Q}(w), \leftrightarrow L_{i}^{a_{i}}\right)
$$

The problem

Successful Ph.D. thesis Successful undergraduate research is conducted: research is conducted:

over years	over months
with complete dedication, fast-paced the context of other	classes/undergrad life
with support of grad program	limited institutional support
for original results, juried by	for helping student evolve lop experts
	learning/thinking, to keep UG faculty engaged

Possible responses:

- give up research entirely, or change fields completely
- hyperfocus on very specific aspect of thesis research
- hypergeneralize to very abstract aspect of thesis research

An alternative?

Successful Ph.D. thesis Successful undergraduate research is conducted: research is conducted:

over years	over months
with complete dedication,	in the context of other
fast-paced	classes/undergrad life
with support of grad program	limited institutional support
for original results, juried by	for helping student evolve top experts
	learning/thinking, to keep
	UG faculty engaged

Pivot to research that is more accessible but leverages existing skills (e.g. programming and algorithms, solving recurrences, enumeration, generating functions) or skills you want to learn anyway (e.g. probability applied to combinatorial structures).

An alternative?

Successful Ph.D. thesis Successful undergraduate research is conducted: research is conducted:

over years	over months
with complete dedication,	in the context of other
fast-paced	classes/undergrad life
with support of grad program	limited institutional support
for original results, juried by	for helping student evolve top experts
	learning/thinking, to keep
	UG faculty engaged

Pivot to research that is more accessible but leverages existing skills (e.g. programming and algorithms, solving recurrences, enumeration, generating functions) or skills you want to learn anyway (e.g. probability applied to combinatorial structures).

