Infinite Processes

Department of Mathematics and Statistics

February 8, 2012
Infinite Processes

We will study several “infinite processes” during the remainder of this semester.

- Improper integrals (integrals over unbounded regions)
- Sequences (infinite lists of numbers)
- Series (infinite summations of constants)
- Power series (infinite sums of polynomials)

You have already studied one other process that we may also include, limits of functions as \(x \to \infty \).
Convergence

For each of these infinite processes the **BIG** question is:

Does the ____________ converge or does it diverge?
Examples

Does the limit \(\lim_{x \to \infty} \frac{\sin x}{x} \) exist?

When we ask this question we mean, does the limit exist as a fixed, finite real number? It does, and its value is 0.

We may express this by writing: \(\lim_{x \to \infty} \frac{\sin x}{x} = 0 \).

Using the language of convergence, we may also say that the function \(\frac{\sin x}{x} \) converges to 0 as \(x \to \infty \) or \(\frac{\sin x}{x} \to 0 \) as \(x \to \infty \).

On the other hand, since the limits \(\lim_{x \to \infty} \sin x \) and \(\lim_{x \to \infty} e^x \) don’t exist, we may say that the functions \(\cos x \) and \(e^x \) both diverge as \(x \to \infty \).
We will have a definition for each “process”.

Learn them!

We will have a definition for the convergence of each “process”.

Learn them!

You will see that these definitions are related, but distinct.