Graphing Polar Equations

Department of Mathematics and Statistics

November 7, 2012

Recall that when we plot a point (r, θ) in polar coordinates, r represents the (signed) distance from the pole and θ represents the angular rotation (in radians) from the polar axis.

We use these properties to the graph a function of the form $r = f(\theta)$. However, to understand the graph, $r = f(\theta)$, using polar coordinates, it is often helpful to graph the equation first in the θr -plane.

2 / 4

Recall that when we plot a point (r, θ) in polar coordinates, r represents the (signed) distance from the pole and θ represents the angular rotation (in radians) from the polar axis.

We use these properties to the graph a function of the form $r = f(\theta)$. However, to understand the graph, $r = f(\theta)$, using polar coordinates, it is often helpful to graph the equation first in the θr -plane.

Recall that when we plot a point (r, θ) in polar coordinates, r represents the (signed) distance from the pole and θ represents the angular rotation (in radians) from the polar axis.

We use these properties to the graph a function of the form $r = f(\theta)$. However, to understand the graph, $r = f(\theta)$, using polar coordinates, it is often helpful to graph the equation first in the θr -plane.

Recall that when we plot a point (r, θ) in polar coordinates, r represents the (signed) distance from the pole and θ represents the angular rotation (in radians) from the polar axis.

We use these properties to the graph a function of the form $r = f(\theta)$. However, to understand the graph, $r = f(\theta)$, using polar coordinates, it is often helpful to graph the equation first in the θr -plane.

Recall that when we plot a point (r, θ) in polar coordinates, r represents the (signed) distance from the pole and θ represents the angular rotation (in radians) from the polar axis.

We use these properties to the graph a function of the form $r = f(\theta)$.

However, to understand the graph, $r = f(\theta)$, using polar coordinates, it is often helpful to graph the equation first in the θr -plane.

2 / 4

Recall that when we plot a point (r, θ) in polar coordinates, r represents the (signed) distance from the pole and θ represents the angular rotation (in radians) from the polar axis.

We use these properties to the graph a function of the form $r = f(\theta)$. However, to understand the graph, $r = f(\theta)$, using polar coordinates, it is often helpful to graph the equation first in the θr -plane.

- A graph is symmetrical with respect to the x-axis if for every point (r, θ) on the graph, the point $(r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the *y*-axis if for every point (r, θ) on the graph, the point $(-r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the origin if for every point (r, θ) on the graph, the point $(-r, \theta)$ is also on the graph.

- A graph is symmetrical with respect to the x-axis if for every point (r, θ) on the graph, the point $(r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the *y*-axis if for every point (r, θ) on the graph, the point $(-r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the origin if for every point (r, θ) on the graph, the point $(-r, \theta)$ is also on the graph.

- A graph is symmetrical with respect to the x-axis if for every point (r, θ) on the graph, the point $(r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the y-axis if for every point (r, θ) on the graph, the point $(-r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the origin if for every point (r, θ) on the graph, the point $(-r, \theta)$ is also on the graph.

- A graph is symmetrical with respect to the x-axis if for every point (r, θ) on the graph, the point $(r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the y-axis if for every point (r, θ) on the graph, the point $(-r, -\theta)$ is also on the graph.
- A graph is symmetrical with respect to the origin if for every point (r, θ) on the graph, the point $(-r, \theta)$ is also on the graph.

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- ullet $r=a\cos k heta$ and $r=a\sin k heta$, with |k| an integer greater than on
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - \sim cardioid when $\left| \frac{a}{b} \right| = 1$
 - limaçon when $\left| \frac{\pi}{6} \right| \neq 1$.
 - \circ with inner loop when $\left| {rac{a}{2}} \right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r=a\cos k\theta$ and $r=a\sin k\theta$, with |k| an integer greater than one
- ullet $r=a\pm b\cos heta$ and $r=a\pm b\sin heta$
- |a| = 1 simple $|a| \neq 1$.
- with inner loop when $\left|\frac{\pi}{5}\right| < 1$
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
- limaçon when $\left| {rac{a}{b}}
 ight|
 eq 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one—"roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$

• $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - cardioid when $\left|\frac{a}{b}\right| = 1$.
 - limaçon when $\left|\frac{a}{b}\right| \neq 1$.
 - with inner loop when $\left|\frac{a}{b}\right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - cardioid when $\left|\frac{a}{b}\right| = 1$.
 - limaçon when $\left|\frac{a}{b}\right| \neq 1$
 - with inner loop when $\left|\frac{a}{b}\right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - cardioid when $\left|\frac{a}{b}\right| = 1$.
 - limaçon when $\left|\frac{a}{b}\right| \neq 1$.
 - with inner loop when $\left|\frac{a}{b}\right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - cardioid when $\left|\frac{a}{b}\right| = 1$.
 - limaçon when $\left|\frac{a}{b}\right| \neq 1$.
 - with inner loop when $\left|\frac{a}{b}\right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$ lemniscate

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - cardioid when $\left|\frac{a}{b}\right| = 1$.
 - limaçon when $\left|\frac{a}{b}\right| \neq 1$.
 - with inner loop when $\left|\frac{a}{b}\right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$ lemniscate.

- $r = a \sin \theta$ and $r = a \cos \theta$ circles with radius $\frac{|a|}{2}$ containing the origin, tangent to the x-axis and y-axis, respectively.
- $r = a \cos k\theta$ and $r = a \sin k\theta$, with |k| an integer greater than one "roses" with |k| petals if k is odd, and 2|k| petals if k is even.
- $r = a \pm b \cos \theta$ and $r = a \pm b \sin \theta$
 - cardioid when $\left|\frac{a}{b}\right| = 1$.
 - limaçon when $\left|\frac{a}{b}\right| \neq 1$.
 - with inner loop when $\left|\frac{a}{b}\right| < 1$.
- $r^2 = \pm a \sin 2\theta$ and $r^2 = \pm a \cos 2\theta$ lemniscate.