Line Integrals

Department of Mathematics and Statistics

November 9, 2012

Line Integrals of Multivariate Functions

Definition

Let C be a curve in \mathbb{R}^3 with a smooth parametrization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ for $t \in [a, b]$. Then the **integral of** f(x, y, z) along C is

$$\int_{C} f(x, y, z) \ ds = \int_{a}^{b} f(x(t), y(t), z(t)) \| \mathbf{r}'(t) \| \ dt.$$

Line Integrals of Multivariate Functions

Definition

Let C be a curve in \mathbb{R}^3 with a smooth parametrization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ for $t \in [a, b]$. Then the **integral of** f(x, y, z) along C is

$$\int_C f(x,y,z) \ ds = \int_a^b f(x(t),y(t),z(t)) \| \mathbf{r}'(t) \| \ dt.$$

Line Integral of a Vector Field

Definition

Suppose that C is a smooth curve in \mathbb{R}^3 with a smooth parametrization $\mathbf{r}(t)$ for $t \in [a,b]$ and with a vector field $\mathbf{F}(x,y,z) = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}$ whose component functions are each continuous on C and whose domain is open, connected, and simply connected. Then the **line integral of** $\mathbf{F}(x,y,z)$ along C is

$$\int_{C} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_{a}^{b} \left(F_{1}(x, y, z) x'(t) + F_{2}(x, y, z) y'(t) + F_{3}(x, y, z) z'(t) \right) dt.$$

Line Integral of a Vector Field

Definition

Suppose that C is a smooth curve in \mathbb{R}^3 with a smooth parametrization $\mathbf{r}(t)$ for $t \in [a,b]$ and with a vector field $\mathbf{F}(x,y,z) = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}$ whose component functions are each continuous on C and whose domain is open, connected, and simply connected. Then the **line integral of** $\mathbf{F}(x,y,z)$ along C is

$$\int_{C} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_{a}^{b} \left(F_{1}(x, y, z) x'(t) + F_{2}(x, y, z) y'(t) + F_{3}(x, y, z) z'(t) \right) dt.$$

Two alternative ways of writing this integral are

$$\int_{C} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_{C} (F_{1} dx + F_{2} dy + F_{3} dz)$$
$$= \int_{C} \mathbf{F} \cdot \mathbf{T} ds,$$

where T is the unit tangent vector

Two alternative ways of writing this integral are

$$\int_{C} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_{C} (F_{1} dx + F_{2} dy + F_{3} dz)$$
$$= \int_{C} \mathbf{F} \cdot \mathbf{T} ds,$$

where **T** is the unit tangent vector.

4 / 5

Two alternative ways of writing this integral are

$$\int_{C} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_{C} (F_{1} dx + F_{2} dy + F_{3} dz)$$
$$= \int_{C} \mathbf{F} \cdot \mathbf{T} ds,$$

where **T** is the unit tangent vector.

Two alternative ways of writing this integral are

$$\int_{C} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_{C} (F_{1} dx + F_{2} dy + F_{3} dz)$$
$$= \int_{C} \mathbf{F} \cdot \mathbf{T} ds,$$

where **T** is the unit tangent vector.

The Fundamental Theorem of Line Integrals

Theorem

Let C be a smooth curve that is the graph of the vector function $\mathbf{r}(t)$ defined on the interval [a,b] with $P=\mathbf{r}(a)$ and $Q=\mathbf{r}(b)$. If $\mathbf{F}(x,y,z)$ is a conservative vector field with $\mathbf{F}(x,y,z)=\nabla f(x,y,z)$ on an open, connected, and simply connected domain containing the curve C, then

$$\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r} = f(Q) - f(P).$$

The Fundamental Theorem of Line Integrals

Theorem

Let C be a smooth curve that is the graph of the vector function $\mathbf{r}(t)$ defined on the interval [a,b] with $P=\mathbf{r}(a)$ and $Q=\mathbf{r}(b)$. If $\mathbf{F}(x,y,z)$ is a conservative vector field with $\mathbf{F}(x,y,z)=\nabla f(x,y,z)$ on an open, connected, and simply connected domain containing the curve C, then

$$\int_C \mathbf{F}(x,y,z) \cdot d\mathbf{r} = f(Q) - f(P).$$