Surfaces and Surface Integrals

Department of Mathematics and Statistics

November 12, 2012

1 / 4

Definition

The **surface** area of a smooth surface S is

$$\int_{S} 1 \ dS.$$

(a) If S is given by z = f(x, y) for $(x, y) \in D \subseteq \mathbb{R}^2$, then

$$dS = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \ dA.$$

$$dS = \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| dA$$
$$= \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| du dv$$

Definition

The **surface** area of a smooth surface S is

$$\int_{\mathbb{S}} 1 \ dS.$$

(a) If S is given by z = f(x, y) for $(x, y) \in D \subseteq \mathbb{R}^2$, then

$$dS = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \ dA.$$

$$dS = \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| dA$$
$$= \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| du dv$$

Definition

The **surface** area of a smooth surface S is

$$\int_{\mathbb{S}} 1 \ dS.$$

(a) If S is given by z = f(x, y) for $(x, y) \in D \subseteq \mathbb{R}^2$, then

$$dS = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \ dA.$$

$$dS = \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| dA$$
$$= \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| du dv$$

Definition

The **surface** area of a smooth surface S is

$$\int_{\mathbb{S}} 1 \ dS.$$

(a) If S is given by z = f(x, y) for $(x, y) \in D \subseteq \mathbb{R}^2$, then

$$dS = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \ dA.$$

$$dS = \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| \ dA$$
$$= \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| \ du \ dv.$$

Surface Integral of a Multivariate Function

Definition

The integral of f(x, y, z) over a smooth surface S is

$$\int_{S} f(x, y, z) dS = \iint_{D} f(x(u, v), y(u, v), z(u, v)) \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| dA$$

$$= \iint_{D} f(x(u, v), y(u, v), z(u, v)) \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| du dv,$$

where D is the domain of the smooth parametrization of S by $\mathbf{r}(u, v)$.

Surface Integral of a Multivariate Function

Definition

The integral of f(x, y, z) over a smooth surface S is

$$\begin{split} \int_{\mathbb{S}} f(x, y, z) \ dS &= \iint_{D} f\left(x(u, v), y(u, v), z(u, v)\right) \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| \ dA \\ &= \iint_{D} f\left(x(u, v), y(u, v), z(u, v)\right) \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| \ du \ dv, \end{split}$$

where D is the domain of the smooth parametrization of S by $\mathbf{r}(u, v)$.

Definition

If $\mathbf{F}(x,y,z)$ is a continuous vector field defined on an oriented surface S given by $\mathbf{r}(u,v)$ for $(u,v) \in D$ with unit normal vector \mathbf{n} , then the flux of $\mathbf{F}(x,y,z)$ through S is

$$\int_{\mathbb{S}} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS.$$

(a) If S is the graph of z = z(x, y), then

$$\int_{S} \mathbf{F}(x, y, z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x, y, z) \cdot \mathbf{n} \right) \| z_{x} \times z_{y} \| \ dy \ dx.$$

$$\int_{S} \mathbf{F}(x, y, z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x, y, z) \cdot \mathbf{n} \right) \| \mathbf{r}_{u} \times \mathbf{r}_{v} \| \ du \ dv.$$

Definition

If $\mathbf{F}(x, y, z)$ is a continuous vector field defined on an oriented surface S given by $\mathbf{r}(u, v)$ for $(u, v) \in D$ with unit normal vector \mathbf{n} , then the **flux** of $\mathbf{F}(x, y, z)$ through S is

$$\int_{\mathbb{S}} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS.$$

(a) If S is the graph of z = z(x, y), then

$$\int_{S} \mathbf{F}(x, y, z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x, y, z) \cdot \mathbf{n} \right) \| z_{x} \times z_{y} \| \ dy \ dx.$$

$$\int_{S} \mathbf{F}(x, y, z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x, y, z) \cdot \mathbf{n} \right) \| \mathbf{r}_{u} \times \mathbf{r}_{v} \| \ du \ dv.$$

Definition

If $\mathbf{F}(x, y, z)$ is a continuous vector field defined on an oriented surface S given by $\mathbf{r}(u, v)$ for $(u, v) \in D$ with unit normal vector \mathbf{n} , then the **flux** of $\mathbf{F}(x, y, z)$ through S is

$$\int_{\mathbb{S}} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS.$$

(a) If S is the graph of z = z(x, y), then

$$\int_{S} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x,y,z) \cdot \mathbf{n} \right) \|z_{x} \times z_{y}\| \ dy \ dx.$$

$$\int_{S} \mathbf{F}(x, y, z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x, y, z) \cdot \mathbf{n} \right) \| \mathbf{r}_{u} \times \mathbf{r}_{v} \| \ du \ dv.$$

Definition

If $\mathbf{F}(x,y,z)$ is a continuous vector field defined on an oriented surface S given by $\mathbf{r}(u,v)$ for $(u,v) \in D$ with unit normal vector \mathbf{n} , then the **flux** of $\mathbf{F}(x,y,z)$ through S is

$$\int_{\mathbb{S}} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS.$$

(a) If S is the graph of z = z(x, y), then

$$\int_{S} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x,y,z) \cdot \mathbf{n} \right) \| z_{x} \times z_{y} \| \ dy \ dx.$$

$$\int_{S} \mathbf{F}(x,y,z) \cdot \mathbf{n} \ dS = \iint_{D} \left(\mathbf{F}(x,y,z) \cdot \mathbf{n} \right) \| \mathbf{r}_{u} \times \mathbf{r}_{v} \| \ du \ dv.$$