Green's Theorem

Department of Mathematics and Statistics

November 26, 2012

3

The Del Operator

Definition

The **del operator**, abla is the vector of operations

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

or, in \mathbb{R}^2 ,

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j}.$$

- 34

<ロ> (日) (日) (日) (日) (日)

The Del Operator

Definition

The $\textbf{del operator}, \, \nabla$ is the vector of operations

$$\nabla = \frac{\partial}{\partial x} \,\mathbf{i} + \frac{\partial}{\partial y} \,\mathbf{j} + \frac{\partial}{\partial z} \,\mathbf{k}$$

or, in \mathbb{R}^2 ,

$$\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j}.$$

3

Definition

The **divergence** of vector field **F** is the dot product of ∇ and **F**.

(a) In \mathbb{R}^2 , if $\mathbf{F}(x, y) = F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}$, then

div
$$\mathbf{F}(x,y) = \nabla \cdot \mathbf{F}(x,y) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}$$
.

(b) In \mathbb{R}^3 , if $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, then

div $\mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$

Definition

The **divergence** of vector field \mathbf{F} is the dot product of ∇ and \mathbf{F} .

(a) In \mathbb{R}^2 , if $\mathbf{F}(x, y) = F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}$, then

div $\mathbf{F}(x,y) = \nabla \cdot \mathbf{F}(x,y) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}$.

(b) In \mathbb{R}^3 , if $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, then

div $\mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$

Definition

The **divergence** of vector field **F** is the dot product of ∇ and **F**. (a) In \mathbb{R}^2 , if $\mathbf{F}(x, y) = F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}$, then div $\mathbf{F}(x, y) = \nabla \cdot \mathbf{F}(x, y) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}$.

(b) In
$$\mathbb{R}^3$$
, if $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, then

div $\mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$

- 3

イロト 不得下 イヨト イヨト

Definition

The **divergence** of vector field **F** is the dot product of ∇ and **F**. (a) In \mathbb{R}^2 , if $\mathbf{F}(x, y) = F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}$, then div $\mathbf{F}(x, y) = \nabla \cdot \mathbf{F}(x, y) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}$. (b) In \mathbb{R}^3 , if $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, then div $\mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$.

E 900

Definition

The **curl** of a vector field $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ is the cross product of ∇ with $\mathbf{F}(x, y, z)$:

curl
$$\mathbf{F} = \nabla \times \mathbf{F}(x, y, z) = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right)\mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)\mathbf{k}$$

If $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ is a vector field in \mathbb{R}^2 , we define the curl of \mathbf{F} to be the curl of the vector field in \mathbb{R}^3 whose first two components are the same as \mathbf{F} 's and whose third component is 0. So,

curl
$$\mathbf{F} = \operatorname{curl} \langle F_1(x, y), F_2(x, y), 0 \rangle = \nabla \times \langle F_1(x, y), F_2(x, y), 0 \rangle$$

= $\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}.$

Methods of Applied Calculus (JMU)

Definition

The **curl** of a vector field $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ is the cross product of ∇ with $\mathbf{F}(x,y,z)$:

curl $\mathbf{F} = \nabla \times \mathbf{F}(x, y, z) = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right)\mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)\mathbf{l}$ If $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ is a vector field in \mathbb{R}^2 , we define the curl of \mathbf{F} to be the curl of the vector field in \mathbb{R}^3 whose first two components are the same as \mathbf{F} 's and whose third component is 0. So,

curl
$$\mathbf{F} = \text{curl } \langle F_1(x, y), F_2(x, y), 0 \rangle = \nabla \times \langle F_1(x, y), F_2(x, y), 0 \rangle$$

= $\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}.$

Methods of Applied Calculus (JMU)

< 67 ▶

Definition

The **curl** of a vector field $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ is the cross product of ∇ with $\mathbf{F}(x, y, z)$:

$$\mathsf{curl} \ \mathbf{F} = \nabla \times \mathbf{F}(x, y, z) = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$

If $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ is a vector field in \mathbb{R}^2 , we define the curl of \mathbf{F} to be the curl of the vector field in \mathbb{R}^3 whose first two components are the same as \mathbf{F} 's and whose third component is 0. So,

curl
$$\mathbf{F} = \text{curl } \langle F_1(x,y), F_2(x,y), 0 \rangle = \nabla \times \langle F_1(x,y), F_2(x,y), 0 \rangle$$

= $\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}.$

Methods of Applied Calculus (JMU)

Definition

The **curl** of a vector field $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ is the cross product of ∇ with $\mathbf{F}(x, y, z)$:

curl
$$\mathbf{F} = \nabla \times \mathbf{F}(x, y, z) = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$

If $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ is a vector field in \mathbb{R}^2 , we define the curl of \mathbf{F} to be the curl of the vector field in \mathbb{R}^3 whose first two components are the same as \mathbf{F} 's and whose third component is 0. So,

curl
$$\mathbf{F} = \operatorname{curl} \langle F_1(x, y), F_2(x, y), 0 \rangle = \nabla \times \langle F_1(x, y), F_2(x, y), 0 \rangle$$

= $\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}.$

Definition

The **curl** of a vector field

 $\mathbf{F}(x, y, z) = F_1(x, y, z) \mathbf{i} + F_2(x, y, z) \mathbf{j} + F_3(x, y, z) \mathbf{k}$ is the cross product of ∇ with $\mathbf{F}(x, y, z)$:

curl
$$\mathbf{F} = \nabla \times \mathbf{F}(x, y, z) = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$

If $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ is a vector field in \mathbb{R}^2 , we define the curl of \mathbf{F} to be the curl of the vector field in \mathbb{R}^3 whose first two components are the same as \mathbf{F} 's and whose third component is 0. So,

curl
$$\mathbf{F} = \operatorname{curl} \langle F_1(x, y), F_2(x, y), 0 \rangle = \nabla \times \langle F_1(x, y), F_2(x, y), 0 \rangle$$

= $\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}.$

Theorem

 (a) If F = (F₁(x, y, z), F₂(x, y, z)) is a vector field in ℝ² or F = (F₁(x, y, z), F₂(x, y, z), F₃(x, y, z)) is a vector field in ℝ³, for which F₁, F₂, and F₃ have continuous second-order partial derivatives, then

div curl
$$\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = \mathbf{0}$$
.

(d) For a multivariate function (in R² or R³ with continuous second partial derivatives.

$curl \nabla f = \nabla \times (\nabla f) = 0.$

イロト イポト イヨト イヨト

Theorem

(a) If $\mathbf{F} = \langle F_1(x, y, z), F_2(x, y, z) \rangle$ is a vector field in \mathbb{R}^2 or $\mathbf{F} = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ is a vector field in \mathbb{R}^3 , for which F_1 , F_2 , and F_3 have continuous second-order partial derivatives, then

div curl
$$\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = 0.$$

(b) For a multivariate function f in R² or R³ with continuous second partial derivatives,

$$curl \nabla f = \nabla \times (\nabla f) = \mathbf{0}.$$

(日) (同) (日) (日)

Theorem

(a) If $\mathbf{F} = \langle F_1(x, y, z), F_2(x, y, z) \rangle$ is a vector field in \mathbb{R}^2 or $\mathbf{F} = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ is a vector field in \mathbb{R}^3 , for which F_1 , F_2 , and F_3 have continuous second-order partial derivatives, then

div curl
$$\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = 0.$$

(b) For a multivariate function f in R² or R³ with continuous second partial derivatives,

$$curl \nabla f = \nabla \times (\nabla f) = \mathbf{0}.$$

(日) (四) (日) (日) (日)

Theorem

(a) If $\mathbf{F} = \langle F_1(x, y, z), F_2(x, y, z) \rangle$ is a vector field in \mathbb{R}^2 or $\mathbf{F} = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ is a vector field in \mathbb{R}^3 , for which F_1 , F_2 , and F_3 have continuous second-order partial derivatives, then

div curl
$$\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = 0.$$

(b) For a multivariate function f in R² or R³ with continuous second partial derivatives,

$$curl \nabla f = \nabla \times (\nabla f) = \mathbf{0}.$$

Green's Theorem

Theorem

Let $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ be a vector field defined on a region R in the plane whose boundary is a smooth or piecewise smooth simple closed curve C. If $\mathbf{r}(t)$ is a parametrization of C in the counterclockwise direction (as viewed from the positive z-axis), then

$$\int_{C} \mathbf{F}(x,y) \cdot d\mathbf{r} = \int_{C} F_1(x,y) \, dx + F_2(x,y) \, dy = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA.$$

Theorem

Let $\mathbf{F}(x, y) = \langle F_1(x, y), F_2(x, y) \rangle$ be a vector field defined on a region R in the plane whose boundary is a smooth or piecewise smooth simple closed curve C. If $\mathbf{r}(t)$ is a parametrization of C in the counterclockwise direction (as viewed from the positive z-axis), then

$$\int_{C} \mathbf{F}(x,y) \cdot d\mathbf{r} = \int_{C} F_1(x,y) \, dx + F_2(x,y) \, dy = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA.$$

Green's Theorem, Curl Expression

Theorem

Let R be a region in the plane to which Green's Theorem applies, with smooth boundary curve C oriented in the counterclockwise direction by $\mathbf{r}(t) = \langle (x(t), y(t)) \rangle$, with vector field $\mathbf{F}(x, y) = \langle (F_1(x, y), F_2(x, y)) \rangle$ defined on R.

(a) Green's Theorem, Curl Form:

A unit vector perpendicular to the xy-plane and thus to the region R in the positive direction is just **n** = **k**. So we can rewrite Green's Theorem as

$\int_{C} \mathbf{F}(\mathbf{x}, \mathbf{y}) \cdot d\mathbf{r} = \iint_{R} \left(\frac{\partial F_{1}}{\partial \mathbf{x}} - \frac{\partial F_{1}}{\partial \mathbf{y}} \right) \ dA = \iint_{R} curl \ \mathbf{F} \cdot \mathbf{k} \ dA.$

イロト 不得下 イヨト イヨト 二日

Green's Theorem, Curl Expression

Theorem

Let *R* be a region in the plane to which Green's Theorem applies, with smooth boundary curve *C* oriented in the counterclockwise direction by $\mathbf{r}(t) = \langle (x(t), y(t)) \rangle$, with vector field $\mathbf{F}(x, y) = \langle (F_1(x, y), F_2(x, y)) \rangle$ defined on *R*.

(a) Green's Theorem, Curl Form:

A unit vector perpendicular to the xy-plane and thus to the region R in the positive direction is just $\mathbf{n} = \mathbf{k}$. So we can rewrite Green's Theorem as

$$\int_{C} \mathbf{F}(x, y) \cdot d\mathbf{r} = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA = \iint_{R} curl \, \mathbf{F} \cdot \mathbf{k} \, dA.$$

Green's Theorem, Curl Expression

Theorem

Let R be a region in the plane to which Green's Theorem applies, with smooth boundary curve C oriented in the counterclockwise direction by $\mathbf{r}(t) = \langle (x(t), y(t)) \rangle$, with vector field $\mathbf{F}(x, y) = \langle (F_1(x, y), F_2(x, y)) \rangle$ defined on R.

(a) Green's Theorem, Curl Form:

A unit vector perpendicular to the xy-plane and thus to the region R in the positive direction is just $\mathbf{n} = \mathbf{k}$. So we can rewrite Green's Theorem as

$$\int_{C} \mathbf{F}(x, y) \cdot d\mathbf{r} = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \ dA = \iint_{R} curl \ \mathbf{F} \cdot \mathbf{k} \ dA.$$

- 34

Green's Theorem, Divergence Expression

Theorem

(b) Green's Theorem, Divergence Form:

If we restrict our attention to the plane, we see that a unit vector that lies in the xy-plane and is perpendicular to the curve C is given by

$$\mathbf{n} = \frac{y'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}} \mathbf{i} + \frac{-x'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}} \mathbf{j}$$

Then Green's Theorem is equivalent to the statement

$$\int_C \mathbf{F}(\mathbf{x}, \mathbf{y}) \cdot \mathbf{n} \ d\mathbf{s} = \iint_R d\mathbf{i}\mathbf{v} \ \mathbf{F} \ dA.$$

イロト イ団ト イヨト イヨト

Green's Theorem, Divergence Expression

Theorem

 (b) Green's Theorem, Divergence Form:
If we restrict our attention to the plane, we see that a unit vector that lies in the xy-plane and is perpendicular to the curve C is given by

$$\mathbf{n} = \frac{y'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}} \mathbf{i} + \frac{-x'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}} \mathbf{j}$$

Then Green's Theorem is equivalent to the statement

$$\int_C \mathbf{F}(x,y) \cdot \mathbf{n} \ ds = \iint_R div \ \mathbf{F} \ dA.$$

< ロ > < 同 > < 三 > < 三

Green's Theorem, Divergence Expression

Theorem

 (b) Green's Theorem, Divergence Form: If we restrict our attention to the plane, we see that a unit vector that lies in the xy-plane and is perpendicular to the curve C is given by

$$\mathbf{n} = \frac{y'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}} \,\mathbf{i} + \frac{-x'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}} \,\mathbf{j}.$$

Then Green's Theorem is equivalent to the statement

$$\int_C \mathbf{F}(x,y) \cdot \mathbf{n} \ ds = \iint_R div \ \mathbf{F} \ dA.$$