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The Del Operator

Definition

The del operator, ∇ is the vector of operations

∇ = ∂
∂x i + ∂

∂y j + ∂
∂z k

or, in R2,
∇ = ∂

∂x i + ∂
∂y j.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 2 / 8



The Del Operator

Definition

The del operator, ∇ is the vector of operations

∇ = ∂
∂x i + ∂

∂y j + ∂
∂z k

or, in R2,
∇ = ∂

∂x i + ∂
∂y j.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 2 / 8



Divergence of a Vector Field

Definition

The divergence of vector field F is the dot product of ∇ and F.

(a) In R2, if F(x , y) = F1(x , y) i + F2(x , y) j, then

div F(x , y) = ∇ · F(x , y) = ∂F1
∂x + ∂F2

∂y .

(b) In R3, if F(x , y , z) = F1(x , y , z) i + F2(x , y , z) j + F3(x , y , z) k, then

div F(x , y , z) = ∇ · F(x , y , z) = ∂F1
∂x + ∂F2

∂y + ∂F3
∂z .
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Curl of a Vector Field

Definition

The curl of a vector field
F(x , y , z) = F1(x , y , z) i + F2(x , y , z) j + F3(x , y , z) k is the cross product
of ∇ with F(x,y,z):

curl F = ∇× F(x , y , z) =
(

∂F3
∂y −

∂F2
∂z

)
i +
(

∂F1
∂z −

∂F3
∂x

)
j +
(

∂F2
∂x −

∂F1
∂y

)
k.

If F(x , y) = 〈F1(x , y), F2(x , y)〉 is a vector field in R2, we define the curl
of F to be the curl of the vector field in R3 whose first two components
are the same as F’s and whose third component is 0. So,

curl F = curl 〈F1(x , y), F2(x , y), 0〉 = ∇× 〈F1(x , y), F2(x , y), 0〉

=
(

∂F2
∂x −

∂F1
∂y

)
k.
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Divergence of Curl, Curl of a Gradient

Theorem

(a) If F = 〈F1(x , y , z), F2(x , y , z)〉 is a vector field in R2 or
F = 〈F1(x , y , z), F2(x , y , z), F3(x , y , z)〉 is a vector field in R3, for
which F1, F2, and F3 have continuous second-order partial derivatives,
then

div curl F = ∇ · (∇× F) = 0.

(b) For a multivariate function f in R2 or R3 with continuous second
partial derivatives,

curl ∇f = ∇× (∇f ) = 0.
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Green’s Theorem

Theorem

Let F(x , y) = 〈F1(x , y), F2(x , y)〉 be a vector field defined on a region R in
the plane whose boundary is a smooth or piecewise smooth simple closed
curve C . If r(t) is a parametrization of C in the counterclockwise direction
(as viewed from the positive z-axis), then∫

C
F(x , y) · dr =

∫
C

F1(x , y) dx + F2(x , y) dy =

∫∫
R

(
∂F2
∂x −

∂F1
∂y

)
dA.
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Green’s Theorem, Curl Expression

Theorem

Let R be a region in the plane to which Green’s Theorem applies, with
smooth boundary curve C oriented in the counterclockwise direction by
r(t) = 〈(x(t), y(t)〉, with vector field F(x , y) = 〈(F1(x , y), F2(x , y)〉
defined on R.

(a) Green’s Theorem, Curl Form:
A unit vector perpendicular to the xy-plane and thus to the region R
in the positive direction is just n = k. So we can rewrite Green’s
Theorem as∫

C
F(x , y) · dr =

∫∫
R

(
∂F2
∂x −

∂F1
∂y

)
dA =

∫∫
R

curl F · k dA.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 7 / 8



Green’s Theorem, Curl Expression

Theorem

Let R be a region in the plane to which Green’s Theorem applies, with
smooth boundary curve C oriented in the counterclockwise direction by
r(t) = 〈(x(t), y(t)〉, with vector field F(x , y) = 〈(F1(x , y), F2(x , y)〉
defined on R.

(a) Green’s Theorem, Curl Form:
A unit vector perpendicular to the xy-plane and thus to the region R
in the positive direction is just n = k. So we can rewrite Green’s
Theorem as∫

C
F(x , y) · dr =

∫∫
R

(
∂F2
∂x −

∂F1
∂y

)
dA =

∫∫
R

curl F · k dA.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 7 / 8



Green’s Theorem, Curl Expression

Theorem

Let R be a region in the plane to which Green’s Theorem applies, with
smooth boundary curve C oriented in the counterclockwise direction by
r(t) = 〈(x(t), y(t)〉, with vector field F(x , y) = 〈(F1(x , y), F2(x , y)〉
defined on R.

(a) Green’s Theorem, Curl Form:
A unit vector perpendicular to the xy-plane and thus to the region R
in the positive direction is just n = k. So we can rewrite Green’s
Theorem as∫

C
F(x , y) · dr =

∫∫
R

(
∂F2
∂x −

∂F1
∂y

)
dA =

∫∫
R

curl F · k dA.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 7 / 8



Green’s Theorem, Divergence Expression

Theorem

(b) Green’s Theorem, Divergence Form:
If we restrict our attention to the plane, we see that a unit vector that
lies in the xy-plane and is perpendicular to the curve C is given by

n =
y ′(t)√

(x ′(t))2 + (y ′(t))2
i +

−x ′(t)√
(x ′(t))2 + (y ′(t))2

j.

Then Green’s Theorem is equivalent to the statement∫
C

F(x , y) · n ds =

∫∫
R

div F dA.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 8 / 8



Green’s Theorem, Divergence Expression

Theorem

(b) Green’s Theorem, Divergence Form:
If we restrict our attention to the plane, we see that a unit vector that
lies in the xy-plane and is perpendicular to the curve C is given by

n =
y ′(t)√

(x ′(t))2 + (y ′(t))2
i +

−x ′(t)√
(x ′(t))2 + (y ′(t))2

j.

Then Green’s Theorem is equivalent to the statement∫
C

F(x , y) · n ds =

∫∫
R

div F dA.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 8 / 8



Green’s Theorem, Divergence Expression

Theorem

(b) Green’s Theorem, Divergence Form:
If we restrict our attention to the plane, we see that a unit vector that
lies in the xy-plane and is perpendicular to the curve C is given by

n =
y ′(t)√

(x ′(t))2 + (y ′(t))2
i +

−x ′(t)√
(x ′(t))2 + (y ′(t))2

j.

Then Green’s Theorem is equivalent to the statement∫
C

F(x , y) · n ds =

∫∫
R

div F dA.

Methods of Applied Calculus (JMU) Math 337 November 26, 2012 8 / 8


