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Preface

Why should we learn some qualitative theory of differential
equations?

Differential equations are mainly used to describe the change of quantities
or behavior of certain systems in applications, such as those governed by
Newton’s laws in physics.

When the differential equations under study are linear, the conventional
methods, such as the Laplace transform method and the power series solu-
tions, can be used to solve the differential equations analytically, that is, the
solutions can be written out using formulas.

When the differential equations under study are nonlinear, analytical so-
lutions cannot, in general, be found; that is, solutions cannot be written
out using formulas. In those cases, one approach is to use numerical ap-
proximations. In fact, the recent advances in computer technology make
the numerical approximation classes very popular because powerful software
allows students to quickly approximate solutions of nonlinear differential
equations and visualize, even in 3-D, their properties.

However, in most applications in biology, chemistry, and physics mod-
eled by nonlinear differential equations where analytical solutions may be
unavailable, people are interested in the questions related to the so-called
qualitative properties, such as: will the system have at least one solu-
tion? will the system have at most one solution? can certain behavior of
the system be controlled or stabilized? or will the system exhibit some peri-
odicity? If these questions can be answered without solving the differential
equations, especially when analytical solutions are unavailable, we can still
get a very good understanding of the system. Therefore, besides learning
some numerical methods, it is also important and beneficial to learn how to
analyze some qualitative properties, such as the existence and uniqueness of

ix



x Preface

solutions, phase portraits analysis, dynamics of systems, stability, bifurca-
tions, chaos, boundedness, and periodicity of differential equations without
solving them analytically or numerically.

This makes learning the qualitative theory of differential equations very
valuable, as it helps students get well equipped with tools they can use when
they apply the knowledge of differential equations in their future studies
and careers. For example, when taking a numerical methods course, before
a numerical approximation is carried out, the existence and uniqueness of
solutions should be checked to make sure that there does exist one and only
one solution to be approximated. Otherwise, how does one know what one
is approximating? A related remark is that even though numerical solutions
can be carried out to suggest certain properties, they are obtained through
discretization on finite intervals. They reveal certain properties that are only
valid for the limited numerical solutions on finite intervals and, therefore,
cannot be used to determine the qualitative properties on the whole interval
of all solutions of the original differential equations.

Based on the above remarks, we conclude that in order to have a more
complete knowledge of differential equations, and be able to analyze differ-
ential equations without solving them analytically or numerically, we should
learn some qualitative theory of differential equations.

To whom is this book written?

This book is written for upper level undergraduates (second undergradu-
ate course in ODEs) and beginning graduate students. To be more specific,
Chapters 1–7 are for upper level undergraduate students, where the ba-
sic qualitative properties concerning existence and uniqueness, structures of
solutions, phase portraits, stability, bifurcation, and chaos are discussed.
Chapters 8–12, together with Chapters 1–7, are for beginning graduate
students, where some additional subjects on stability, dynamical systems,
bounded and periodic solutions are covered.

Another reason for writing this book is that nowadays it is a popular
trend for upper level undergraduate students and beginning graduate stu-
dents to get involved in some research activity. Compared to other more ab-
stract subjects in mathematics, qualitative analysis of differential equations
is readily accessible to upper level undergraduates and beginning graduate
students. It is a vast hunting field in which students will get an oppor-
tunity to combine and apply their knowledge in linear algebra, elementary
differential equations, advanced calculus, and others to “hunt some prey.”
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Furthermore, the qualitative analysis of differential equations is on the bor-
der line of applied mathematics and pure mathematics, so it can attract
students interested in either discipline.

How does this book differ from other ODE books?

It is often the case that in a book written at the graduate level or even
at the upper undergraduate level, there are “jumps” in the reasonings or
in the proofs, as evidenced by words like “obviously” or “clearly.” However,
inexperienced undergraduate and beginning graduate students need more
careful and detailed guidance to help them learn the material and gain ma-
turity on the subject.

In this book, I selected only the subjects that are of fundamental im-
portance, that are accessible to upper level undergraduate and beginning
graduate students, and that are related to current research in the field.
Then, for each selected topic, I provided a complete analysis that is suit-
able for the targeted audience, and filled in the details and gaps which are
missing from some other books. Sometimes, I produced elementary proofs
using calculus and linear algebra for certain results that are treated in a
more abstract frame in other books. Also, examples and reasons are given
before introducing many concepts and results.

Therefore, this book is different from other ODE books in that it is more
detailed, and, as the title of this book indicates, the level of this book is
lower than most books for graduate students, and higher than the books for
elementary differential equations. Moreover, this book contains many inter-
esting pure and applied topics that can be used for one or two semesters.

What topics are covered in this book?

Chapter 1. A Brief Description. We first give a brief treatment of
some subjects covered in an elementary differential equations course. Then
we introduce some terminology and describe some qualitative properties of
differential equations that we are going to study in this book. We use the
geometric and physical arguments to show why certain qualitative properties
are plausible and why sometimes we pursue a qualitative analysis rather than
solving differential equations analytically or numerically. This will give read-
ers an opportunity to become familiar with the objective and terminology
of qualitative analysis in a somewhat familiar setting.
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Chapter 2. Existence and Uniqueness. In Section 1, we use exam-
ples from applications to define general first order differential equations in
ℜn. In Section 2, we study existence and uniqueness of solutions, that is,
we examine under what conditions a differential equation has solutions and
how the solutions are uniquely determined, without solving the differential
equation analytically. A condition called “Lipschitz condition” is utilized.
In Section 3, we show under certain conditions that solutions are continuous
and differentiable with respect to initial data and parameters. In Section 4,
we determine structures of the maximal intervals of existence for solutions,
and study properties of solutions with respect to the maximal intervals of ex-
istence. In Section 5 (which may be optional), we introduce the Fixed Point
Method. We use the contraction mapping principle to derive existence and
uniqueness of solutions if a local Lipschitz condition is satisfied. Then, when
a local Lipschitz condition is not assumed, we use Schauder’s second fixed
point theorem to obtain existence of solutions, in which case, uniqueness is
not guaranteed.

Chapter 3. Linear Differential Equations. In Section 1, we make
some definitions concerning linear differential equations. In Section 2, we
study general nonhomogeneous linear differential equations and obtain the
fundamental matrix solutions and verify that they satisfy the “evolution
system property.” Then we derive the variation of parameters formula using
the fundamental matrix solutions and observe what these solutions should
look like. In Section 3, we look at equations with constant coefficients and
examine detailed structure of solutions in terms of eigenvalues of the leading
constant matrix, using the Jordan canonical form theorem. In addition we
derive the Putzer algorithm that can be used to actually solve or compute
solutions for equations with constant coefficients. This result will appeal to
readers interested in computation. In Section 4, we look at equations with
periodic coefficients and study Floquet theory, which allows us to transform
equations with periodic coefficients into equations with constant coefficients.
The results of Section 3 can then be applied to the transformed equations.
The concept of Liapunov exponents is also briefly introduced in Section 4.

Chapter 4. Autonomous Differential Equations in ℜ2. In Section
1, we introduce the concept of dynamical systems, discuss possible trajecto-
ries in phase planes for two-dimensional autonomous equations, and outline
the relationship between nonlinear differential equations and their lineariza-
tions. In Section 2, we provide a complete analysis for linear autonomous
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differential equations in ℜ2 and draw all phase portraits for the different
cases according to eigenvalues of the coefficient matrix. We also introduce
some terminology, including stability of solutions, according to the proper-
ties revealed, which leads us to detailed study of the same subject later for
general differential equations in ℜn, n ≥ 1. In Section 3, we examine the con-
ditions which ensure that solutions of autonomous differential equations and
their linearizations have essentially the same local geometric and qualitative
properties near the origin. In Section 4, we apply the results to analyze an
equation of a simple pendulum. In Section 5, we generalize the ideas of a
simple pendulum and study the Hamiltonian systems and gradient systems.

Chapter 5. Stability. Part I. In Section 1, we introduce the notion
of stabilities in the sense of Liapunov for general differential equations in
ℜn, which are based on some consideration in physics and the planar differ-
ential equations studied in Chapter 4. In Section 2, we study stabilities for
linear differential equations with constant coefficients and show that eigen-
values of the coefficient matrices determine stability properties. In Section
3, stabilities of linear equations with linear or nonlinear perturbations are
studied using the variation of parameters formula and Gronwall’s inequality.
The results include some planar autonomous nonlinear differential equations
studied in Chapter 4 as special cases. Therefore, some unproven results in
Chapter 4 can now get a partial proof. In Section 4, linear periodic differ-
ential equations are treated. The Floquet theory from Chapter 3 is used
to transform linear periodic equations into linear equations with constant
coefficients and the results from Section 2 can then be applied. In Section
5, we introduce Liapunov’s method for autonomous nonlinear differential
equations and prove their stability properties under the assumption that
there exist appropriate Liapunov functions. Thus, we can obtain stabilities
without explicitly solving differential equations. In Section 6, we provide ex-
amples to demonstrate how the Liapunov theory is applied by constructing
Liapunov functions in specific applications. Liapunov’s method for general
(nonautonomous) differential equations will be given in Chapter 9.

Chapter 6. Bifurcation. In Section 1, we use examples, including Eu-
ler’s buckling beam, to introduce the concept of bifurcation of critical points
of differential equations when some parameters are varied. In Section 2,
we study saddle-node bifurcations and use examples to explain why saddle
and node appear for this type of bifurcations. We analyze the geometric
aspects of some scalar differential equations that undergo saddle-node bifur-
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cations and use them to formulate and prove a result concerning saddle-node
bifurcations for scalar differential equations. In Section 3, we study trans-
critical bifurcations and apply them to a solid-state laser in physics. Again,
the geometric aspects of some examples are analyzed and used to formulate
and prove a result concerning transcritical bifurcations for scalar differential
equations. In Section 4, we study pitchfork bifurcations and apply them
to Euler’s buckling beam and calculate Euler’s first buckling load, which is
the value the buckling takes place. The hysteresis effect with applications
in physics is also discussed. A result concerning pitchfork bifurcations for
scalar differential equations is formulated using the geometric interpretation.
In Section 5, we analyze the situations where a pair of two conjugate com-
plex eigenvalues cross the pure imaginary axis when some parameters are
varied. We introduce the Poincaré-Andronov-Hopf bifurcation theorem and
apply it to van der Pol’s oscillator in physics.

Chapter 7. Chaos. In Section 1, we use examples, such as some discrete
maps and the Lorenz system, to introduce the concept of chaos. In Sec-
tion 2, we study recursion relations, also called maps, and their bifurcation
properties by finding the similarities to the bifurcations of critical points of
differential equations, hence the results in Chapter 6 can be carried over.
In Section 3, we look at a phenomenon called period-doubling bifurcations
cascade, which provides a route to chaos. In Section 4, we introduce some
universality results concerning one-dimensional maps. In Section 5, we study
some properties of the Lorenz system and introduce the notion of strange
attractors. In Section 6, we study the Smale horseshoe which provides an
example of a strange invariant set possessing chaotic dynamics.

Chapter 8. Dynamical Systems. In Section 1, we discuss the need to
study the global properties concerning the geometrical relationship between
critical points, periodic orbits, and nonintersecting curves. In Section 2, we
study the dynamics in ℜ2 and prove the Poincaré-Bendixson theorem. In
Section 3, we use the Poincaré-Bendixson theorem, together with other
results, to obtain existence and nonexistence of limit cycles, which in turn
help us determine the global properties of planar systems. In Section 4, we
apply the results to a Lotka-Volterra competition equation. In Section 5,
we study invariant manifolds and the Hartman-Grobman theorem, which
generalize certain results for planar equations in Chapter 4 to differential
equations in ℜn.
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Chapter 9. Stability. Part II. In Section 1, we prove a result concern-
ing the equivalence of “stability” (or “asymptotic stability”) and “uniform
stability” (or “uniform asymptotic stability”) for autonomous differential
equations. In Section 2, we use the results from Chapter 3 to derive stability
properties for general linear differential equations, and prove that they are
determined by the fundamental matrix solutions. The results here include
those derived in Chapter 5 for linear differential equations with constant or
periodic coefficients as special cases. Stability properties of general linear
differential equations with linear or nonlinear perturbations are also stud-
ied using the variation of parameters formula and Gronwall’s inequality. In
Section 3, we introduce Liapunov’s method for general (nonautonomous) dif-
ferential equations and derive their stability properties, which extends the
study of stabilities in Chapter 5 for autonomous differential equations.

Chapter 10. Bounded Solutions. In Section 1, we make some definitions
and discuss the relationship between boundedness and ultimate bounded-
ness. In Section 2, we derive boundedness results for general linear differ-
ential equations by using the results from Chapter 9. It will be seen that
stability and boundedness are almost equivalent for linear homogeneous dif-
ferential equations, and they are determined by the fundamental matrix
solutions. For nonlinear differential equations, examples will be given to
show that the concepts of stability and boundedness are not equivalent. In
Section 3, we look at the case when the coefficient matrix is a constant
matrix, and verify that the eigenvalues of the coefficient matrix determine
boundedness properties. In Section 4, the case of a periodic coefficient ma-
trix is treated. The Floquet theory from Chapter 3 is used to transform the
equation with a periodic coefficient matrix into an equation with a constant
coefficient matrix. Therefore, the results from Section 3 can be applied. In
Section 5, we use Liapunov’s method to study boundedness properties for
general nonlinear differential equations.

Chapter 11. Periodic Solutions. In Section 1, we give some basic results
concerning the search of periodic solutions and indicate that it is appropri-
ate to use a fixed point approach. In Section 2, we derive the existence of
periodic solutions for general linear differential equations. First, we derive
periodic solutions using the eigenvalues of U(T, 0), where U(t, s) is the fun-
damental matrix solution of linear homogeneous differential equations. Then
we derive periodic solutions from the bounded solutions. Periodic solutions
of linear differential equations with linear and nonlinear perturbations are
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also given. In Section 3, we look at general nonlinear differential equations.
Since using eigenvalues is not applicable now, we extend the idea of deriving
periodic solutions using the boundedness. First, we present some Massera-
type results for one-dimensional and two-dimensional differential equations,
whose proofs are generally not extendible to higher dimensional cases. Then,
for general n-dimensional differential equations, we apply Horn’s fixed point
theorem to obtain fixed points, and hence periodic solutions, under the as-
sumption that the solutions are equi-ultimate bounded.

Chapter 12. Some New Types of Equations. In this chapter, we
use applications, such as those in biology and physics, to introduce some
new types of differential equations, which are extensions and improvements
of the differential equations discussed in the previous chapters. They include
finite delay differential equations, infinite delay differential equations, inte-
grodifferential equations, impulsive differential equations, differential equa-
tions with nonlocal conditions, impulsive differential equations with nonlocal
conditions, and abstract differential equations. For each new type of differ-
ential equations mentioned above, we use one section to describe some of
their important features. For example, for integrodifferential equations, we
outline a method which can reformulate an integrodifferential equation as
a differential equation in a product space; and for abstract differential and
integrodifferential equations, we introduce the semigroup and resolvent op-
erator approaches. The purpose of this chapter is to provide some remarks
and references for the recent advancement in differential equations, which
will help readers to access the frontline research, so they may be able to
contribute their own findings in the research of differential equations and
other related areas.

How to use this book?

For an upper level undergraduate course. The material in Chapters
1–7 is enough. Moreover, if there are time constraints, then some results,
such as the following, can be mentioned without detailed proofs: in Chap-
ter 2, the proofs concerning existence and existence without uniqueness of
solutions, the dependence on initial data and parameters, and the maximal
interval of existence; in Chapter 3, differential equations with periodic coef-
ficients and Floquet theory; in Chapter 5, the proofs concerning Liapunov’s
method; in Chapters 6–7, certain proofs concerning bifurcations and chaos.
(Note that Section 2.5 concerning the Fixed Point Method is optional.)
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For a beginning graduate course. Chapters 1–11 provide a sufficient
resource for different selections of subjects to be covered. If time permits,
Chapter 12 can provide some direction for further reading and/or research
in the qualitative theory of differential equations.

One more thing we would like to point out is that Chapters 6 through 12
are rather independent of each other and the instructors may choose among
them to fit the last part of the course to their particular needs.

Exercises and notations. Most questions in the Exercises are quite im-
portant and should be assigned to give the students a good understanding
of the subjects.

In Theorem x.y.z, x indicates the chapter number, y the section number,
and z the number of the result in section y. The same numbering system
holds true for Lemma x.y.z, Example x.y.z, etc.
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Chapter 1

A Brief Description

We first begin with a brief treatment of some subjects covered in
an Elementary Differential Equations course that we assume you
have taken. Then we describe some qualitative properties of dif-
ferential equations that we are going to study in this book. Many
of the descriptions here will be done with the geometric and phys-
ical arguments to help you see why certain qualitative properties
are plausible and why sometimes we pursue a qualitative analysis
rather than solving differential equations analytically or numeri-
cally. This will give you an opportunity to become familiar with
the objective and terminology of qualitative analysis in a some-
what familiar setting.

1.1 Linear Differential Equations

To provide a background for our discussions, let’s begin with some examples.

Example 1.1.1 To mathematically model the population growth of, say,
a university, the simplest assumption we can make is to assume that the
population grows at a rate proportional (with a proportional constant k)
to its current population of that year. For example, k may be 0.05, which
means the population grows 5% per year. If we use t for the time and x(t)

1
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for the population at time t, and if we know the population at a time, say
t0, to be x0, (for example, the population is x0 = 18, 000 in year t0 = 2001),
then we can set up the following equation

x′(t) = kx(t), x(t0) = x0. ♠ (1.1)

Eq. (1.1) is an equation involving the derivative of an unknown function
x(t) that we want to solve. Therefore, we define an ordinary differential
equation as an equation involving derivatives of an unknown function with
one variable.

The order of an ordinary differential equation is the highest derivative
of the unknown function that appears in the equation. For example, Eq.
(1.1) is a first-order ordinary differential equation.

A solution of an ordinary differential equation is a function that satisfies
the ordinary differential equation. x(t0) = x0 in Eq. (1.1) is referred to as
an initial condition, an initial value, or an initial data, and Eq. (1.1)
is also called an initial value problem.

Sometimes, we only consider t ≥ t0 in Eq. (1.1) because we are only
concerned with the development in the future time of t0. Next, x(t) in Eq.
(1.1) is a number, thus we say that Eq. (1.1) is a differential equation
in ℜ (or ℜ1), where ℜ = (−∞,∞). We also say that Eq. (1.1) is a scalar
equation.

Since the study in this book doesn’t involve partial differential equations,
sometimes we will use “differential equations” or just “equations” to mean
“ordinary differential equations.”

The direction field consisting of direction vectors (or slope vectors) for
Eq. (1.1) with k > 0 is given in Figure 1.1.

For Eq. (1.1), x(t) ≡ 0 is a solution (with its initial value being zero),
and is called a constant solution. Otherwise, we assume x(t) ̸= 0 such
that Eq. (1.1) can be written as

x′(t)

x(t)
= k. (1.2)

Now, we can use the method of separation of variables to solve Eq. (1.2).
That is, we separate the variables x and t and write Eq. (1.2) as

1

x
dx = kdt,

then solve ∫
1

x
dx =

∫
kdt,
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x

t

Figure 1.1: Direction field of Eq. (1.1) with k > 0

and obtain
ln |x| = kt+ C.

Finally, we derive the solution of Eq. (1.1), given by

x(t) = x0e
k(t−t0). (1.3)

For the solution given in (1.3), we have the pictures in Figure 1.2 and
Figure 1.3.

x
0

t
0

x

t

Figure 1.2: Solutions of Eq. (1.1) with k > 0

Accordingly, we say that in Eq. (1.1), the population grows exponen-
tially when k > 0, and the population decays exponentially when k < 0.
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x
0

t
0

x

t

Figure 1.3: Solutions of Eq. (1.1) with k < 0

Now, if we do not solve Eq. (1.1), but, instead, start at (t0, x0) and
flow along the directions of the direction field in Figure 1.1 as t increases,
then the curve obtained, see Figure 1.4, matches well with the picture of
solutions in Figure 1.2. The point of view of regarding solutions as curves
flowing in a direction field will be very useful for understanding some results
in differential equations, especially when we study the geometric aspects of
differential equations.

x
0

t
0

x

t

Figure 1.4: A curve obtained using the direction field in Figure 1.1

In Eq. (1.1), if we take t0 to be 0, (for example, treat year 2001 as year
0), then Eq. (1.1) becomes
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x′(t) = kx(t), x(0) = x0, (1.4)

and the solution is now given by

x(t) = x0e
kt.

Consider Eq. (1.1). If we assume further that other factors, such as those
from the environment, are also involved in the population growth, then we
may replace Eq. (1.1) by

x′(t) = kx(t) + f(t), x(t0) = x0, (1.5)

for some continuous “factor” function f(t).
In some applications, the proportional constant k may change with the

time t, thus in those cases we need to replace k by a continuous function in
t, say k(t). Then Eq. (1.5) becomes

x′(t) = k(t)x(t) + f(t), x(t0) = x0. (1.6)

Sometimes, other forms of differential equations are also encounted in
applications, as in the following examples.

Example 1.1.2 (Restricted population growth) In many applications,
it is assumed that the population (x(t)) does not exceed some number C,
called the carrying capacity of the environment; it is also assumed that the
population grows at a rate proportional (with a constant k) to the difference
between C and the population at that time. Then x(t) satisfies

x′(t) = k[C − x(t)], x(t0) = x0. ♠ (1.7)

Example 1.1.3 (Newton’s law of cooling) Newton’s law of cooling
states that the temperature of a subject (T (t)) changes at a rate proportional
(with a constant k) to the difference between the temperature of the subject
and the temperature of the surrounding medium (Tm). Then we have

T ′(t) = k[Tm − T (t)], T (t0) = T0. ♠ (1.8)

Eq. (1.7) and Eq. (1.8) are of the same form, so we only need to look
at Eq. (1.7). Now, x(t) = C is a constant solution. If x(t) ̸= C, then, using
separation of variables, we solve

1

C − x
dx = kdt, (1.9)
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then the solution of Eq. (1.7) is given as

x(t) = C − [C − x0]e
−k(t−t0), t ≥ t0. (1.10)

The direction field and the picture of the solutions for Eq. (1.7) are given
in Figure 1.5 and Figure 1.6. Again, they match well.

C

x

t

Figure 1.5: Direction field of Eq. (1.7) with k > 0

C

x

t

Figure 1.6: Solutions of Eq. (1.7) with k > 0

Eq. (1.7) and Eq. (1.8) are solved as above. However, we point out
that they can also be formulated as Eq. (1.5) or Eq. (1.6), which has
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more applications. For example, Eq. (1.8) can be formulated as T ′(t) =
−kT (t) + kTm.

Now, let’s solve Eq. (1.5). We note that when f = 0, Eq. (1.5) becomes
Eq. (1.1), whose solution is given by x0e

k(t−t0). Then we use the method
of variation of parameters, that is, we determine the conditions on an
unknown function C(t) such that C(t)ek(t−t0) is a solution of Eq. (1.5). This
leads to

C ′(t)ek(t−t0) + C(t)kek(t−t0) = kC(t)ek(t−t0) + f(t),

hence,

C(t) = x0 +

∫ t

t0
e−k(s−t0)f(s)ds.

Therefore, we obtain the solution of Eq. (1.5), given by the variation of
parameters formula

x(t) = ek(t−t0)
[
x0 +

∫ t

t0
e−k(s−t0)f(s)ds

]
= ek(t−t0)x0 +

∫ t

t0
ek(t−s)f(s)ds. (1.11)

If we define T (t) = ekt, then (1.11) can be written as

x(t) = T (t− t0)x0 +

∫ t

t0
T (t− s)f(s)ds. (1.12)

Note that T (t) = ekt satisfies the following property:

(S1). T (0) = 1,

(S2). T (t)T (s) = T (t+ s), t, s ≥ 0.

In some literature, this property is called the “semigroup property.”

To solve Eq. (1.6), we can use the idea of variation of parameters again

(see an exercise) and let f = 0 first and derive the solution x0e

∫ t

t0
k(s)ds

. We

then determine the conditions on C(t)e

∫ t

t0
k(s)ds

from

C ′(t)e

∫ t

t0
k(s)ds

+ C(t)k(t)e

∫ t

t0
k(s)ds

= k(t)C(t)e

∫ t

t0
k(s)ds

+ f(t),
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and obtain the solution of Eq. (1.6), given by another variation of param-
eters formula

x(t) = e

∫ t

t0
k(s)ds

[
x0 +

∫ t

t0
e
−
∫ s

t0
k(h)dh

f(s)ds
]

= e

∫ t

t0
k(s)ds

x0 +

∫ t

t0
e
∫ t

s
k(h)dhf(s)ds. (1.13)

In this case, if we define U(t, s) = e
∫ t

s
k(h)dh, then (1.13) can be written

as

x(t) = U(t, t0)x0 +

∫ t

t0
U(t, s)f(s)ds. (1.14)

Now, U(t, s) = e
∫ t

s
k(h)dh satisfies the following property:

(E1). U(t, t) = 1, t ≥ t0,

(E2). U(t, r)U(r, s) = U(t, s), t0 ≤ s ≤ r ≤ t.

This property is called the “evolution system property” in some lit-
erature.

Some higher order differential equations can also be treated in a similar
way. One example is given below.

Example 1.1.4 Consider the second-order differential equation

x′′(t) + a1x
′(t) + a2x(t) = f(t).

Besides using the characteristic equations, we can define

x1(t) = x(t), x2(t) = x′(t),

then,{
x′1(t) = x′(t) = x2(t),
x′2(t) = x′′(t)=−a2x(t)− a1x

′(t)+f(t)=−a2x1(t)− a1x2(t)+f(t).
(1.15)

Thus, writing in matrix and vector notations, we obtain[
x1(t)
x2(t)

]′
=

[
0 1

−a2 −a1

] [
x1(t)
x2(t)

]
+

[
0
f(t)

]
. (1.16)

Eq. (1.16) is called a differential equation in ℜ2, which looks like Eq.
(1.5) when k in Eq. (1.5) is regarded as a 2× 2 matrix and x as a vector in
ℜ2. ♠
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For equations in ℜ2, solutions should be viewed in the (t, x1, x2) space,
and the direction field should be drawn in the (x1, x2) space, as in the fol-
lowing example.

Example 1.1.5 Consider {
x′1 = x2,
x′2 = −x1.

(1.17)

We find that x1(t) = sin t and x2(t) = cos t is a solution, and the picture
in the (t, x1, x2) space is shown in Figure 1.7. The direction field of Eq.
(1.17) is shown in Figure 1.8.

(To get Figure 1.8, you can check a few points. For example, at the point
[x1, x2]

T = [0, 1]T (here T means the transpose, so [0, 1]T is a 2× 1 vector[
0
1

]
in ℜ2), the direction in the field is [x′1, x

′
2]
T = [x2,−x1]T = [1, 0]T ; at

the point [x1, x2]
T = [1, 1]T , the direction in the field is [x2,−x1]T = [1,−1]T ;

at the point [x1, x2]
T = [1, 0]T , the direction in the field is [x2,−x1]T =

[0,−1]T , and so on. Thus it goes like a circle in the clockwise direction.
Again, the picture of the solution x1(t) = sin t, x2(t) = cos t and the direction
field in Figure 1.8 match well.) ♠

t

x 1
x 2

Figure 1.7: Solutions of Eq. (1.17) in the (t, x1, x2) space

Observe that when the right-hand side of Eq. (1.5) or Eq. (1.6) is
regarded as a function in (t, x), the term kx or k(t)x involving x is linear in
x. Thus, in this sense, Eq. (1.5) and Eq. (1.6) are called linear differential
equations. When k and k(t) in Eq. (1.5) and Eq. (1.6) are regarded as
n× n matrices and x as an n× 1 vector, Eq. (1.5) and Eq. (1.6) are called
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x
1

x
2

Figure 1.8: Direction field of Eq. (1.17) in the (x1, x2) space

linear differential equations in ℜn. For equations in ℜn, n ≥ 3, if the
t direction is also added, then we end up with something that is at least of
four dimensions; hence, we lose geometric view because humans can only see
objects of at most three dimensions. In those cases, especially in determining
how close a solution is to the zero solution (when the zero is a solution), or
in determining the distance from a point on the solution curve to the t-axis,
we simply draw pictures in a plane, and treat ℜn as one dimensional, or use
the vertical direction to denote the distance of a solution to the zero solution
(t-axis, when the zero is a solution), as shown in Figure 1.9.

We will see in Chapter 3 that the solution formulas (1.12) and (1.14),
as well as the semigroup and evolution system properties derived for one-
dimensional equations are also valid for all linear differential equations in
ℜn, n ≥ 1, and thereby constitute a complete and elegant theory for linear
differential equations.

1.2 The Need for Qualitative Analysis

Our problems are almost solved, at least for finding solutions, if we only
need to deal with linear differential equations. However, we are living in a
complex world, and in most applications, such as those in biology, chemistry,
and physics, we have to deal with nonlinear differential equations, that
is, the differential equations where the terms involving the unknown function



1.2. The Need for Qualitative Analysis 11

x

t

(Rn)

Figure 1.9: A solution in the ℜ×ℜn space viewed in the (t, x) plane where
ℜn is treated as the x direction

x are not linear in x, as in the following examples.

Example 1.2.1 (Logistic equation) The exponential growth of x′ = kx,
which was studied around 1800, was used by some economists to argue that
human misery is inevitable because population grows exponentially fast and
supplies cannot keep up. In 1845, the Belgian mathematician P. Verhulst
argued that to get better models, the proportional constant k of x′ = kx
should be replaced by C−x, where C is the carrying capacity; and proposed
the following equation,

x′(t) = ax(t)[C − x(t)], x(t0) = x0, t ≥ t0, (2.1)

where a and C are positive constants. The model is used to accommodate the
situations that when the population x(t) is small, the rate x′(t) ≈ aCx(t),
thus the population grows exponentially; when x(t) approaches C but is still
less than C, the rate x′(t) decreases and is still positive, thus the population
is still growing but at a slow rate; finally, when x(t) is large enough (x > C),
the rate x′(t) < 0, therefore the population decreases. These can be seen
from the graph of the function f(x) = ax[C − x] = −ax2 + aCx in Figure
1.10. Verhulst called the solution curves of Eq. (2.1) “logistic curves,” from
a Greek word meaning “skilled in computation.” Nowadays, equations of the
form of Eq. (2.1) are called “logistic equations.” After a change in function
x
C → x, Eq. (2.1) can be replaced by

x′(t) = rx(t)[1− x(t)], x(t0) = x0, t ≥ t0, (2.2)
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where r = aC. (Some analysis of Eq. (2.1) and Eq. (2.2) will be given
later.) ♠

f(x)

0

C

x

Figure 1.10: The graph of the function f(x) = ax[C − x] = −ax2 + aCx

Example 1.2.2 Let’s look at Eq. (1.6) again, but now assume that the
function f(t) is also determined by the unknown function x. Then we need
to replace f(t) by a function f(t, x) that may be nonlinear in x, such as
f(t, x) = sin(tx). Now we have

x′(t) = k(t)x(t) + sin(tx(t)). ♠ (2.3)

Example 1.2.3 (Lotka-Volterra competition equation) Lotka-Volterra
competition equation states that

x′1 = β1x1(K1 − x1 − µ1x2),
x′2 = β2x2(K2 − x2 − µ2x1),

x1(0) ≥ 0, x2(0) ≥ 0,
(2.4)

where βi, Ki, µi, i = 1, 2, are positive constants and x1(t), x2(t) are two
populations. If the populations x1 and x2 grow and decay independently
of each other, then the constants µ1 and µ2 will not appear in Eq. (2.4),
resulting in two independent differential equations where each is of the form
of a logistic equation. However, if the two populations compete for a shared
limited resource (space or a nutrient, for example), and each interferes with
the other’s utilization of it, then the growth or decay of one population will
affect the well-being or fate of the other one. Now µ1 and µ2 will appear in
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Eq. (2.4), and this explains why Eq. (2.4) is proposed. For detailed studies
in this area, see for example, May [1973] and Smith [1974]. ♠

s

θ

θ

m

mg

Figure 1.11: Motion of a simple pendulum

Example 1.2.4 (A simple pendulum) Figure 1.11 shows a rigid sim-
ple pendulum of length l oscillating around the vertical downward position.

It is assumed that the mass of the rod of the pendulum is negligible with
respect to the massm at the end of the pendulum. Let θ = θ(t) be a function
in the time variable t measuring the angle formed by the pendulum and the
vertical downward direction, and let s be the arc length in the figure formed
by the path of the end of the pendulum starting from the vertical downward
position. Then s = s(t) is a function in t and s′(t) is the velocity of the end
of the pendulum along the arc s (or in a direction tangential to the arc s).
Now, the gravity of the pendulum is mg, hence, from the small triangle in
the figure, the component of gravity in the direction tangential to the arc s
is

−mg sin θ,

(the minus sign is needed because, for example, when the pendulum moves
away, the force of gravity will try to drag the pendulum back). Next, assume
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that the damping or resistance is linear and is in the opposite direction of
the velocity s′(t), given in the form of

−τs′(t)

for some constant τ ≥ 0. Then, from Newton’s second law of motion, which
says, in this case, that

(m)(the tangential acceleration)

= the tangential component of the gravitational force

+ the damping,

we derive

ms′′(t) = −mg sin θ(t)− τs′(t). (2.5)

Since s
θ = 2πl

2π , we get s = lθ. Hence Eq. (2.5) becomes

mlθ′′(t) = −mg sin θ(t)− τ lθ′(t). (2.6)

Simplifying, we get the motion of a simple pendulum, given by the
following differential equation,

θ′′(t) + kθ′(t) + q sin θ(t) = 0, (2.7)

where k ≥ 0, q > 0 are constants, with k related to a damping term, and
θ(t) measures the angle formed by the pendulum and the vertical downward
position. ♠

In general, for the equations in physics governed by Newton’s second law
of motion, such as the motions concerning oscillations, the following type of
second-order differential equations

x′′ + f(t, x, x′)x′ + g(x) = p(t) (2.8)

are subjects of intensive studies. Here, f usually represents a damping or
friction term, such as k in Eq. (2.7); g represents a restoring force, such as
q sin θ(t) in Eq. (2.7); and p is an externally applied force.

Eq. (2.8) includes the famous Lienard-type equations

x′′ + f(x)x′ + g(x) = 0, (2.9)
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where xg(x) > 0 if x ̸= 0, which includes the well-known van der Pol
equation

x′′ + (x2 − 1)x′ + x = 0, (2.10)

named after Lienard [1928] and van der Pol [1927] for their important con-
tributions in the analysis of the equations and their applications concerning
sustained oscillations, the modeling of the voltage in a triode circuit and also
the human heartbeat.

In Examples 1.2.1–1.2.4, the unknown function x appears nonlinearly,
such as x2 and sin(tx), thus those differential equations are called nonlinear
differential equations. Certain nonlinear differential equations can be
solved analytically, meaning that the formulas for solutions can be derived
analytically. For example, the logistic equation in Example 1.2.1 can be
solved analytically by rewriting the equation as

x′

ax[C − x]
= 1, ([C − x]x ̸= 0),

then, using separation of variables and partial fractions, one obtains (see an
exercise)

x(t) =
Cx0

x0 + [C − x0]e−aC(t−t0)
, t ≥ t0. (2.11)

However, most nonlinear differential equations, such as those in
Examples 1.2.2–1.2.4, cannot be solved analytically, that is, no
formulas for solutions are available. (Try it to see why.)

Now, the question is: What do we do for general nonlinear dif-
ferential equations? It is true that in most applications, differential
equations are handled by numerical approximations with the help of power-
ful computers, and evidently courses in numerical methods are very popular
nowadays. Students who have taken such courses may want to use numeri-
cal approximation methods to approximate solutions of nonlinear differential
equations they cannot solve analytically.

But wait a minute and think about this: If we do not even know that a
solution exists in the first place, then what are we approximating? Another
question to ask is: Suppose an approximation gives one solution, and we
then use a different way to make an approximation, are we sure that we
will get the same solution? If we don’t get the same solution, then which
solution do we want to use in order to explain the physical situation that we
are modeling using the differential equation?
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A further question to consider is that to determine some asymptotic
properties (properties of solutions for large time variable t), even though
numerical solutions can be carried out to suggest certain properties, they
are obtained through discretization on finite intervals. They reveal certain
properties that are only valid for the limited numerical solutions on finite
intervals and, therefore, cannot be used to prove the properties on the whole
interval of all solutions of the original differential equations.

These questions and remarks give the reason why, besides learning some
numerical methods, we also need a theory on qualitatively analyzing
differential equations, that is, deriving certain properties qualitatively
without solving differential equations analytically or numerically.

1.3 Description and Terminology

To get some basic idea of what do we mean by qualitative analysis or
qualitative theory, let’s look at the following analysis of the logistic equa-
tion (2.1).

Look at Figure 1.10. We see that f(x) = ax[C − x] = 0 has two roots:
x = 0 and x = C. Now, define x1(t) = 0, x2(t) = C, t ≥ t0, then x1(t)
and x2(t) are both constant solutions of Eq. (2.1) (with their corresponding
initial values). Since x1 and x2 are constants, or will “stay put” for all t ≥ t0,
they are also called steady solutions, critical points, or equilibrium
points.

Furthermore, assume x(t) > 0 is another solution (we need x ≥ 0 to
represent the population). Then we have x′ = ax[C − x] > 0 if 0 < x < C;
and x′ = ax[C − x] < 0 if x > C. Therefore, on the x-axis, the solutions
with initial values in (0, C) will “flow” monotonously to C from the left-
hand side of C as t increases; and solutions with initial values bigger than
C will flow monotonously to C from the right-hand side of C as t increases,
see Figure 1.12. (Think of a basketball that is rolling on the ground.)

Accordingly, we have the picture in Figure 1.13, which tells us very
roughly what the solutions should look like.

The concavity in Figure 1.13 is determined based on the increasing or
decreasing of x′(t). For example, when 0 < x(t) < C

2 , x(t) increases as t
increases (because in Figure 1.12, x moves to the right on the x-axis when
0 < x < C); hence, x′(t) = ax(t)[C − x(t)] increases in t (because now
f(x) = ax[C −x] increases in Figure 1.12), thus the function x(t) is concave
up. When C

2 < x(t) < C, x(t) increases in t; hence, x′(t) = ax(t)[C −
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f(x) = ax[C-x]
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x

Figure 1.12: Flows of the solutions of a logistic equation on the x-axis

x(t)] decreases in t (because now f(x) = ax[C − x] decreases), therefore the
function x(t) is concave down. The case for x(t) > C can also be determined
similarly, (see an exercise).

Of course, in this special case, Eq. (2.1) can be solved and the formula
(2.11) for the solutions can be used to check these properties. But we do
want to point out that it is much easier to determine the concavity of the
solutions from Figure 1.12 than by looking at the formula (2.11). To see
why, you should take the second derivative of x(t) given in (2.11) and then
see how difficult it is to determine its signs, (see an exercise).

In Figure 1.12, x1(t) = 0 “sends other solutions away,” hence it is called
a repeller or source, or we say that the critical point (or the con-
stant solution) x1 = 0 is unstable. However, x2(t) = C attracts other
solutions, thus it is called a sink or an attractor, or we say that the crit-
ical point (or the constant solution) x2 = C is stable. Articles can
be found, for example, in Krebs [1972] and Murray [1989], indicating that
the logistic equation (2.1) provides a good match for the experiments done
with colonies of bacteria, yeast, or other simple organisms in conditions of
constant food supply, climate, and with no predators. However, results of
experiments done with fruit flies, flour beetles, and other organisms that
have complex life cycles are more complex and do not match well with the
logistic equation, because other facts are involved, including age structure
and the time-delay effect.

In the above, we derived certain properties, including stabilities, of the
solutions of the logistic equation (2.1) without solving it. These properties
are called qualitative properties because they only tell us the certain ten-
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concave down

concave up

Figure 1.13: A rough sketch of the solutions of a logistic equation according
to the flows

dency of how the solutions will behave, and no quantitative information is
given. However, in many applications in sciences, the qualitative properties
of the equations are the only things we care about, especially when analyt-
ical solutions are not available. Therefore, it is very valuable to learn some
qualitative analysis of differential equations, as it adds to your knowledge
of the subject and helps you get well equipped with tools useful in your
applications of differential equations in your future studies and careers.

The first qualitative property we will study is existence and uniqueness
theory. This can be used to verify that some differential equations have
solutions and these solutions are uniquely determined without solving the
differential equations analytically. This theory will also provide a foundation
for numerical approximation methods. Based on existence and uniqueness
of solutions, we will study other qualitative properties in this book, such as
bifurcation, chaos, stability, boundedness, and periodicity, as we explain in
the following.

Example 1.3.1 (Euler’s buckling beam) A famous example in physics
used to introduce the notion of bifurcation is Euler’s buckling beam studied
by Euler [1744]. If a small weight is placed on the top of a beam shown
in Figure 1.14, then the beam can support the weight and stay vertical.
When the weight increases a little, the position of the beam will change a
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Figure 1.14: Euler’s buckling beam

little and remain nearly vertical. Accordingly, this change in position of the
beam is called a quantitative change. However, if you keep increasing
the weight, then there will be a moment that the beam cannot take it any
more and will buckle, or there is a critical value such that when the weight
increases beyond that value the beam will buckle, see Figure 1.14.

Now, the difference is that the beam had undergone a qualitative
change: from nearly vertical to a buckling position. And with some sym-
metry assumption, the beam can buckle in all directions.

Therefore, we find that for some systems, when some parameters, such
as the weight here, are varied and pass some critical values, the systems
may experience some abrupt changes, or undergo some qualitative changes.
These qualitative changes are generally called bifurcations, and the pa-
rameter values at which bifurcations occur are called bifurcation points
or bifurcation values. Euler’s buckling beam will be analyzed in some de-
tail in Chapter 6 (Bifurcation), where a differential equation describing the
motion of the beam will be given, and the bifurcation value, called Euler’s
first buckling load, will be calculated. ♠

Let’s look at one more example, which can also explain why the word
“bifurcation” is used.

Example 1.3.2 Consider the scalar differential equation

x′ = µ− x2, (3.1)

where µ ∈ ℜ is a parameter. If µ < 0, then Eq. (3.1) has no critical point
(that is, x′ = µ − x2 = 0 has no solution), or the curve y = µ − x2 will not
intersect the x-axis, see Figure 1.15.
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x

µ <0 µ =0 µ >0

x x

µµ

y = µ-x2 y = µ-x2y = µ-x2

Figure 1.15: Graph of y = µ− x2 and the critical points of x′ = µ− x2

When µ increases to 0 from below, the graph of y = µ−x2 moves up and
intersects the x-axis when µ = 0, in which case, one critical point appears
at x = 0. If µ continues to increase, then µ > 0 and hence the graph of
y = µ− x2 will cross the x-axis and then two critical points appear at

x =
√
µ and x = −√

µ. (3.2)

Now, if we treat µ as the independent variable and treat the correspond-
ing critical point x (if any) as a function of µ, and graph those functions
in one (µ, x) plane, then we get Figure 1.16, from which we find that for
µ < 0, there is no critical point (or function x(µ) is not defined for µ < 0);
however, when µ increases and passes 0, then suddenly, two branches of
critical points appear according to x =

√
µ and x = −√

µ, or a “bi”-furcation
takes place. This explains why the word “bifurcation” is used. In Eq. (3.1),
the total number of critical points is also a qualitative property of the sys-
tem, therefore, when the parameter µ is varied and passes 0, the system
undergoes a qualitative change: the number of critical points changes from
0 to 2. Thus, we say that for Eq. (3.1), when the parameter µ is varied, a
bifurcation occurs at the bifurcation value µ = 0. ♠

Example 1.3.3 Let x0 be any fixed number in [0, 1] and consider a recursion
relation

x1 = r sinπx0, x2 = r sinπx1, · · · , xm+1 = r sinπxm, m = 0, 1, 2, · · · ,

where r ∈ [0, 1] is regarded as a parameter. Let’s do it with x0 = 0.5, r = 0.6,
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µx =

x = - µ

µ

x

Figure 1.16: The branching of two sets of critical points determined by
x = ±√

µ, or a bifurcation takes place

and use a software called Maple, then the code

x[0]:=0.5;
for i from 1 by 1 to 100 do
x[i]:=evalf(0.6*sin(Pi*x[i-1]));
od;

gives the following result (note that we use x[m] for xm because it is what
you will see in Maple).

x[1] = .6, x[2] = .570633, x[3] = .585288, x[4] = .578590, x[5] = .581804,
x[6] = .580294, x[7] = .581011, x[8] = .580672, x[9] = .580833, x[10] =
.580757, x[11] = .580793, x[12] = .580776, x[13] = .580784, x[14] = .580780,
x[15] = .580782, x[16] = .580781, x[17] = .580781, x[18] = .580781, x[19] =
.580781, x[20] = .580781, · · · · · ·
x[81] = .580781, x[82] = .580781, x[83] = .580781, x[84] = .580781, x[85] =
.580781, x[86] = .580781, x[87] = .580781, x[88] = .580781, x[89] = .580781,
x[90] = .580781, x[91] = .580781, x[92] = .580781, x[93] = .580781, x[94] =
.580781, x[95] = .580781, x[96] = .580781, x[97] = .580781, x[98] = .580781,
x[99] = .580781, x[100] = .580781.

Accordingly, we find that

xm → .580781 as m→ ∞.
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Or you can imagine that when you say “Order!” the numbers xm will
listen to you and order themselves to approach .580781.

Next, let’s still use x0 = 0.5 but replace r = 0.6 with r = 0.77 in the
above code, then we get

x[1] = .77, x[2] = .509210, x[3] = .769677, x[4] = .509794, x[5] = .769635,
x[6] = .509871, x[7] = .769629, x[8] = .509881, x[9] = .769628, x[10] =
.509882, x[11] = .769628, x[12] = .509883, x[13] = .769628, x[14] = .509883,
x[15] = .769628, x[16] = .509883, x[17] = .769628, x[18] = .509883, x[19] =
.769628, x[20] = .509883, · · · · · ·
x[81] = .769628, x[82] = .509883, x[83] = .769628, x[84] = .509883, x[85] =
.769628, x[86] = .509883, x[87] = .769628, x[88] = .509883, x[89] = .769628,
x[90] = .509883, x[91] = .769628, x[92] = .509883, x[93] = .769628, x[94] =
.509883, x[95] = .769628, x[96] = .509883, x[97] = .769628, x[98] = .509883,
x[99] = .769628, x[100] = .509883.

In this case, the numbers xm will “pile up” at the two values

{.509883, .769628},

or the sequence {xm} repeats each of the two values after every two itera-
tions, in which case the set of the two values {.509883, .769628} looks like a
“cycle” with period 2.

Finally, let x0 = 0.5 and r = 0.9, then we get

x[1] = .9, x[2] = .278115, x[3] = .690053, x[4] = .744288, x[5] = .647712,
x[6] = .804821, x[7] = .517917, x[8] = .898574, x[9] = .281945, x[10] =
.696955, x[11] = .733141, x[12] = .669193, x[13] = .775825, x[14] = .582725,
x[15] = .869776, x[16] = .358013, x[17] = .811936, x[18] = .501337, x[19] =
.899992, x[20] = .278136, . . . . . .
x[81] = .899132, x[82] = .280447, x[83] = .694267, x[84] = .737523, x[85] =
.660844, x[86] = .787522, x[87] = .557134, x[88] = .885540, x[89] = .316696,
x[90] = .754849, x[91] = .626626, x[92] = .829721, x[93] = .458815, x[94] =
.892477, x[95] = .298264, x[96] = .725220, x[97] = .683961, x[98] = .753835,
x[99] = .628681, x[100] = .827452.

Now, the placement of those numbers are so complex and unpredictable
that no matter how loud you shout “Order!!” nobody will listen! So you may
want to say “It is chaotic!” If you do, then you are right, because that is
exactly the word we are going to use to describe the situation. Of course, you
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probably want to ask “what does this have to do with differential equations?”
We will explain in Chapter 7 that the recursion relation xm+1 = r sinπxm,
or in general xm+1 = f(xm), defines a “difference equation,” or a “map,”
which is a discrete-time version of a differential equation. ♠

Example 1.3.3 indicates that for some differential equations, the behavior
of solutions are very complicated and showing “no orders,” therefore, they
are generally described as chaos. Think about how strange things are in
Example 1.3.3 because the maps xm+1 = 0.6 sinπxm, xm+1 = 0.77 sinπxm,
and xm+1 = 0.9 sinπxm look “almost the same,” so how could the small
difference in the coefficients of 0.6, 0.77, and 0.9 make the sequences {xm} of
the iterations behave so differently? This is, in fact, the key to understand
bifurcation and chaos: When parameters are different, the corresponding
systems could behave completely differently.

Besides the above discrete maps, solutions of continuous systems (that is,
differential equations) can also be chaotic. Especially for differential equa-
tions in ℜn, n ≥ 3, solutions are moving in space and could get twisted and
twisted and become complex and strange. A famous equation is given by
the Lorenz system, 

dx
dt = 10(y − x),
dy
dt = 28x− y − xz,
dz
dt = xy − (8/3)z,

(3.3)

in a milestone paper of Lorenz [1963] (in fact, the paper was reprinted in
SPIE Milestone Series, 1994). The system was used to model the weather
forecast (see Chapter 7 for some details). Despite of its innocuous looks,
the numerical experiments of Lorenz [1963] showed that the solutions of Eq.
(3.3) behave in a very complex and strange fashion. For example, the (x, z)
plane projection of a three-dimensional solution of the Lorenz system is given
in Figure 1.17.

The solution in Figure 1.17 does not intersect itself in ℜ3, so the crossings
in Figure 1.17 are the result of projection in ℜ2. Here, the solution will cruise
a few circuits on one side, then suddenly moves to the other side and cruises
a few circuits, and then suddenly moves back · · ·. This process will continue
forever, such that the solution will wind around the two sides infinitely many
times without ever settling down. The solution also moves around the two
sides in an unpredictable fashion. Lorenz showed with numerical experiments
that the system (3.3) has an attractor whose properties are so strange and
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Figure 1.17: The (x, z) plane projection of a three-dimensional solution of
the Lorenz system (3.3)

complex that it is called a strange attractor, a very important subject in
the study of chaos.

However, we also need to point out that solutions of differential equations
in ℜ2 do behave in an “orderly” or “predictable” fashion, due to another
milestone result: the Poincaré-Bendixson theorem in ℜ2, to be studied in
Chapter 8.

For the subject on stability, let’s look at the following examples.

Example 1.3.4 Consider the scalar differential equation x′(t) = 0, x(t0) =
x0. The solution is given by x(t) = x0, t ≥ t0, see Figure 1.18.

In particular, ϕ(t) = 0, t ≥ 0, is a solution (with the initial value being
zero). Now, for any t0 ≥ 0 and any other initial value x0 that is close to ϕ,
the corresponding solution x(t) = x0 will stay close to ϕ for t ≥ t0. ♠

According to the situation in Example 1.3.4, we say that the solution
ϕ is stable, which we define as follows for a general solution ϕ that may be
nonzero:
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Figure 1.18: Solutions of x′(t) = 0 concerning stability

A solution ϕ defined on [tϕ,∞) is said to be stable if for any ε > 0 and
any t0 ≥ tϕ, there exists a δ = δ(ε, t0) > 0 (δ(ε, t0) means δ is determined
by ε and t0; typically δ ≤ ε), such that if the initial value x0 satisfies |x0 −
ϕ(t0)| ≤ δ, then the corresponding solution x(t) starting from t0 satisfies
|x(t)− ϕ(t)| ≤ ε for t ≥ t0. See Figure 1.19.
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Figure 1.19: Definition of a stable solution ϕ
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In physics applications, a solution ϕ may represent certain behavior or
property of some physical experiment, and x0 may be the initial measure-
ment of certain quantity. For example, in some experiment, we need to
put one gallon of acid initially to create a certain reaction, which inevitably
involves some errors in measurements or approximations. That is, in appli-
cations, real data always have some inherent uncertainty, and initial values
taken from real data are never known precisely. Now, ϕ being stable means
that the corresponding behavior or property is stable in the sense that a
small change in initial measurement will result in a small change in the be-
havior or property for future time. This idea can be seen further in the
following example.

Example 1.3.5 Consider again the motion of a simple pendulum given by

θ′′(t) + kθ′(t) + q sin θ(t) = 0, t ≥ t0, (3.4)

where k ≥ 0, q > 0 are constants, with k related to a damping term. If we
place this pendulum in honey or any viscous fluid, and if the inertia term
(related to θ′′) is relatively small compared to the strong damping (related
to kθ′) of the viscous fluid, and if the angle θ(t) is also small, then we can
neglect the θ′′(t) term and approximate sin θ with θ and then consider the
differential equation

θ′(t) = −(
q

k
)θ(t), t ≥ t0, (3.5)

where we have assumed k > 0 since a damping exists. The solution of Eq.
(3.5) is given by

θ(t) = θ0e
− q

k
(t−t0), t ≥ t0,

and we have
lim
t→∞

θ(t) = lim
t→∞

θ0e
− q

k
(t−t0) = 0.

Now, the interpretation in physics is that ϕ(t) = 0 is a solution corre-
sponding to the steady state (downward vertical position), if the pendulum is
moved slightly from the downward vertical position, then, due to the strong
damping of the medium, the pendulum tends to the downward vertical posi-
tion but will not cross the downward vertical position, that is, no oscillations
will occur. See Figure 1.20.

That is, in this case, for any initial value θ0 that is close to ϕ = 0, the
corresponding solution θ(t) = θ0e

− q
k
(t−t0) will not only stay close to ϕ for

t ≥ t0, but we also have limt→∞ θ(t) = limt→∞ θ0e
− q

k
(t−t0) = 0 = ϕ, or

lim
t→∞

|θ(t)− ϕ(t)| = 0. ♠ (3.6)
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Figure 1.20: The motion of a pendulum going back to the downward
vertical position without oscillations

In this sense, we say that for Eq. (3.5) of Example 1.3.5, the solution ϕ
attracts other solutions, or the solution ϕ is asymptotically stable, see
Figure 1.21.

x

t

φ(t)=0

Figure 1.21: The solution ϕ = 0 is asymptotically stable

A solution ϕ being asymptotically stable means, roughly, that ϕ is stable,
and in addition, one has

lim
t→∞

|x(t)− ϕ(t)| = 0,

where x is any solution whose initial value is close to ϕ. Evidently, ϕ = 0 in
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Example 1.3.4 is stable but not asymptotically stable, because solutions are
given by constants there.

Example 1.3.6 Consider the scalar differential equation x′(t) = 3x(t),
x(0) = x0. The solution is given by x(t) = x0e

3t, t ≥ 0, see Figure 1.22.

x(t) = x
0
e
3t

x

t

φ =0

Figure 1.22: Solutions of x′(t) = 3x(t) concerning instability

Now, we also have ϕ(t) = 0 as a solution. For any other initial value
x0 ̸= 0, no matter how close it is to ϕ, the corresponding solution x(t) = x0e

3t

will not stay close to ϕ for t ≥ 0. In this sense, we say that the solution ϕ
is unstable. For example, ϕ = 0 in the logistic equation (2.1) is unstable.

♠

Next, we examine boundedness properties. In Example 1.3.4, where the
solutions are given by x(t) = x0, t ≥ t0, if we specify a range B1 first
(that is, let B1 > 0), then we are able to find a bound B2 > 0 (typically
B2 ≥ B1) such that when an initial value x0 is in the range of B1 (that
is, |x0| ≤ B1), then we can use B2 to bound or control the corresponding
solution for t ≥ t0. In fact, in this case, we can take B2 = B1, such that for
the solution x(t) = x0, t ≥ t0,

|x0| ≤ B1 implies |x(t)| = |x0| ≤ B1 = B2, t ≥ t0.

Accordingly, we say that in Example 1.3.4, the solutions are uniformly
bounded, which is defined as (see Figure 1.23):



1.3. Description and Terminology 29

The solutions of a differential equation are said to be uniformly
bounded if for any B1 > 0, there exists a B2 > 0 such that if an initial
value |x0| ≤ B1, then the corresponding solution starting from t0 satisfies
|x(t)| ≤ B2 for t ≥ t0.

x

t

B
1

B
2

Figure 1.23: The solutions are uniformly bounded

The solutions of Eq. (3.5) in Example 1.3.5 are also uniformly bounded,
but the solutions in Example 1.3.6 are not uniformly bounded.

Next, let’s consider a related concept. We prescribe a bound B to begin
with, and allow the initial value x0 (at time t0) to be in a range B1 that is
arbitrary, say, maybe B1 > B. Now, in general, B cannot be used to bound
the corresponding solution for t ≥ t0, because when B1 > B, B cannot even
be used to bound the initial value x0 for which |x0| = B1 > B, see Figure
1.24.

Thus, it only makes sense to require that B can be used to bound the
corresponding solution when t is large, say for example, when t ≥ t0 + T ,
where T > 0 is a constant, see Figure 1.25.

The requirement that “solutions be bounded by B when t is large” cannot
be met by the solutions in Example 1.3.4, because the solution is given by
x(t) = x0 there, thus when |x0| = B1 > B, one has |x(t)| = |x0| = B1 >
B, t ≥ t0. But this requirement can be met by the solutions of Eq. (3.5)
in Example 1.3.5, because the solution is given by x(t) = x0e

− q
k
(t−t0) there,

thus when |x0| ≤ B1,

|x(t)| = |x0e−
q
k
(t−t0)| ≤ B1e

− q
k
(t−t0) ≤ B, t ≥ t0 + T,
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Figure 1.24: B cannot be used to bound the solutions on [t0,∞)

is true if we solve T > 0 in such a way that if B1 ≤ B, then let T = 1 (or
any positive number); if B1 > B, then solve T from B1e

− q
k
T = B and obtain

T = −k
q ln

B
B1

> 0.
Accordingly, we say that for Eq. (3.5) in Example 1.3.5, the solutions

are uniformly ultimately bounded, which is defined as:

The solutions of a differential equation are said to be uniformly ulti-
mately bounded if there is an (independent or generic) constant B > 0
such that for any B1 > 0, there exists a T > 0 such that if an initial
value |x0| ≤ B1, then the corresponding solution starting from t0 satisfies
|x(t)| ≤ B for t ≥ t0 + T . (See Figure 1.25.)

Therefore, the solutions in Example 1.3.4 and Example 1.3.6 are not
uniformly ultimately bounded.

Notice the difference between uniform boundedness and uniform ultimate
boundedness. In uniform boundedness, the bound B2 can be chosen later
after the initial rangeB1 is fixed. However, in uniform ultimate boundedness,
the bound B is fixed first, and the initial range B1 can be chosen arbitrarily
later and, of course, can be bigger than B, therefore, B may be used to
bound the solutions only when t is large.

For the study of periodic solutions, consider the following examples.

Example 1.3.7 Consider the scalar differential equation

x′′(t) + x(t) = 0. (3.7)
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Figure 1.25: B may be used to bound the solutions on [t0 + T,∞) for a
large T

We find that x(t) = sin t is a solution. Now,

x(t+ 2π) = x(t).

Thus we say that Eq. (3.7) has a periodic solution of period 2π. ♠

Example 1.3.8 For the scalar differential equation x′(t) = 4, the solutions
are straight lines with slope 4, hence the equation has no periodic solution.
In general, let’s consider the scalar differential equation

x′ = f(x), (3.8)

where f is a continuous function in x. If f(x) > 0 (or f(x) < 0) for all x,
then any solution x(t) (if exists) is strictly increasing (or decreasing) in t,
thus Eq. (3.8) has no periodic solutions. If f(x) = 0 has some real roots, for
example, when the curve of f(x) is given in Figure 1.26, then x1(t) = α
and x2(t) = β, t ≥ t0, are two constant solutions, hence they are periodic
solutions (with periods being any positive numbers). Now, x1 and x2 are
the only periodic solutions of Eq. (3.8). Because, for example, if the initial
value of a solution is from (α, β), then, similar to the analysis of the logistic
equation (2.1), the solution will flow toward the critical point β and will
never come back to where it started, thus it cannot be periodic. ♠

This geometric interpretation matches well with some experiments in
physics. For example, consider Example 1.3.5 where a pendulum is placed
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f(x)

x

α β

>

Figure 1.26: The graph of f(x) showing no periodic solutions other than
the constant solutions

in honey or any viscous fluid and the motion of the pendulum is approxi-
mated by the first-order differential equation (3.5), which is governed by Eq.
(3.8). We find in Example 1.3.5 that no oscillations can occur there, that is,
nonconstant periodic solutions do not exist there.

The analysis of Eq. (3.8) indicates that when studying periodic solutions,
other forms of differential equations should be considered. For example,
differential equations in ℜn, n ≥ 2, may have periodic solutions because now
a solution may follow a “circle” and comes back to where it started.

Now, we have introduced some qualitative properties concerning exis-
tence and uniqueness of solutions, bifurcation, chaos, stability, boundedness,
and periodicity that we will study in this book. Next, we briefly describe
how to derive these properties for some simple differential equations. This
will help you get ready to the ideas and methods that we will use in the rest
of the book for general differential equations.

Example 1.3.9 For existence and uniqueness of solutions, let’s consider the
scalar differential equation

x′(t) = x(t), x(0) = 1, t ≥ 0. (3.9)

To get some idea of what to expect for general (nonlinear) differential
equations, we define the right-hand side of Eq. (3.9) as f(t, x) = x, and
consider the Picard approximations given by
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x0(t) = x0 = 1,

x1(t) = x0 +
∫ t
0 f(s, x0(s))ds = 1 +

∫ t
0 x0(s)ds = 1 +

∫ t
0 ds = 1 + t,

x2(t) = x0 +
∫ t
0 f(s, x1(s))ds = 1 +

∫ t
0 x1(s)ds = 1 +

∫ t
0(1 + s)ds,

. . .

xn(t) = x0 +
∫ t
0 f(s, xn−1(s))ds.

Now, an induction shows that

xn(t) = 1 + t+
t2

2
+ · · ·+ tn

n!
,

consequently, we have
lim
n→∞

xn(t) = et,

and we can take a derivative to check that et is really a solution of Eq. (3.9).
♠

Thus, for a general differential equation, we will use the Picard approx-
imations to define a sequence of functions on a certain interval. Then, we
verify, under some conditions this sequence converges to a function that gives
rise to a solution of the equation.

For bifurcations, we will demonstrate, using examples and geometrical
analysis, that under certain circumstances, the implicit function theorem
fails to apply, thus singularities may exist and some qualitative properties of
solutions may change abruptly when some parameters are varied, such as the
creation and disappearance of critical points, or the exchange of stabilities
of critical points.

For chaos, we will look at the discrete maps and the Lorenz system,
and discuss their qualitative property changes, such as the period-doubling
bifurcation cascades and their routes to chaos.

For stability and boundedness, if the differential equations are linear,
then the structure of solutions using the semigroup and evolution system
properties, as given by the variation of parameters formulas (1.12) and (1.14),
can be used to derive the properties. When eigenvalues are available, they
can be used directly to derive the properties. For example, in Example
1.3.4, the eigenvalue is 0, thus ϕ = 0 is stable but not asymptotically stable;
in Eq. (3.5) of Example 1.3.5, the eigenvalue is − q

k < 0, thus ϕ = 0 is
asymptotically stable; and the eigenvalue in Example 1.3.6 is 3 > 0, thus
ϕ = 0 is unstable.

Otherwise, for general nonlinear differential equations, to determine the
stability properties of a solution ϕ (maybe nonzero in general), we define a
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function V (called a Liapunov function) that is related to the distance
between another solution and the solution ϕ. (Typically, we make a trans-
formation, after which ϕ is regarded as the zero solution.) Then we take a
derivative (in time t) of V by plugging in the differential equation and argue,
with certain conditions, that the derivative is V ′ ≤ 0. This indicates that
the distance of another solution and ϕ is decreasing, which may reveal the
desired properties.

In fact, this idea is already used in the analysis of the logistic equation
(2.1). For example, for the critical point ϕ = C there, when x(t) > C, the
distance of x(t) and ϕ is V = x(t) − C. Now d

dtV = x′(t) = ax[C − x] < 0,
thus x(t) flows to ϕ = C from the right-hand side. When 0 < x(t) < C, the
distance of x(t) and ϕ is V = C−x(t). Now d

dtV = −x′(t) = −ax[C−x] < 0,
thus x(t) flows to ϕ = C from the left-hand side. Therefore, the distance
of x(t) and ϕ = C is always decreasing and hence ϕ = C is stable, which
is already obtained. As for the critical point ϕ = 0 there, the distance
of x(t) > 0 and ϕ is V = x(t). Now, d

dtV = x′(t) = ax[C − x] > 0 for
x(t) ∈ (0, C), thus the distance of x(t) and ϕ = 0 is increasing and hence
ϕ = 0 is unstable, which is also already obtained.

To further demonstrate this idea, let’s look at the following example.

Example 1.3.10 Consider the scalar differential equation

x′(t) = −t2x3(t), t ≥ 0. (3.10)

Now, ϕ = 0 is a solution. To determine the stability of ϕ = 0, we define

V (t, x) = [x− 0]2 = x2. (3.11)

Let x(t) be a solution of Eq. (3.10), then V (t, x(t)) = x2(t), which
is related to the distance of the solution x(t) and ϕ = 0. Now, taking a
derivative of V (t, x(t)) in t and plugging in Eq. (3.10), we obtain

d

dt
V (t, x(t)) =

d

dt
x2(t) = 2x(t)x′(t) = 2x(t)[−t2x3(t)]

= −2t2x4(t) < 0, if t > 0, x(t) ̸= 0. (3.12)

Thus we expect that |x(t) − ϕ(t)| = |x(t)| → 0 as t → ∞ (which in fact is
true using the so-called Liapunov’s method that we will introduce later).

♠
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In the analysis of the logistic equation (2.1) and Example 1.3.10, the
key idea is that we can obtain certain results without solving the
differential equations. Of course, in the special case of Example 1.3.10, we
can actually solve Eq. (3.10) using separation of variables (see an exercise)
and obtain that

x(t) =
1√

2
3 t

3 + c
−→ 0, t→ ∞, (3.13)

where c is a positive constant.
This idea of deriving certain qualitative properties without solving the

differential equations can also be found in applications in physics.

Example 1.3.11 Consider the scalar differential equation

u′′ + g(u) = 0, u = u(t) ∈ ℜ, (3.14)

where g is nonlinear, g(0) = 0, and satisfies some other conditions. (Note
that Eq. (2.7) of a simple pendulum is a special case of Eq. (3.14) when
k = 0, that is, damping is ignored.) Now, u = 0 is a constant solution or an
equilibrium. In physics, we can think of g(u) as the restoring force acting on
a particle at a displacement u from the equilibrium u = 0, and of u′ as the
velocity of the particle. Then the potential energy at a displacement u from
equilibrium is

∫ u
0 g(s)ds, and the kinetic energy is 1

2(u
′)2. Thus, the total

energy is

V (t) =
1

2
[u′(t)]2 +

∫ u(t)

0
g(s)ds. (3.15)

Now, the law of conservation of energy in physics indicates that V (t)
is a constant, or d

dtV (t) = 0. Indeed, we have

d

dt
V (t) = u′u′′ + g(u)u′ = u′[u′′ + g(u)] = 0. (3.16)

That is, without solving Eq. (3.14), we can define a function V in (3.15)
and obtain that the total energy of Eq. (3.14) is a constant, or d

dtV (t) = 0.
This shows the compelling connection of the method of using a Liapunov
function in mathematics and the conservation of energy in physics. Later,
we will verify that this V function for Eq. (3.14) is related to the distance
of the solution u and the equilibrium u = 0, thus some properties can be
derived in this direction, and applications in physics can be carried out. ♠
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For periodicity, we see from Example 1.3.7 that Eq. (3.7) has a periodic
solution of period 2π. Now, for a general differential equation, to find a
periodic solution on interval [0,∞) of period, say for example T > 0, we
need a solution x(t) such that

x(t+ T ) = x(t), t ≥ 0.

In particular, when t = 0, we need

x(T ) = x(0).

Accordingly, we define a mapping P such that if x(t) is the unique
solution corresponding to the initial value x(0) = x0, then we let

P (x0) = x(T ),

see Figure 1.27.

t

P(x
0
) = x(T)

x

x
0

T

Figure 1.27: The mapping P : P (x0) = x(T )

Notice that if P has a fixed point, that is, if there exists an x0 such
that

P (x0) = x0,

then we obtain, for the unique solution x(t) with the initial value x(0) = x0,

x(T ) = P (x0) = x0 = x(0).

Based on this, other results can be used to verify that

x(t+ T ) = x(t), t ≥ 0,
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T t

x
0

x

2T

Figure 1.28: A T -periodic solution

therefore, x(t) is a periodic solution of period T , see Figure 1.28.

Now, we have briefly described the qualitative properties that we will
study in this book. We hope this will inspire your interest and curiosity
enough to ask some questions, such as “are those concepts about stability
and boundedness the same or what are their differences?” or “how could
things like these be done for general nonlinear differential equations?” or
even questions like “how bad could solutions of differential equations get?”
In doing so, you will be motivated to study the following chapters.

Chapters 1–7 are for upper level undergraduate students, thus we only
present the proofs for those results and theorems where some elementary
arguments using calculus and linear algebra can be produced. (Notice that
the subject on Fixed Point Method in Chapter 2 is optional.) Thus the proofs
are accessible and will give these students a chance to use their knowledge in
calculus and linear algebra to solve some problems before completing their
undergraduate study. For other results whose proofs are too complex and/or
involve other subjects not covered here, we do not prove them; instead, we
argue their plausibility using geometric and physical interpretation.

Of course, if there are time constraints, the following results can be
mentioned without detailed proofs: in Chapter 2, the proofs concerning ex-
istence and existence without uniqueness of solutions, the dependence on
parameters and the maximal interval of existence; in Chapter 3, differen-
tial equations with periodic coefficients and Floquet theory; in Chapter 5,
the proofs concerning Liapunov’s method; in chapters 6–7, certain proofs
concerning bifurcation and chaos.

Chapters 8–12, together with chapters 1–7, are for beginning graduate
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students. Therefore the treatment and proofs of some results are quite in-
volved. Certain results and their analysis are closely related to current re-
search in differential equations, (in fact, a few are taken from some recent
research papers), thereby preparing you to access or even do some research
in qualitative theory of differential equations.

One more thing we would like to point out is that chapters 6–12 are
rather independent of each other and instructors may choose among them
to best fit the last part of the course.

Chapter 1 Exercises

1. Derive (1.10) for Example 1.1.2.

2. Solve the following differential equations.

(a) x′(t) = 5x(t), x(1) = 4.

(b) x′(t) = −4x(t) + t, x(2) = 5.

(c) x′(t) = tx(t) + 7t, x(3) = 6.

(The integration techniques, such as integration by parts or by substi-
tutions should be used to complete the answers.)

3. Consider

x′(t) = k(t)x(t) + f(t), x(t0) = x0,

for some continuous functions k(t) and f(t).

(a) Solve the equation when f = 0.

(b) Review the derivation of the variation of parameters formula by

assuming that C(t)e

∫ t

t0
k(s)ds

is a solution and then find the for-
mula for C(t).

(c) Let

x(t) = e

∫ t

t0
k(s)ds

[
x0 +

∫ t

t0
e
−
∫ s

t0
k(h)dh

f(s)ds
]
.

Find x′(t), and then verify that x′(t) = k(t)x(t) + f(t).
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4. Show that

(a) T (t) = ekt satisfies the “semigroup property” (S1) and (S2).

(b) U(t, s) = e
∫ t

s
k(h)dh satisfies the “evolution system property” (E1)

and (E2).

5. Draw the direction field for

(a) x′ = tx.

(b) x′ = −x2.
(c) x′1 = x21, x

′
2 = x22.

(d) x′1 = tx1x2, x
′
2 = −x22.

6. Sketch the function f(x) = x2+x− 2. Then sketch, on the x-axis, the
flows of the solutions of x′ = f(x). Finally sketch the solutions in the
(t, x)-plane.

7. Consider the logistic equation in Example 1.2.1.

(a) Determine the concavity of the solution x(t) when x(t) > C by
using Figure 1.12.

(b) Check that x1(t) = 0, x2(t) = C, t ≥ 0, are both constant
solutions. Then solve for other solutions.

(c) For the solution given by (2.11), determine the concavity by using
the second derivative.

8. Verify that the logistic equation (2.1) can be replaced by

y′(t) = ry(t)[1− y(t)], (3.17)

where r = aC.

9. Solve the equation in Example 1.3.10.

10. Show that x(t) = cos t, y(t) = sin t satisfies {x′(t) = −y(t), y′(t) =
x(t)}.

11. Consider

x′(t) = 2x(t), x(0) = 1, (3.18)
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and define

x0(t) = 1,

x1(t) = 1 +

∫ t

0
2x0(s)ds,

xm(t) = 1 +

∫ t

0
2xm−1(s)ds, m = 2, 3, · · · .

(a) Use an induction to find a formula for xm(t).

(b) For t ∈ ℜ fixed, find limm→∞ xm(t).

(c) Define x(t) = limm→∞ xm(t). Check if x(t) is a solution of Eq.
(3.18).

12. Examine the change of the number of critical points for

(a) x′ = µ+ x2,

(b) x′ = µ− x− e−x,

where µ is regarded as a parameter.

13. Start with any real number x0 ∈ (0, 1) and use a calculator or Maple
to find x1, x2, · · · , xm up to m = 30 for

(a) xm+1 = sinxm,

(b) xm+1 = cosxm,

(c) xm+1 = 0.5 sinπxm,

(d) xm+1 = 0.76 sinπxm,

(e) xm+1 = 0.92 sinπxm,

(f) xm+1 = 0.94 sinπxm,

(g) xm+1 = 0.98 sinπxm.

14. Find a V function for the equation

x′(t) = −t4x(t),

such that its derivative in t satisfies V ′ ≤ 0.

15. Find all the periodic solutions of the scalar differential equation

x′ = x[x− 1][x+ 1].

Argue why they are all the periodic solutions for the equation.



Chapter 2

Existence and Uniqueness

2.1 Introduction

After reading Chapter 1, you are probably convinced that, besides learn-
ing some numerical methods, it is important and beneficial to study some
qualitative properties of differential equations. This will help you apply the
knowledge of differential equations in your future studies and careers. In fact,
in most applications of differential equations in sciences, it is more impor-
tant to obtain certain qualitative properties rather than solve the differential
equations analytically or numerically.

We start with a description of general differential equations that will be
used for the rest of the book. From the examples we have encountered in
Chapter 1, we see that in applications, a differential equation models the
rate of change with respect to time of certain quantity or quantities. Thus
we use t ∈ ℜ = (−∞,∞) to denote the time variable, and use x = x(t) to
denote the quantity or quantities at time t.

For example, in Chapter 1, we use x(t) in Example 1.1.1 to denote the
population of a university; in Example 1.2.3 of Lotka-Volterra competition
equation, there are two populations x1(t) and x2(t), then we use x(t) =
[x1(t), x2(t)]

T to denote the two populations (here T means the transpose,
so x(t) is a 2× 1 vector in ℜ2).

In general, we let x be an n× 1 vector in ℜn, denoted by

41
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x =


x1
x2
· · ·
xn

 = [x1, x2, · · · , xn]T , xi ∈ ℜ, i = 1, 2, · · · , n.

The distance of x to the origin 0 in ℜn (also called the norm) is defined to
be

|x| =
n∑

i=1

|xi|. (1.1)

When n = 1, | · | is just the absolute value. (If y is a complex number,
then we also use |y| to denote the distance from y to the origin (0, 0).)

Note that |x| =
∑n

i=1 |xi| is equivalent to another commonly used defini-
tion of distance,

r(x) =
√
x21 + x22 + · · ·+ x2n, (1.2)

because

(
1√
n
)|x| ≤ r(x) ≤ |x|, (1.3)

(see an exercise). We will use |x| =
∑n

i=1 |xi| in most places in this book
because it is easier to work with, but all results done with |x| are also true

if |x| is replaced by r(x) =
√
x21 + x22 + · · ·+ x2n.

For an n× n matrix A = [aij ], we define

|A| =
n∑

i,j=1

|aij |.

It follows (see an exercise) that, for n×n matrices A,B, and an n×1 vector
x,

|A+B| ≤ |A|+ |B|, |AB| ≤ |A||B|, |Ax| ≤ |A||x|. (1.4)

If we consider the formats of the differential equations in Chapter 1, we
find that a first-order differential equation is presented in such a way that the
left-hand side is x′(t) (or x′) where x(t) is a value or a vector, and the right-
hand side is a function f(t, x) where the position of x is replaced by x(t).
For example, in Example 1.2.2, f(t, x) = k(t)x+ sin(tx), and we write x(t)
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for x, thus the differential equation is x′(t) = k(t)x(t)+sin(tx(t)). Also, Eq.
(1.16) in Chapter 1 gives an example of a differential equation in a matrix
form.

In general, when f(t, x) is linear in x for x ∈ ℜn, that is, when f(t, x) =
f(t, x1, x2, · · · , xn) is given by

f(t, x) =


a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + f1(t)
a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + f2(t)

· · ·
an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + fn(t)

 (1.5)

for some functions aij(t) and fi(t) in ℜ, we will rewrite f(t, x) using matrix
and vector notations as

f(t, x) =


a11(t) a12(t) . . a1n(t)
a21(t) a22(t) . . a2n(t)
. . . . .
. . . . .

an1(t) an2(t) . . ann(t)




x1
x2
.
.
xn

+


f1(t)
f2(t)
.
.

fn(t)


= A(t)x+ f(t), (1.6)

where A(t) = [aij(t)] is an n×nmatrix function and f(t) = [f1(t), · · · , fn(t)]T
is an n× 1 vector function formed from aij(t) and fi(t) in (1.5).

Therefore, in general, we will consider a function f(t, x) that is defined
on a domain (a connected open set) D in the (n + 1)-dimensional (t, x)-
space ℜ × ℜn, with its function values in ℜn, n ≥ 1, see Figure 2.1. That
is,

f : D ⊂ ℜ×ℜn −→ ℜn.

For example, in Chapter 1, f(t, x) = kx + f(t) in Eq. (1.5) is from
ℜ×ℜ into ℜ; in Eq. (2.4) of Lotka-Volterra competition equation, f(t, x) =
f(t, x1, x2) = [β1x1(K1−x1−µ1x2), β2x2(K2−x2−µ2x1)]T is from ℜ×ℜ2

into ℜ2.

Next, for a function x(t) = [x1(t), x2(t), · · · , xn(t)]T from ℜ to ℜn, we
define

x′(t) = [x′1(t), x
′
2(t), · · · , x′n(t)]T ,

and ∫ b

a
x(t)dt = [

∫ b

a
x1(t)dt,

∫ b

a
x2(t)dt, · · · ,

∫ b

a
xn(t)dt]

T .
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t

f

>

>
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n

Figure 2.1: f : D ⊂ ℜ× ℜn → ℜn

Now, we are ready to define the general first-order ordinary differential
equation in ℜn, n ≥ 1, that we will use in the rest of the book. It is given
as

x′(t) = f(t, x(t)), x(t0) = x0, (1.7)

on a domain D ⊂ ℜ × ℜn, where (t0, x0) ∈ D and f(t, x) is a function
from D ⊂ ℜ × ℜn into ℜn. We state the following definition concerning its
solutions.

Definition 2.1.1 A function x(t) is said to be a solution of Eq. (1.7) on
an interval I if t0 ∈ I, (t, x(t)) ∈ D for t ∈ I, and x(t) is differentiable for
t ∈ I and satisfies Eq. (1.7) for t ∈ I. See Figure 2.2.

Notice that here, as we also did for the examples in Chapter 1, we have
made a fundamental assumption that when modeling using a differential
equation, the time rate, given by x′(t), depends only on the current status,
given by f(t, x(t)). Note also that Eq. (1.7) is written as x′ = f(t, x)
sometimes, and in general, solutions of Eq. (1.7) may exist on both sides of
t0.

This chapter is organized as follows: In Section 2, we study existence
and uniqueness of solutions, that is, we examine under what conditions a
differential equation has solutions and how the solutions are uniquely de-
termined, without solving the differential equation analytically. We follow
the idea of an example in Chapter 1 where a sequence of functions is de-
fined using the Picard approximations. To verify for general cases that the
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0
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I

Figure 2.2: A solution x(t) of Eq. (1.7) on I

sequence converges to a unique solution, a condition called the Lipschitz
condition is utilized. In Section 3, we show under certain conditions that
solutions are continuous and differentiable with respect to initial data and
parameters. In Section 4, we determine structures of the maximal intervals
of existence for solutions, and study properties of solutions with respect to
the maximal intervals of existence. In Section 5 (which may be optional),
we introduce the Fixed Point Method. We use the contraction mapping
principle to derive existence and uniqueness if a local Lipschitz condition
is satisfied. Then, when a local Lipschitz condition is not assumed, we use
Schauder’s second fixed point theorem to obtain existence of solutions, in
which case, uniqueness is not guaranteed.

Exercises 2.1

1. Take a square and use an induction to show that∑n
i=1 |xi|√
n

≤
√
x21 + x22 + · · ·+ x2n ≤

n∑
i=1

|xi|, xi ∈ ℜ.

2. Show that |
∫ b
a f(t)dt| ≤

∫ b
a |f(t)|dt, where a ≤ b and f : ℜ → ℜn.

3. Let A and B be 2× 2 matrices.
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(a) Find |AB| and |A||B|.
(b) Show the inequalities in (1.4) when n = 2.

4. Show the inequalities in (1.4) for any n ≥ 1.

2.2 Existence and Uniqueness

In this section, we will find some conditions that guarantee existence and
uniqueness of solutions for Eq. (1.7). First, we note that a very effective way
to attack the differential equation (1.7) is to convert it to an equivalent
integral equation, since an integral equation is more convenient to work
with, as we will soon see. We present this equivalency as follows.

Lemma 2.2.1 Let f(t, x) be a continuous function on a domain D ⊂ ℜ×ℜn

and let x(t) be a continuous function on some interval I containing t0 such
that (t, x(t)) ∈ D for t ∈ I. Then x(t) is a solution of Eq. (1.7) on the
interval I if and only if

x(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ I. (2.1)

Proof. If x(t) is a solution of Eq. (1.7), then integrating Eq. (1.7) from t0
to t yields (2.1).

On the other hand, if x(t) satisfies (2.1), then, as f(t, x(t)) is continuous
in t, the right-hand side of (2.1) is differentiable in t, thus x(t) given by (2.1)
is differentiable. Now, x(t0) = x0, and, taking a derivative of t in (2.1), we
obtain

d

dt
x(t) =

d

dt

∫ t

t0
f(s, x(s))ds = f(t, x(t)), t ∈ I, (2.2)

where the fundamental theorem of calculus is used. Therefore, x(t) is a
solution of Eq. (1.7) on the interval I. This completes the proof. ♠

Based on Lemma 2.2.1, you should have some idea why we utilize the
Picard approximations, given by

x0(t) = x0,

x1(t) = x0 +
∫ t
t0
f(s, x0(s))ds,

xm(t) = x0 +
∫ t
t0
f(s, xm−1(s))ds, m = 2, 3, · · · .

(2.3)
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The reason is that the approximation schemes suggest that if xm(t) con-
verges to some function x(t), and if the limit as m→ ∞ can be taken inside
the integral

∫ t
t0
f(s, xm−1(s))ds and also inside the function f , then, from

(2.3), we will obtain

x(t) = x0 +

∫ t

t0
f(s, x(s))ds,

hence x(t) will be a solution of Eq. (1.7), using Lemma 2.2.1.
This is exactly what happened in Example 1.3.9 in Section 3 of Chapter

1, where, for

x′(t) = x(t), x(0) = 1, (2.4)

one has f(t, x) = x, and then the Picard approximations yield

x0(t)=1,

x1(t)=1 +
∫ t
0 f(s, x0(s))ds = 1 +

∫ t
0 x0(s)ds = 1 +

∫ t
0 ds = 1 + t,

x2(t)=1 +
∫ t
0 f(s, x1(s))ds = 1 +

∫ t
0 x1(s)ds = 1 +

∫ t
0(1 + s)ds,

xm(t)=1 +
∫ t
0 f(s, xm−1(s))ds = 1 +

∫ t
0 xm−1(s)ds, m = 3, 4, · · ·

(2.5)

and an induction shows that xm(t) = 1 + t+ t2

2 + · · ·+ tm

m! . Consequently,

lim
m→∞

xm(t) = lim
m→∞

[1 + t+
t2

2
+ · · ·+ tm

m!
] = et,

and taking a limit in (2.5) yields

et = 1 +

∫ t

0
esds = x(0) +

∫ t

0
f(s, es)ds,

hence x(t) = et is the solution of Eq. (2.4).
Next, let’s investigate uniqueness of solutions. Recall that in applica-

tions, the point (t0, x0) (or sometimes just x0) is called initial condition, or
initial point, or initial data. For a given initial point, we only want one so-
lution to pass through it. Such as in Example 1.1.1 in Section 1 of Chapter
1, we only want one solution to be used as the population of that university.

Now, let’s look at what will happen if x(t) and y(t) are both solutions of
Eq. (1.7). Then, under this assumption, we know from Lemma 2.2.1 that

x(t) = x0 +

∫ t

t0
f(s, x(s))ds, (2.6)

y(t) = x0 +

∫ t

t0
f(s, y(s))ds. (2.7)
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Thus, (assuming t ≥ t0)

|x(t)− y(t)| = |(x0 − x0) +

∫ t

t0
f(s, x(s))− f(s, y(s))ds|

≤ 0 +

∫ t

t0
|f(s, x(s))− f(s, y(s))|ds. (2.8)

In a special case when f(t, x) is linear in x, say for example,

f(t, x) = kx+ f(t) (2.9)

for x ∈ ℜ and some constant k > 0, we obtain f(t, x)− f(t, y) = kx+ f(t)−
ky − f(t), and then

|f(t, x)− f(t, y)| ≤ k|x− y|, (2.10)

(in fact, we should get equality in (2.10) for this case, but we use inequality
for other purposes). Hence, using (2.10), we find that (2.8) becomes

|x(t)− y(t)| ≤ 0 +

∫ t

t0
k|x(s)− y(s)|ds, (assuming t ≥ t0). (2.11)

But on the other hand, this f(t, x) = kx+f(t) in (2.9) is the function on
the right-hand side of Eq. (1.5) in Section 1 of Chapter 1, whose solutions are
given uniquely by the variation of parameters formula (1.11) also in Section
1 of Chapter 1. Therefore, as x and y are now solutions of x′ = f(t, x) = kx+
f(t), x(t0) = x0, we find that x− y is a solution of z′ = kz, z(t0) = 0, hence,
from the uniqueness using the variation of parameters formula, x− y = 0.

This indicates that for f(t, x) given in (2.9), we should also get |x(t) −
y(t)| = 0 from (2.11). Therefore, it would help if there is a device that allows
us to estimate |x(t)−y(t)| based on (2.11) and conclude that |x(t)−y(t)| = 0.
The following inequality will provide such a device and help us get exactly
what we need.

Lemma 2.2.2 (Gronwall’s inequality) Let M ≥ 0 be a constant. If u(t)
and v(t) are real-valued nonnegative continuous functions such that

u(t) ≤M +

∫ t

t0
u(s)v(s)ds, t0 ≤ t < T, (T ≤ ∞) (2.12)

then

u(t) ≤M exp
( ∫ t

t0
v(s)ds

)
, t0 ≤ t < T. (2.13)
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Proof. First, assume M > 0. Then (2.12) implies

u(h)v(h)

M +
∫ h
t0
u(s)v(s)ds

≤ v(h), t0 ≤ h < T,

and ∫ t

t0

u(h)v(h)

M +
∫ h
t0
u(s)v(s)ds

dh ≤
∫ t

t0
v(h)dh, t0 ≤ t < T. (2.14)

But ∫ t

t0

u(h)v(h)

M +
∫ h
t0
u(s)v(s)ds

dh = ln
[
M +

∫ t

t0
u(s)v(s)ds

]
− lnM. (2.15)

Thus we obtain, from (2.14) and (2.15),

ln
M +

∫ t
t0
u(s)v(s)ds

M
≤

∫ t

t0
v(h)dh, (2.16)

hence

M +

∫ t

t0
u(s)v(s)ds ≤M exp

( ∫ t

t0
v(s)ds

)
. (2.17)

Therefore, (2.13) is true using (2.12) and (2.17).

If M = 0, then (2.12) becomes

u(t) ≤
∫ t

t0
u(s)v(s)ds, t0 ≤ t < T.

Now, for any m ≥ 1, we have

u(t) ≤ 1

m
+

∫ t

t0
u(s)v(s)ds, t0 ≤ t < T.

From what we have just proved,

u(t) ≤ 1

m
exp(

∫ t

t0
v(s)ds), t0 ≤ t < T.

Thus for any fixed t ∈ [t0, T ), we can let m→ ∞ to conclude u(t) ≤ 0. This
completes the proof. ♠
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For t on the left-hand side of t0, we have a similar result, whose proof is
left as an exercise.

Lemma 2.2.2.a Let M ≥ 0 be a constant. If u(t) and v(t) are real-valued
nonnegative continuous functions such that

u(t) ≤M +

∫ t0

t
u(s)v(s)ds, S < t ≤ t0, (S ≥ −∞),

then

u(t) ≤M exp
( ∫ t0

t
v(s)ds

)
, S < t ≤ t0. ♠ (2.18)

Now, let’s look at (2.11) again and apply Gronwall’s inequality there,
then we obtain

|x(t)− y(t)| ≤ 0ek|t−t0| = 0, or x(t) = y(t),

which verifies the uniqueness of solutions for Eq. (1.7) when f(t, x) = kx+
f(t).

For a general function f(t, x) in Eq. (1.7), we deduce from the above
analysis that if |f(t, x)− f(t, y)| can be controlled by k|x− y| for a constant
k > 0, that is, if the inequality (2.10) holds for a general function f(t, x)
in Eq. (1.7), then we still have the uniqueness of solutions for Eq. (1.7).
Accordingly, we introduce the following condition, which is formulated based
on the inequality (2.10).

Definition 2.2.3 (Lipschitz condition) A function f(t, x) on a domain
D ⊂ ℜ×ℜn is said to satisfy a Lipschitz condition (also called a global
Lipschitz condition sometimes) with respect to x on D if there exists a
constant k > 0 (called a Lipschitz constant) such that

|f(t, x)− f(t, y)| ≤ k|x− y|, for (t, x), (t, y) ∈ D. (2.19)

Example 2.2.4 For a linear (in x) function f(t, x) = A(t)x + f(t), where
A(t) is an n × n matrix function and f(t) is an n × 1 vector function, one
has

|f(t, x)− f(t, y)| ≤ |A(t)||x− y|, (2.20)

thus a Lipschitz condition is satisfied if |A(t)| is bounded by a constant. ♠
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The next example indicates that many nonlinear (in x) functions also
satisfy a Lipschitz condition.

Example 2.2.5 For f(t, x) = 5 sin t cosx, we have

|f(t, x)− f(t, y)| = |5 sin t[cosx− cos y]|
≤ |5 sin t|| cosx− cos y| ≤ 5| cosx− cos y|
≤ 5|x− y|,

where we have used the mean value theorem at the last step. Thus a
Lipschitz condition is satisfied. ♠

So far, after analyzing the structure of some linear functions, we have
formulated a Lipschitz condition, and it seems that this condition implies
uniqueness of solutions. Now, it is natural to ask whether there exists an
example where a Lipschitz condition is not satisfied and where uniqueness
is violated. The answer is YES, as can be seen from the following example
from physics.

Example 2.2.6 (Leaky bucket) Consider a bucket with a hole in the bot-
tom, shown in Figure 2.3. When you find that the bucket is empty, can
you tell how much water the bucket had initially? The answer is obviously
NO, because the bucket could be full initially, or could be half-full initially,
or could even be empty initially.

h(t)

Figure 2.3: A leaky bucket

To analyze the situation, let’s use Torricelli’s law in physics, which says
that the rate at which water drains from the bucket is proportional to the
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square root of the height of the water remaining inside the bucket. If we
denote h(t) the height of the water in the bucket at time t, and assume that
the initial height is h0 at the initial time t = 0, then, according to Torricelli’s
law, there is a positive constant k such that

h′(t) = −k
√
h(t), h(0) = h0, t ≥ 0, (2.21)

where the negative sign is needed because h(t) is a decreasing function in t.
Note that ϕ(t) = 0, t ≥ 0, is certainly a solution of Eq. (2.21) (with zero

the initial value). To find out if we also have nonzero solutions, we solve∫
1√
h
dh =

∫
−kdt,

and obtain

h(t) =
k2

4

[
t− 2

√
h0
k

]2
, 0 ≤ t ≤ 2

√
h0
k

, (2.22)

where the initial condition h(0) = h0 is used. The formula (2.22) indicates
that the height of the water becomes zero or the bucket becomes empty

when t = 2
√
h0
k . Thus, for things to be meaningful in physics, the bucket will

remain empty or the height will remain zero after t = 2
√
h0
k . Therefore, we

define

x(t, 0, h0) =

 k2

4

[
t− 2

√
h0
k

]2
, 0 ≤ t ≤ 2

√
h0
k ,

0, t > 2
√
h0
k .

(2.23)

Then, for x(t) = x(t, 0, h0) defined in (2.23), we can verify that

x′(t) =

 k2

2

[
t− 2

√
h0
k

]
= −k

√
x(t), 0 ≤ t ≤ 2

√
h0
k ,

0 = −k
√
x(t), t > 2

√
h0
k .

(2.24)

(For the derivative at t = 2
√
h0
k , the left and the right derivatives should

be calculated, which is left as an exercise.) That is, for any h0 ≥ 0 fixed,
x(t, 0, h0) defined in (2.23) gives the unique solution of Eq. (2.21) for t ≥ 0,
which uniquely determines the height of the water in the bucket at any time
t ≥ 0. See Figure 2.4.

In particular, if we use F to denote the height of the water when the
bucket is full, then we replace h0 by F and find that at time

tF =
2
√
F

k
,
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t

h
0

4h
0

k
2

Figure 2.4: The solutions of Eq. (2.21)

the bucket becomes empty. Similarly, for a half-full bucket, we replace h0
by F

2 and find that it takes

tH =

√
2F

k
>
tF
2

to drain a half-full bucket to empty. See Figure 2.5.

t

F

F/2

t
H

t
F

Figure 2.5: The time taken to drain a full or a half-full bucket to empty

In the above, for any initial data (0, h0), a solution is uniquely
determined for t ≥ 0, or when t increases from t = 0.

However, in Figure 2.5, if we start with the point (tF , 0) and look back-
ward, then we find that the solutions on the left-hand side of (tF , 0)
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are NOT uniquely determined. In fact, from Figure 2.4, we find that
the solutions on the left-hand side of any point on the positive t-axis are not
uniquely determined. That is, for Eq. (2.21), we have the nonuniqueness
of the solutions to the left-hand side. It says, in practice, that if at
a time you find that the bucket is empty, then you cannot tell how much
water the bucket had initially. The height of the initial water could be any
value from zero to F . See Figure 2.5.

Next, let’s check the Lipschitz condition. We have f(t, x) = −k
√
x; and

if x ̸= 0 and y = 0, then

|f(t, x)− f(t, y)| = k|x1/2| = k|x−1/2x| = k

|x1/2|
|x− y|, (2.25)

and k
|x1/2| → ∞ as x→ 0. Thus, f(t, x) = −k

√
x does not satisfy a Lipschitz

condition on any domain containing a point (t, 0), t > 0, see Figure 2.6. ♠

t

x

Figure 2.6: A Lipschitz condition is not satisfied on any domain containing
a point (t, 0), t > 0

Example 2.2.6 indicates that nonuniqueness of solutions may occur if a
Lipschitz condition is not satisfied. Therefore, to guarantee uniqueness of
solutions, we should assume a Lipschitz condition, which allows us to esti-
mate the difference of a nonlinear function f(t, x), |f(t, x)− f(t, y)|, almost
like that of a linear function, such that Gronwall’s inequality can be used to
derive uniqueness of solutions. We also point out that a differential equation
not satisfying a Lipschitz condition may or may not have uniqueness.

Now, we are ready to prove the following existence and uniqueness result,
utilizing the Picard approximations and the Lipschitz condition.
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Theorem 2.2.7 (Picard’s local existence and uniqueness theorem)
Assume that f(t, x) is continuous on a domain D ⊂ ℜ × ℜn and satisfies
a Lipschitz condition with respect to x on D. Let (t0, x0) ∈ D. Then there
exist positive constants a and b such that the region

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b} (2.26)

is in D. Moreover, if we define

r = min{a, b

M
}, where M = max

(t,x)∈R
|f(t, x)|, (2.27)

then r > 0 is finite and on the interval I = (t0 − r, t0 + r), Eq. (1.7) has a
unique solution, denoted by x(t, t0, x0), passing through (t0, x0). See Figure
2.7.

x

t

x
0

t
0

x(t,t
0
,x

0
)

R

Figure 2.7: The domain R and the solution x(t, t0, x0)

Note that if the function f is identically zero on R, then M = 0. In
this case we can take r = a, and then x(t) = x0, |t − t0| < a, is a constant
solution. So that in the following analysis, we assume

M = max
(t,x)∈R

|f(t, x)| > 0.

Before we prove Theorem 2.2.7, let’s note that if, for (t, x) ∈ D, |f(t, x)| ≤
M for some constant M > 0, then in the two-dimensional (t, x)-space when
considering x ∈ ℜ, we find (see an exercise) that a solution of Eq. (1.7) (if



56 Chapter 2. Existence and Uniqueness

(t
0
,x

0
)

x-x
0 
= m(t-t

0
)

x-x
0 
= -m(t-t

0
)

Figure 2.8: Straight lines x− x0 = ±M(t− t0) and possible solutions

exists) lies between the two straight lines x − x0 = ±M(t − t0) with slopes
±M . See Figure 2.8.

Accordingly, we have the two cases for the straight lines x−x0 = ±M(t−
t0) to intersect the boundary of the region R, given in Figure 2.9, from
which we detect that the requirement r = min{a, b

M } is used to make sure
that any solution of Eq. (1.7) (if exists) doesn’t get outside of the region
R. (Otherwise, if a candidate for a solution gets outside of R, it may get
outside of the domain D, then the function f is not defined there.)

R:
(t

0
,x

0
)

(t
0
,x

0
)

r = a r = b/M

Figure 2.9: Two cases of how the straight lines x − x0 = ±M(t − t0)
intersect the boundary of the region R
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Proof of Theorem 2.2.7. Note that a domain is (by definition) an open
set, thus we can find positive constants a and b such that the region R
defined by (2.26) is in D. Since f is a continuous function on the closed and
bounded region R, we conclude that

M = max
(t,x)∈R

|f(t, x)| <∞,

hence r in (2.27) is well defined, and is positive and finite.
We will prove the theorem by showing the following four things:

(A). Based on Lemma 2.2.1, define the Picard approximations as
x0(t)=x0, |t− t0| ≤ r,

x1(t)=x0 +
∫ t
t0
f(s, x0(s))ds, |t− t0| ≤ r,

xm(t)=x0 +
∫ t
t0
f(s, xm−1(s))ds, |t− t0| ≤ r, m = 2, 3, · · · .

(2.28)

Then the sequence {xm(t)}m≥0 is defined on [t0 − r, t0 + r], and
(t, xm(t)) ∈ R, m ≥ 0, t ∈ I.

(B). The sequence {xm(t)}m≥0 converges uniformly on [t0 − r, t0 + r] to
a continuous function, denoted by x(t).

(C). The function x(t) is a solution of Eq. (1.7) on I.

(D). The solution x(t) is unique. That is, if y(t) is also a solution of Eq.
(1.7) on I, then y(t) = x(t), t ∈ I.

(A): We verify that the sequence {xm(t)}m≥0 is defined on [t0−r, t0+r]
and that (t, xm(t)) ∈ R for m ≥ 0, t ∈ I. To this end, let’s prove that the
sequence {xm(t)}m≥0 is defined on [t0 − r, t0 + r] and

|xm(t)− x0| ≤M |t− t0|, m ≥ 0, t ∈ I, (2.29)

because if (2.29) is true, then

|xm(t)− x0| ≤M |t− t0| ≤Mr ≤ b, t ∈ I, (2.30)

hence, by the definition of the region R, we have (t, xm(t)) ∈ R for m ≥
0, t ∈ I.

We will use an induction to verify that the sequence {xm(t)}m≥0 is de-
fined on [t0 − r, t0 + r] and that (2.29) is true. For m = 0, x0(t) = x0 is
defined on [t0−r, t0+r] and |x0(t)−x0| = |x0−x0| = 0 ≤M |t−t0|. Assume
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that xm(t) is defined on [t0 − r, t0 + r] and (2.29) is true for m. Then, for
t ∈ [t0 − r, t0 + r], one has (t, xm(t)) ∈ R from (2.29) and (2.30), hence
f(t, xm(t)) is defined and satisfies |f(t, xm(t))| ≤ M . Thus, from (2.28),
xm+1(t) is defined on [t0 − r, t0 + r], and

|xm+1(t)− x0| = |
∫ t

t0
f(s, xm(s))ds| ≤M |t− t0|,

which proves (2.29) for m+ 1, and therefore completes the induction.

(B): To show that {xm(t)}m≥0 is uniformly convergent on [t0−r, t0+r],
let’s note that

xm(t) = x0(t) + [x1(t)− x0(t)] + [x2(t)− x1(t)] + · · ·+ [xm(t)− xm−1(t)]

= x0(t) +
m−1∑
j=0

[xj+1(t)− xj(t)]. (2.31)

Thus, showing the uniform convergence on [t0 − r, t0 + r] of the sequence
{xm(t)}m≥0 is equivalent to showing that the series

∞∑
j=0

[xj+1(t)− xj(t)], t ∈ [t0 − r, t0 + r], (2.32)

is uniformly convergent on [t0− r, t0+ r]. From (2.28), (2.29), and using the
Lipschitz condition (with constant k), we obtain

|x2(t)− x1(t)| = |
∫ t

t0
f(s, x1(s))ds−

∫ t

t0
f(s, x0(s))ds|

≤ k|
∫ t

t0
|x1(s)− x0|ds|

≤ k|
∫ t

t0
M |s− t0|ds|

=
kM |t− t0|2

2
, t ∈ [t0 − r, t0 + r]. (2.33)

Hence, using an induction again, we can verify (left as an exercise, see (2.33)
for a hint) that

|xj+1(t)− xj(t)| ≤
Mkj |t− t0|j+1

(j + 1)!
, j ≥ 0, t ∈ [t0 − r, t0 + r], (2.34)
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which implies, for t ∈ [t0 − r, t0 + r],

∞∑
j=0

|xj+1(t)− xj(t)| ≤
∞∑
j=0

Mkj |t− t0|j+1

(j + 1)!

=
M

k

∞∑
j=0

|k(t− t0)|j+1

(j + 1)!

≤ M

k

∞∑
j=0

(kr)j+1

(j + 1)!

=
M

k
[exp(kr)− 1] <∞. (2.35)

Now, we apply the Weierstrass M -test concerning the uniform conver-
gence of general function series from the Appendix, and conclude that the
series (2.32) converges uniformly to a continuous function on [t0 − r, t0 + r].
Therefore, {xm(t)}m≥0 converges uniformly on [t0−r, t0+r] to a continuous
function, which we denote by x(t), t ∈ [t0 − r, t0 + r].

(Another approach to the uniform convergence is as follows: From

max
t∈[t0−r, t0+r]

|xj+1(t)− xj(t)| ≤ max
t∈[t0−r, t0+r]

|
∫ t

t0
k|xj(s)− xj−1(s)|ds|

≤ kr max
s∈[t0−r, t0+r]

|xj(s)− xj−1(s)|, (2.36)

we have, by an induction,

max
t∈[t0−r, t0+r]

|xj+1(t)− xj(t)| ≤ (kr)j max
s∈[t0−r, t0+r]

|x1(s)− x0|. (2.37)

Therefore, if we assume kr < 1, then the geometric series convergence results
can be applied to derive the uniform convergence of the series (2.32).)

(C): To show that x(t) is a solution of Eq. (1.7), we first verify that
(t, x(t)) ∈ R, t ∈ I. To this end, we note, from (2.29),

|x(t)− x0| ≤ |x(t)− xm(t)|+ |xm(t)− x0|
≤ |x(t)− xm(t)|+M |t− t0|, m ≥ 0, t ∈ I.

Thus, for any fixed t ∈ I, since {xm(t)}m≥0 converges to x(t), we can let
m→ ∞ to obtain

|x(t)− x0| ≤ lim
m→∞

|x(t)− xm(t)|+M |t− t0|

= 0 +M |t− t0| ≤Mr ≤ b, t ∈ I,
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which implies that (t, x(t)) ∈ R for t ∈ I, and guarantees that f(t, x(t)) is
defined for t ∈ I. Next, from the Lipschitz condition (with constant k), we
obtain

|
∫ t

t0
f(s, xm−1(s))ds−

∫ t

t0
f(s, x(s))ds|

≤ k|
∫ t

t0
|xm−1(s)− x(s)|ds|

≤ k|t− t0| max
s∈[t0−r, t0+r]

|xm−1(s)− x(s)|, t ∈ [t0 − r, t0 + r].

Then, as {xm(t)}m≥0 converges uniformly on [t0−r, t0+r] to x(t), we derive,
for t ∈ I,

lim
m→∞

|
∫ t

t0
f(s, xm−1(s))ds−

∫ t

t0
f(s, x(s))ds| = 0. (2.38)

Now, from (2.38) and the fact that {xm(t)}m≥0 converges to x(t), we can
take a limit as m→ ∞ in (2.28) to obtain

x(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ I,

hence x(t) is a solution of Eq. (1.7), using Lemma 2.2.1.

(D): If y(t) is also a solution of Eq. (1.7) on I, then from Lemma 2.2.1,

y(t) = x0 +

∫ t

t0
f(s, y(s))ds, t ∈ I. (2.39)

Now, for t ∈ [t0, t0+ r), the Lipschitz condition (with constant k) yields

|y(t)− x(t)| ≤
∫ t

t0
|f(s, y(s))− f(s, x(s))|ds

≤ k

∫ t

t0
|y(s)− x(s)|ds, (2.40)

therefore we can apply Gronwall’s inequality to conclude that

|y(t)− x(t)| = 0, t ∈ [t0, t0 + r).

The same conclusion can also be proved in the same way for t ∈ (t0 − r, t0]
by using Gronwall’s inequality for t ≤ t0. Therefore, uniqueness holds.

The above four steps in (A)–(D) complete the proof. ♠
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Note that x(t, t0, x0) is used to denote the solution of Eq. (1.7) such that

x(t0, t0, x0) = x0.

Here, t0 and x0 should also be regarded as variables that are subject to
change, thus x(t, t0, x0) should be regarded as a function in the three vari-
ables (t, t0, x0). Therefore, (t0, x0) may be replaced by different points, and
in some cases, when a point (τ, x0) is in the domain of Eq. (1.7), we
may say that “x(t) = x(t, τ, x0) is a solution of Eq. (1.7),” which means
x′(t) = f(t, x(t)) and

x(τ, τ, x0) = x0.

In the proof of Theorem 2.2.7, we find that the requirement r = min{a, b
M }

is used to guarantee that (t, xm(t)) and (t, x(t)) are all in R ⊂ D for
t ∈ I = (t0 − r, t0 + r), thus f(t, xm(t)) and f(t, x(t)) are defined for t ∈ I.
Note that r could be very small, that is the reason why Theorem 2.2.7 is
called a local existence and uniqueness theorem. In Section 4 of this chapter,
we will look at the size of the interval on which x(t) is a solution.

In the next example, let’s examine the role r = min{a, b
M } plays in

ensuring the existence of a solution on (t0 − r, t0 + r).

Example 2.2.8 Consider the scalar differential equation,

x′(t) = x2(t), x(0) = 1. (2.41)

Using separation of variables, the solution is given by

x(t) = (1− t)−1,

hence x(t) is defined on (−∞, 1), and limt→1− x(t) = ∞, in which sense, we
say that for Eq. (2.41), solutions blow up at finite times, see Figure 2.10.

Now, f(t, x) = x2, and

|f(t, x)− f(t, y)| = |x2 − y2| = |x+ y||x− y|,

thus f satisfies a Lipschitz condition on any bounded domain D ⊂ ℜ × ℜ.
Accordingly, we can select, for example, the region R (see Figure 2.11) to
be

R = {(t, x) : |t− 0| ≤ 2, |x− 1| ≤ b}, (b > 0).

For this region R, we have M = max(t,x)∈R |f(t, x)| = max(t,x)∈R |x2| =
(1 + b)2, and Theorem 2.2.7 implies that the solution is defined on (−r, r),
where

r = min{a, b

M
} = min{2, b

(1 + b)2
}.
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1 t

x

Figure 2.10: The solution x(t) = (1− t)−1 blows up at the time t = 1

Now, if r > 1, then we will be in trouble, because the solution x(t) =
(1 − t)−1 with t0 = 0 is not defined at t = 1; that is, we must need r < 1
in this case. To find out how big b

(1+b)2
could get as a function in b > 0, we

can use the optimization technique from calculus and set the first derivative
to be zero,

d

db

b

(1 + b)2
=

1− b2

(1 + b)4
= 0,

and obtain b = 1. Then we can use the first or the second derivative test to
conclude that

max
b>0

b

(1 + b)2
=

b

(1 + b)2

∣∣∣
b=1

=
1

4
.

Therefore, we can rest easy, knowing that

r = min{2, b

(1 + b)2
} ≤ 1

4
,

hence the interval of existence determined by Theorem 2.2.7 is given as

(t0 − r, t0 + r) = (−r, r) ⊂ (−1

4
,
1

4
),

which does not include t = 1. ♠

Many related results emerge based on the proof of Theorem 2.2.7. For
example, we find that the (global) Lipschitz condition can be weakened as
follows, which can be applied directly to linear differential equations.
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(0,1)

-2

1+b

2

1-b

x

t

R

Figure 2.11: The region R

Definition 2.2.9 A function f(t, x) on a domain D ⊂ ℜ × ℜn is said to
satisfy a weak Lipschitz condition with respect to x on D if there exists
a nonnegative continuous function k(t) such that

|f(t, x)− f(t, y)| ≤ k(t)|x− y|, for (t, x), (t, y) ∈ D. (2.42)

Example 2.2.10 Let’s look at Example 2.2.4 again, where the linear func-
tion is given as f(t, x) = A(t)x + f(t) with A(t) an n × n matrix function
and f(t) an n× 1 vector function. Now,

|f(t, x)− f(t, y)| ≤ |A(t)||x− y|,

thus a weak Lipschitz condition is satisfied if A(t) is continuous. ♠

The (global) Lipschitz condition can also be weakened to a local one.

Definition 2.2.11 A function f(t, x) on a domain D ⊂ ℜ × ℜn is said
to satisfy a local Lipschitz condition with respect to x on D if for any
(t1, x1) ∈ D, there exists a domain D1 such that (t1, x1) ∈ D1 ⊂ D and that
f(t, x) satisfies a Lipschitz condition with respect to x on D1. That is, there
exists a positive constant k1 such that

|f(t, x)− f(t, y)| ≤ k1|x− y| for (t, x), (t, y) ∈ D1. (2.43)

Note that the weak Lipschitz condition implies the local Lipschitz con-
dition, thus the weak Lipschitz condition is a notion falls between the local
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Lipschitz condition and the (global) Lipschitz condition, (see an exercise).
It will be seen in Theorem 2.4.4 and Remark 2.4.12 that the weak Lipschitz
condition is very useful in some situations.

We can modify the proof of Theorem 2.2.7 so as to obtain the following
result, whose proof is left as an exercise.

Theorem 2.2.7.a (Picard’s local existence and uniqueness theorem)
Assume that f(t, x) is continuous on a domain D and satisfies a weak Lip-
schitz or a local Lipschitz condition with respect to x on D. Then the same
results as in Theorem 2.2.7 hold. ♠

If we examine the Lipschitz condition when x ∈ ℜ, then we find that the
inequality (2.10) can be changed to

|f(t, x)− f(t, y)

x− y
| ≤ k,

which suggests that the Lipschitz condition is related to the partial derivative
with respect to x. In this regard, we present a result that guarantees a local,
a weak, or a global Lipschitz condition using partial derivatives, whose proof
is left as an exercise. Recall that for f : D ⊂ ℜ × ℜn → ℜn, we can write,
from multivariable calculus, f(t, x) = [f1(t, x), f2(t, x), · · · , fn(t, x)]T , where
fi ∈ ℜ, then ∂f(t, x)

∂x is defined to be the n× n matrix

∂f(t, x)

∂x
= [

∂fi(t, x)

∂xj
].

Theorem 2.2.12 Assume the domain D ⊂ ℜ×ℜn is such that if (t, x1),
(t, x2) ∈ D, then (t, λx1 + (1− λ)x2) ∈ D for 0 ≤ λ ≤ 1.

(a). If ∂f(t, x)
∂x exists and is continuous, then f(t, x) satisfies a local Lipschitz

condition with respect to x on D.

(b). If |∂f(t, x)∂x | ≤ k(t) for some nonnegative continuous function k(t), then
f(t, x) satisfies a weak Lipschitz condition with respect to x on D.

(c). If |∂f(t, x)∂x | ≤ k for some positive constant k, then f(t, x) satisfies a
(global) Lipschitz condition with respect to x on D. ♠

Theorem 2.2.12 indicates that certain conditions on the partial deriva-
tives of f with respect to x imply certain Lipschitz conditions. In an exercise,
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you are asked to find an example such that a (global) Lipschitz condition
is satisfied but the partial derivative of f with respect to x does not exist.
Therefore, “having partial derivatives” is a stronger notion than “satisfying
Lipschitz conditions.”

Next, let’s use Theorem 2.2.7.a and Theorem 2.2.12 to check the existence
and uniqueness for the nonlinear differential equations we have encountered
in Chapter 1.

Example 2.2.13 For the logistic equation, we have f(t, x) = ax[C − x],
and

∂f(t, x)

∂x
=

d

dx
ax[C − x] = aC − 2ax,

therefore, a local Lipschitz condition is satisfied for any domain in ℜ × ℜ,
and a (global) Lipschitz condition is satisfied for any bounded domain in
ℜ× ℜ. Thus the existence and uniqueness is guaranteed. ♠

Example 2.2.14 For x′(t) = k(t)x(t)+sin(tx(t)), we have f(t, x) = k(t)x+
sin(tx), and

|∂f(t, x)
∂x

| = |k(t) + t cos(tx)| ≤ |k(t)|+ |t|,

thus a weak Lipschitz condition is satisfied for any domain in ℜ × ℜ when
k(t) is continuous. ♠

Example 2.2.15 In the Lotka-Volterra competition equation, we have

f(t, x) = [β1x1(K1−x1−µ1x2), β2x2(K2−x2−µ2x1)]T = [f1(t, x), f2(t, x)]
T ,

and

∂f(t, x)

∂x
=

 ∂f1(t, x)
∂x1

∂f1(t, x)
∂x2

∂f2(t, x)
∂x1

∂f2(t, x)
∂x2


=

[
β1(K1 − µ1x2)− 2β1x1 −β1µ1x1

−β2µ2x2 β2(K2 − µ2x1)− 2β2x2

]
. (2.44)

Therefore, a local Lipschitz condition is satisfied for any domain in ℜ×ℜ2,
and a (global) Lipschitz condition is satisfied for any bounded domain in
ℜ× ℜ2. ♠
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Example 2.2.16 For the equation of a simple pendulum given by θ′′(t) +
kθ′(t) + q sin θ(t) = 0, we let x1 = θ, x2 = θ′, then we obtain the system{

x′1 = x2,
x′2 = −kx2 − q sinx1.

(2.45)

Similar to Example 2.2.15, one can verify (see an exercise) that in this case,
a (global) Lipschitz condition is satisfied for any domain in ℜ× ℜ2. ♠

Note here that for Examples 2.2.14–2.2.16, we cannot solve or write
out the solutions explicitly, but we can prove that solutions exist and are
unique.

We have now proved existence and uniqueness of solutions under some
Lipschitz conditions, and we also know from Example 2.2.6 that unique-
ness of solutions is not guaranteed without assuming a Lipschitz condition.
The remaining question is: What about existence of solutions? The
following result ensures that we can still obtain existence of solutions even
without a Lipschitz condition, by using Euler’s method in calculus for
approximating solutions of differential equations with piecewisely straight
lines. Of course, in this case, uniqueness is not expected.

Therefore, let’s recall a few details of Euler’s method in calculus. To
solve a scalar differential equation

x′(t) = f(t, x(t)), x(t0) = x0, t ∈ [t0, b], (2.46)

we divide [t0, b] into m equal subintervals [t0, t1], [t1, t2], · · · , [tm−1, b]. On
the first interval, we require Eq. (2.46) to be satisfied at (t0, x0), that is,
x′(t0) = f(t0, x0), then use f(t0, x0) as the slope and (t0, x0) as the point so
as to obtain the straight line

x = x0 + f(t0, x0)(t− t0), t ∈ [t0, t1], (2.47)

see Figure 2.12.
On the second interval [t1, t2], evaluate the straight line (2.47) at t1 to

obtain x1 = x0 + f(t0, x0)(t1 − t0). We require Eq. (2.46) to be satisfied at
(t1, x1), that is, x

′(t1) = f(t1, x1), then use f(t1, x1) as the slope and (t1, x1)
as the point so as to obtain the straight line

x = x1 + f(t1, x1)(t− t1), t ∈ [t1, t2].

This way, we get, on [t0, b], a function z (for zigzag) consisting of piece-
wisely straight lines, see Figure 2.12. This constitutes Euler’s method of
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Figure 2.12: Using piecewisely straight lines to approximate a solution

approximating a solution of differential equation (2.46) using piecewisely
straight lines.

When m gets larger and larger, the corresponding function z satisfies Eq.
(2.46) at more and more left-end points of those small subintervals in [t0, b],
(at this stage, the derivative for function z at the left end of an interval is
the right-hand side derivative, since typically z has a “corner point” there).
Thus, when m → ∞, the limit function of z should satisfy Eq. (2.46)
“everywhere” in [t0, b]. Or, the function z should approach a solution of
Eq. (2.46) on [t0, b]. In the following, we will explore this idea and use it to
derive solutions for general differential equations in ℜn, n ≥ 1.

Theorem 2.2.17 (Existence without uniqueness) Assume that f(t, x)
is continuous on a domain D ⊂ ℜ × ℜn and let (t0, x0) ∈ D. Then there
exist positive constants a and b such that

R =
{
(t, x) : |t− t0| ≤ a, |x− x0| ≤ b

}
⊂ D, (2.48)

and Eq. (1.7) has a solution x(t) on I = (t0−r, t0+r), where r = min{a, b
M }

with M = max(t,x)∈R |f(t, x)|.

Proof. Since (t0, x0) is in domain D, the a, b, R,M , and r specified above
can be defined. Next, we only consider interval [t0, t0 + r] and define a
sequence of functions on [t0, t0 + r], which will be used to approximate a
solution. The case for the left-hand side of t0 is similar.

For each k = 1, 2, · · · , divide [t0, t0 + r] into k equal subintervals [t0, t1],
[t1, t2], · · · , [tk−1, tk] = [tk−1, t0 + r], with the distance of every subinter-
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val given by r
k . Define a continuous function xk(t) on [t0, t0 + r] that is

piecewisely “straight lines” as follows:
On [t0, t1], define xk(t) to be the straight line with the point (t0, x0) and

the “slope” f(t0, x0). That is,

xk(t) = x0 + f(t0, x0)(t− t0), t ∈ [t0, t1].

On [t1, t2], define xk(t) to be the straight line with the point (t1, xk(t1))
and the “slope” f(t1, xk(t1)). That is,

xk(t) = xk(t1) + f(t1, xk(t1))(t− t1), t ∈ [t1, t2].

This way, we define a continuous function xk(t) that is piecewisely straight
lines on [t0, t0 + r].

We verify that

(t, xk(t)) ∈ R for t ∈ [t0, t0 + r]. (2.49)

Consider t ∈ [t0, t1]. Since (t0, x0) ∈ R, one has |f(t0, x0)| ≤M . Thus,

|xk(t)− x0| ≤ |f(t0, x0)(t− t0)| ≤M(
r

k
) ≤ b

k
≤ b,

hence (2.49) is true for t ∈ [t0, t1].
Assume that (2.49) is true for t ∈ [t0, tj ], where 1 ≤ j ≤ k − 1. Then

|f(ti, xk(ti))| ≤M, i = 1, 2, · · · , j; and for t ∈ [tj , tj+1], one has

|xk(t)− x0| ≤ |xk(t)− xk(tj)|+ |xk(tj)− xk(tj−1)|+ · · ·+ |xk(t1)− xk(t0)|
≤ |f(tj , xk(tj))(t− tj)|+ · · ·+ |f(t0, x0)(t1 − t0)|

≤ M(
r

k
) +M(

r

k
) + · · ·+M(

r

k
)

= (j + 1)M(
r

k
) ≤ kM(

r

k
) = rM ≤ b, (2.50)

thus, (2.49) is proved using an induction.
Similarly, we can verify (see an exercise) that

|xk(α)− xk(β)| ≤M |α− β|, α, β ∈ [t0, t0 + r]. (2.51)

Therefore, the sequence {xk(t)} is uniformly bounded and equi-continuous
on [t0, t0+r], hence from Arzela-Ascoli’s theorem (see the Appendix), this se-
quence has a subsequence, which we denote by {xk(t)} again, that converges
uniformly on [t0, t0 + r] to a continuous function x(t).
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Due to the construction of xk(t), we know that x′k(t) exists on the interval
[t0, t0 + r] except at t1, t2, · · · , tk−1. Let t ∈ [t0, t0 + r], then t ∈ [ti, ti+1] for
some i ∈ {0, 1, 2, · · · , k − 1}. Now,∫ t

t0
x′k(s)ds =

∫ t1

t0
x′k(s)ds+ · · ·+

∫ t

ti

x′k(s)ds

= [xk(t1)− xk(t0)] + [xk(t2)− xk(t1)] + · · ·+ [xk(t)− xk(ti)]

= xk(t)− xk(t0) = xk(t)− x0. (2.52)

Thus, (2.52) is true for t ∈ [t0, t0 + r], and we can write (2.52) as

xk(t) = x0 +

∫ t

t0
x′k(s)ds

= x0 +

∫ t

t0
[f(s, xk(s)) + δk(s)]ds, t ∈ [t0, t0 + r], (2.53)

where δk(t) is defined for t ∈ [t0, t0 + r] as

δk(t) =

{
x′k(t)− f(t, xk(t)), if t ̸= ti, i = 0, 1, · · · , k − 1,
0, if t = ti, i = 0, 1, · · · , k − 1.

(2.54)

Next, we verify that

δk(t) → 0 uniformly on [t0, t0 + r] as k → ∞. (2.55)

Let t ∈ [t0, t0 + r], then t ∈ [ti, ti+1] for some i ∈ {0, 1, · · · , k − 1}. Now,

|δk(t)| ≤ |x′k(t)− f(t, xk(t))| ≤ |f(ti, xk(ti))− f(t, xk(t))|,

and we have |ti − t| ≤ r
k and

|xk(ti))− xk(t)| ≤ |f(ti, xk(ti))|(
r

k
) ≤M(

r

k
).

Thus, as f(t, x) is uniformly continuous on the bounded and closed set R and
r
k is very small when k is large, we conclude that (2.55) is true. Now, taking
a limit as k → ∞ in (2.53) and using the fact that the sequence {xk(t)}
converges to x uniformly and f is uniformly continuous on the region R, we
derive

x(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ [t0, t0 + r], (2.56)
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therefore, x(t) is a solution of Eq. (1.7) using Lemma 2.2.1. This completes
the proof. ♠

You probably didn’t see this proof in your calculus class, but now you
know why Euler’s method of approximating solutions of differential equations
using piecewisely straight lines works.

We point out that the method of combining Lemma 2.2.1 and Picard’s
approximations used in the proof of Theorem 2.2.7 is very useful in many
studies. It not only provides a framework for some numerical approximations
but also leads to the definition of a mapping when using a functional analysis
approach. See, for example, the related study in Section 2.5 in this chapter.

Exercises 2.2

1. Rewrite the following differential equations as equivalent equations
without derivatives.

(a) x′(t) = sin t cos 3t+ x6(t), x(0) = 4.

(b) x′′(t) = t4 cos 3x(t) + x6(t), x(1) = 4, x′(1) = 3.

2. Show that x′′(t) = f(t, x(t)), x(t0) = x0, x
′(t0) = x1 is equivalent to

x(t) = x0 + x1(t− t0) +
∫ t
t0
(t− s)f(s, x(s))ds.

3. Establish the existence and uniqueness for x′′(t) = f(t, x(t)), x(t0) =
x0, x

′(t0) = x1.

4. Prove Lemma 2.2.2.a: Gronwall’s inequality for t ≤ t0.

5. Determine all continuous functions f such that 0 ≤ f(t) ≤
∫ t
0 f(s)ds,

0 ≤ t <∞.

6. If f(t) and g(t) are nonnegative, continuous, and f(t) ≤ C1 + C2(t −
t0) +

∫ t
t0
f(s)g(s)ds for some positive constants C1, C2, then find an

inequality for f(t).

7. If x(t0) = x0 ∈ ℜ and for all t, |x′(t)| ≤ M for some constant M > 0,
then show that for any given T > 0, the curve of x(t) cannot escape
the region determined by the straight lines x − x0 = ±M(t − t0) for
t ∈ [t0−T, t0+T ]. (A picture may be useful in visualizing the problem.)



2.2. Existence and Uniqueness 71

8. In the proof of Theorem 2.2.7, use an induction to determine the in-
equality concerning |xj+1(t)− xj(t)|, j ≥ 0.

9. Draw pictures and explain why r = min{a, b
M } is needed in the proof

of Theorem 2.2.7.

10. Repeat Example 2.2.8 with f(t, x) = x3, x(0) = 1.

11. Show that the (global) Lipschitz condition implies the weak Lipschitz
condition, and that the weak Lipschitz condition implies the local Lips-
chitz condition. Find examples to demonstrate that the local Lipschitz
condition does not imply the weak Lipschitz condition, and that the
weak Lipschitz condition does not imply the (global) Lipschitz condi-
tion.

12. Prove Theorem 2.2.7.a.

13. (a). Prove Theorem 2.2.12 for n = 1.
(b). Prove Theorem 2.2.12 for any n ≥ 1.

14. Find a real function f(x) (that is, x and f(x) are all in ℜ1) such that
a global Lipschitz condition is satisfied but f(x) has no derivative at
some point.

15. Let f(t, x) = xα for α ∈ ℜ. Determine the conditions on α such that
f satisfies a local Lipschitz condition.

16. Determine whether the following functions on their domains satisfy a
local Lipschitz, a weak Lipschitz, or a (global) Lipschitz condition.

(a) f(t, x) = t6 + sin 4x, D = {(t, x) : (t, x) ∈ ℜ × ℜ}.
(b) f(t, x) = t6 sin 4x, D = {(t, x) : (t, x) ∈ ℜ × ℜ}.
(c) f(t, x) = t6|x|, D = {(t, x) : |t| < 3, |x| <∞}.
(d) f(t, x) = t6

√
x, D = {(t, x) : |t| < 3, x > 0}.

17. Find the left and the right derivatives at t = 1 for x2(t) in Example
2.2.6.

18. Prove that the function f(x) = 0, x ≤ 0; f(x) = x1/3, x > 0, does not
satisfy a local Lipschitz condition in a domain containing x = 0.

19. Use the idea of Example 2.2.6 to construct another example for which
a local Lipschitz condition and uniqueness do not hold.
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20. Assume that existence and uniqueness is satisfied for the scalar equa-
tion x′(t) = f(t, x(t)) on ℜ × ℜ. If x1 < x2, show that x(t, t0, x1) <
x(t, t0, x2) for t ≥ t0.

21. Assume that existence and uniqueness is satisfied for equation x′(t) =
f(t, x(t)) on ℜ×ℜn with f(t, 0) = 0. If x is a solution and if x(t0) = 0
for some t0 ∈ ℜ, then show that x(t) = 0 for all t ∈ ℜ.

22. Rewrite the equation of a simple pendulum θ′′(t)+kθ′(t)+q sin θ(t) = 0
into a first-order system and then check if some Lipschitz conditions
are satisfied.

23. Verify (2.51).

24. Provide the details for getting (2.55) and (2.56).

2.3 Dependence on Initial Data and Parameters

From the previous section, we learned that under some Lipschitz conditions,
Picard’s local existence and uniqueness theorem 2.2.7 implies that for any
(t0, x0) ∈ D, there is an r > 0, such that Eq. (1.7) has a unique solution
denoted by x(t, t0, x0) on the interval I = (t0 − r, t0 + r), and x(t, t0, x0)
passes through (t0, x0), that is, the solution x(t, t0, x0) is such that

x(t0, t0, x0) = x0. (3.1)

Here, (t0, x0) (or sometimes just x0) denotes “initial data” or “initial
condition” in applications. In some experiments in physics, initial condition
is associated with initial measurements, such as putting one gallon of acid
initially to create certain reactions in some experiments, which inevitably
involves some errors. In mathematics, this indicates that the initial data
(t0, x0) is subject to some change, which is the reason why we mentioned
in the previous section that x(t, t0, x0) should be regarded as a function in
the three variables (t, t0, x0). It was also mentioned there that when we say
“x(t) = x(t, τ, x0) is a solution of Eq. (1.7),” we mean x′(t) = f(t, x(t)) and

x(τ, τ, x0) = x0.

Now, the question is: As (t0, x0) changes, what are the changes it
will bring to the corresponding solutions? That is, we need to study
properties of solutions with respect to the variation in initial data. We will
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eventually verify that the solution x(t, t0, x0) is a continuous and continu-
ously differentiable function in the three variables (t, t0, x0). However, the
notations may get a little complicated if we go to the three variables (t, t0, x0)
right away. Thus we will start with the dependence of solutions with respect
to the change in x0 only, which will be helpful in understanding other cases.

Before we proceed, let’s look at the following example.

Example 2.3.1 Consider the scalar differential equation,

x′ = x2, x(0) = x0 > 0, t ≥ 0. (3.2)

The solution is given by

x(t) =
x0

1− x0t
, (3.3)

therefore, it is defined on interval

[0,
1

x0
). (3.4)

If x0 changes arbitrarily, say for example x0 = n → ∞, then the size of
the corresponding interval in (3.4), now 1

n , will go to zero, see Figure 2.13.

1/3 1/2 1

3

2

1

x

t

Figure 2.13: The solutions of Eq. (3.2) with x(0) = 1, 2, 3, · · ·

Hence, the corresponding solutions for x0 = 1, 2, · · · cannot exist on a
common interval with a positive size. However, if x0 changes slightly, say
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for example x0 ∈ [1, 2], then 1
x0

≥ 1
2 , therefore, the corresponding solutions

now exist on a common interval [0, 1
2 ]. ♠

The following theorem verifies the result in Example 2.3.1 for general
cases. That is, when x0 changes slightly, the corresponding solutions exist
on a common interval.

Theorem 2.3.2 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×ℜn

and satisfies a Lipschitz condition (or weak or local Lipschitz condition) with
respect to x on D. Let (t0, x0) ∈ D. Then there exist constants d > 0 and
r > 0 such that for any x0 ∈ Bd(x0) = {x ∈ ℜn : |x−x0| ≤ d} (called the ball
centered at x0 with radius d), Eq. (1.7) has a unique solution x(t, t0, x0) on
I = (t0− r, t0+ r), that is, the corresponding solutions exist on the common
interval I. See Figure 2.14.

( )

x

tt
0
-r t

0
t
0
+r

x
0
-d

x
0

x
0
+d

I

Figure 2.14: The solutions exist on a common interval

Proof. First, as the domain D is an open set, there exist positive constants
a, b, and d such that

R∗ = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b+ d} ⊂ D. (3.5)

For any x0 ∈ Bd(x0), since |x− x0| ≤ |x− x0|+ |x0 − x0| ≤ |x− x0|+ d,
we find that

R′ = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}
⊂ {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b+ d} = R∗ ⊂ D. (3.6)
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That is, when x0 changes in Bd(x0), the set R′ = {(t, x) : |t− t0| ≤ a,
|x− x0| ≤ b} is always in R∗, see Figure 2.15.
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Figure 2.15: Regions R∗ and R′

Now, for any x0 ∈ Bd(x0), the set R′ can be treated as the set R in
the proof of Theorem 2.2.7 to get a unique solution x(t, t0, x0) on I ′ =
(t0−r′, t0+r′), where r′ = min{a, b

M ′ } withM ′ = max(t,x)∈R′ |f(t, x)|. Next,

defineM = max(t,x)∈R∗ |f(t, x)|. ThenM ′ ≤M , so that r = min{a, b
M } ≤ r′

and r is independent of x0 ∈ Bd(x0). Therefore, the corresponding solutions
exist on the common interval I = (t0 − r, t0 + r). ♠

Theorem 2.3.2 also says that there is a correspondence, or a mapping,
from a point x0 ∈ Bd(x0) to its corresponding solution x(t, t0, x0) on I =
(t0 − r, t0 + r). That is, there exists r > 0 such that for x0 in a closed and
bounded set, the mapping

x0 −→ x(t, t0, x0), t ∈ I = (t0 − r, t0 + r), (3.7)

is well defined, which maps a point to a function, see Figure 2.16.
For example, in Example 2.3.1, for x0 ∈ [1, 2], the mapping is given by

x0 −→ x(t, t0, x0) =
x0

1− x0t
, t ∈ [0,

1

2
]. (3.8)
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Figure 2.16: A mapping from a point x0 to a function x(t, t0, x0)

The formula of the solution in (3.8) indicates that the mapping in (3.8)
is continuous with respect to x0 uniformly for t ∈ [0, 1

2 ], which we explain
and prove for general cases next.

Theorem 2.3.3 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×ℜn

and satisfies a Lipschitz condition (or weak or local Lipschitz condition) with
respect to x on D. Let (t0, x0) ∈ D. Then there exist constants d > 0
and r > 0 such that the mapping described above in (3.7) is continuous.
That is, the solution x(t, t0, x0) is continuous with respect to x0 ∈ Bd(x0)
in the following sense: If y, x0 ∈ Bd(x0), then x(t, t0, y) and x(t, t0, x0) are
solutions of Eq. (1.7), and

lim
y→x0

x(t, t0, y) = x(t, t0, x0) (3.9)

uniformly for t ∈ I = (t0 − r, t0 + r). See Figure 2.17.

Proof. Let y, x0 ∈ Bd(x0), then from Theorem 2.3.2 and Lemma 2.2.1,
x(t, t0, y) and x(t, t0, x0) are solutions of Eq. (1.7) and are given by

x(t, t0, y) = y +

∫ t

t0
f(s, x(s, t0, y))ds, t ∈ I, (3.10)

x(t, t0, x0) = x0 +

∫ t

t0
f(s, x(s, t0, x0))ds, t ∈ I. (3.11)
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Figure 2.17: Continuity of the mapping with respect to x0

Next, we assume a Lipschitz condition (with constant k) and t ≥ t0,
(other cases are similar). Then we get

|x(t, t0, y)− x(t, t0, x0)| ≤ |y − x0|+
∫ t

t0
|f(s, x(s, t0, y))−f(s, x(s, t0, x0))|ds

≤ |y − x0|+ k

∫ t

t0
|x(s, t0, y)− x(s, t0, x0)|ds, (3.12)

hence, Gronwall’s inequality implies

|x(t, t0, y)− x(t, t0, x0)| ≤ |y − x0|ek(t−t0) ≤ |y − x0|ekr, t ∈ I, (3.13)

which implies that (3.9) is true uniformly for t ∈ I = (t0 − r, t0 + r). This
completes the proof. ♠

The above is the continuous dependence of solutions with respect
to x0. Next, let’s look at the continuous dependence of solutions with respect
to (t0, x0), that is, we will now allow t0 to change. Using the same idea as in
the proof of Theorem 2.3.2, we can verify that when (t0, x0) changes a little,
the corresponding solutions exist on intervals of the same length.

Theorem 2.3.4 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×ℜn

and satisfies a Lipschitz condition (or weak or local Lipschitz condition) with
respect to x on D. Let (t0, x0) ∈ D. Then there exist constants c > 0, d > 0,
and r > 0 such that for any (t0, x0) ∈ (t0− c, t0+ c)×Bd(x0), Eq. (1.7) has
a unique solution x(t, t0, x0) on I = (t0−r, t0+r), that is, the corresponding
solutions exist on the intervals of the same length 2r. See Figure 2.18.
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Figure 2.18: The solutions exist on the intervals of the same length 2r

Proof. Similar to the proof of Theorem 2.3.2, there exist positive constants
a, b, c, and d such that

R∗
1 = {(t, x) : |t− t0| ≤ a+ c, |x− x0| ≤ b+ d} ⊂ D. (3.14)

Now, for any (t0, x0) ∈ (t0 − c, t0 + c)×Bd(x0), the set

R′ = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}
⊂ {(t, x) : |t− t0| ≤ a+ c, |x− x0| ≤ b+ d} = R∗

1 ⊂ D. (3.15)

That is, when t0 changes in (t0− c, t0+ c) and x0 changes in Bd(x0), the set
R′ = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b} is always in R∗

1, see Figure 2.19.

The rest of the proof is the same as in Theorem 2.3.2, hence the proof is
complete. ♠

The next result says that a common interval can be constructed for these
solutions, and on this common interval, these solutions are continuous with
respect to (t0, x0).

Theorem 2.3.5 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×ℜn

and satisfies a Lipschitz condition (or weak or local Lipschitz condition) with
respect to x on D. Let (t0, x0) ∈ D. Then there exist constants δ > 0, δ′ > 0,
and d > 0 such that the solutions of Eq. (1.7) with (t0, x0) ∈ (t0−δ, t0+δ)×
Bd(x0) exist on a common interval I = (t0 − δ′, t0 + δ′). And the solution
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Figure 2.19: Regions R∗
1 and R′

x(t, t0, x0) is continuous with respect to (t0, x0) ∈ (t0 − δ, t0 + δ) × Bd(x0)
in the following sense: If (τ, y), (t0, x0) ∈ (t0 − δ, t0 + δ)×Bd(x0), then

lim
(τ,y)→(t0,x0)

x(t, τ, y) = x(t, t0, x0) (3.16)

uniformly for t ∈ I = (t0 − δ′, t0 + δ′). See Figure 2.20.

Proof. Let the positive constants c, d, and r be from Theorem 2.3.4 and
let 0 < δ < min{r, c} and define δ′ = r − δ > 0. Then the solutions of Eq.
(1.7) with (t0, x0) ∈ (t0 − δ, t0 + δ) × Bd(x0) exist on the common interval
I = (t0 − δ′, t0 + δ′) because I ⊂ (t0 − r, t0 + r).

To prove the continuity, let (τ, y), (t0, x0) ∈ (t0− δ, t0+ δ)×Bd(x0) and
note from Lemma 2.2.1 that solutions x(t, τ, y) and x(t, t0, x0) are given by

x(t, τ, y) = y +

∫ t

τ
f(s, x(s, τ, y))ds, t ∈ I, (3.17)

x(t, t0, x0) = x0 +

∫ t

t0
f(s, x(s, t0, x0))ds, t ∈ I. (3.18)

Next, we assume a Lipschitz condition (with constant k) and t ≥ t0 ≥ τ ,
(other cases are similar). From the proof of Theorem 2.3.4, solutions x(t, τ, y)
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Figure 2.20: Solutions are continuous with respect to (t0, x0)

and x(t, t0, x0) are in a closed and bounded set R∗
1 defined in (3.14), hence

there is a M > 0 such that |f(t, x(t, τ, y))| ≤ M, t ∈ I. Then we get, for
t ∈ I,

|x(t, τ, y)− x(t, t0, x0)| ≤ |y − x0|+
∫ t0

τ
|f(s, x(s, τ, y))|ds

+

∫ t

t0
|f(s, x(s, τ, y))− f(s, x(s, t0, x0))|ds

≤ |y − x0|+M |t0 − τ |+k
∫ t

t0
|x(s, τ, y)−x(s, t0, x0)|ds,

hence, Gronwall’s inequality implies

|x(t, τ, y)− x(t, t0, x0)| ≤
(
|y − x0|+M |t0 − τ |

)
ek(t−t0)

≤
(
|y − x0|+M |t0 − τ |

)
ek2r, t ∈ I,

which implies that (3.16) is true uniformly for t ∈ I = (t0− δ′, t0+ δ′). This
completes the proof. ♠

Finally, since a solution x(t, t0, x0) is also continuous in t, and, accord-
ing to Theorem 2.3.5, is continuous in (t0, x0) uniformly for t, we have the
following result stating that x(t, t0, x0) is a continuous function in its three
variables (t, t0, x0), the proof is left as an exercise.
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Theorem 2.3.6 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×ℜn

and satisfies a Lipschitz condition (or weak or local Lipschitz condition) with
respect to x on D. Let (t0, x0) ∈ D. Then there exist constants δ > 0, δ′ > 0,
and d > 0 such that the solution x(t, t0, x0) of Eq. (1.7) is a continuous
function in its variables (t, t0, x0) in (t0−δ′, t0+δ′)×(t0−δ, t0+δ)×Bd(x0).
That is, if (t1, t0, x0), (t2, τ, y) ∈ (t0 − δ′, t0 + δ′)× (t0 − δ, t0 + δ)×Bd(x0),
then

lim
(t2,τ,y)→(t1,t0,x0)

x(t2, τ, y) = x(t1, t0, x0). ♠ (3.19)

In applications, the process of collecting initial values involve some errors.
For example, when weighing one gallon of water, there is no guarantee that
the measurement is exactly one gallon every time. That is, in applications,
real data always have some inherent uncertainty and initial values taken
from real data are never known precisely. Theorems 2.3.3, 2.3.5, and 2.3.6
indicate that if the initial error is small, or if the situation changes a little,
then the corresponding solution changes a little, or the change is continuous.
Differential equations have this good property so they can be used to model
real situations effectively. This continuity property is studied here for t on
a finite interval. Later, we will study a stronger version of this property,
called stability, which is basically the same “continuity” property but for t
on [t0, ∞).

Next, we look at the differential equations with parameter,

x′(t) = f(t, x(t), µ), x(t0) = x0, (3.20)

where µ is a parameter in a domain D0 ⊂ ℜk, k ≥ 1. We have already
seen these type of differential equations. For example, in Chapter 1, the
logistic equation x′ = ax[C − x] can be regarded as a differential equation
with parameters a and C; the Lotka-Volterra competition equation can be
regarded as a differential equation with parameters β1, µ1, β2, µ2; and the
motion of a simple pendulum can be regarded as a differential equation with
parameters k and q.

Differential equations with parameters are very important in applica-
tions, especially in control theory and bifurcation. For example, for equation
x′ = µ− x2 where µ is a parameter (regarded as a control parameter of the
system), we have seen in Example 1.3.2 of Section 3 in Chapter 1 that when
µ is varied, critical points (solutions of x′ = 0) can be created and destroyed,
thus bifurcations will occur.
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In Eq. (3.20), for each fixed µ ∈ D0, it is assumed that f(t, x, µ) satisfies
the same conditions as in Picard’s existence and uniqueness theorem 2.2.7.
In other words, when µ is fixed, Eq. (3.20) is treated as a regular differential
equation without a parameter. Thus, for each (t0, x0, µ), we immediately
have the existence and uniqueness of a solution

x(t) = x(t, t0, x0, µ)

for Eq. (3.20). Now, from the results of Theorem 2.3.3, we expect the
solution x(t) = x(t, t0, x0, µ) to be continuous with respect to (x0, µ) in the
sense described in Theorem 2.3.3. For example, for the logistic equation
x′ = ax[C − x] where a and C are regarded as parameters, the solution

x(t) =
Cx0

x0 + [C − x0]e−aC(t−t0)
, t ≥ t0, (3.21)

given in Chapter 1 is certainly continuous in a and C. Let’s look at one
more example.

Example 2.3.7 Similar to Example 2.3.1, let’s consider the scalar differen-
tial equation,

x′ = µx2, x(0) = x0 > 0, µ ∈ (0,∞), t ≥ 0. (3.22)

For any fixed µ ∈ (0,∞), the solution is given by

x(t) =
x0

1− µx0t
, (3.23)

therefore, it is defined on interval

[0,
1

µx0
). (3.24)

If x0 or µ changes arbitrarily, then similar to Example 2.3.1, the cor-
responding solutions cannot exist on a common interval. However, if x0
and µ change slightly, say for example x0 ∈ [1, 2] and µ ∈ [3, 4], then
1

µx0
≥ 1

4×2 = 1
8 . Therefore, the corresponding solutions now exist on a

common interval [0, 1
8 ], and (3.23) indicates that in this case the solution is

continuous with respect to (x0, µ) uniformly for t ∈ [0, 1
8 ]. ♠

In general, we have the following result.
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Theorem 2.3.8 Assume that f(t, x, µ) is continuous on a domain D×D0 ⊂
ℜ× ℜn × ℜk (D is from Theorem 2.2.7) and satisfies a Lipschitz condition
(or weak or local Lipschitz condition) with respect to x on D × D0, where
the Lipschitz constant k is independent of µ, that is,

|f(t, x, µ)− f(t, y, µ)| ≤ k|x− y|

for all µ ∈ D0. Let (t0, x0) ∈ D and let D00 ⊂ D0 be any closed and
bounded set. Then there exist constants d > 0 and r > 0 such that for any
x0 ∈ Bd(x0) and any µ ∈ D00, Eq. (3.20) has a unique solution x(t, t0, x0, µ)
on I = (t0−r, t0+r). Moreover, the solution x(t, t0, x0, µ) is continuous with
respect to (x0, µ) ∈ Bd(x0) ×D00 in the following sense: if (y, λ), (x0, µ) ∈
Bd(x0)×D00, then

lim
(y,λ)→(x0,µ)

x(t, t0, y, λ) = x(t, t0, x0, µ) (3.25)

uniformly for t ∈ I = (t0 − r, t0 + r).

Proof. The proof of the first conclusion (existence and uniqueness) is similar
to that of Theorem 2.3.2, because now we can find positive constants a, b,
and d such that

R⋆ = {(t, x, µ) : |t− t0| ≤ a, |x− x0| ≤ b+ d, µ ∈ D00} ⊂ D ×D0.

Then we define M = max(t,x,µ)∈R⋆ |f(t, x, µ)| to get I = (t0 − r, t0 + r) with

r = min{a, b
M }.

To get the second conclusion (continuity), let (y, λ), (x0, µ) ∈ Bd(x0) ×
D00. Note from Lemma 2.2.1 that solutions x(t, t0, y, λ) and x(t, t0, x0, µ)
are given by

x(t, t0, y, λ) = y +

∫ t

t0
f(s, x(s, t0, y, λ), λ)ds, t ∈ I, (3.26)

x(t, t0, x0, µ) = x0 +

∫ t

t0
f(s, x(s, t0, x0, µ), µ)ds, t ∈ I. (3.27)

In the following, we assume a Lipschitz condition (with constant k) and
t ≥ t0, because other cases are similar. Then we get, for t ∈ I,

|x(t, t0, y, λ)− x(t, t0, x0, µ)|

≤ |y − x0|+
∫ t

t0
|f(s, x(s, t0, y, λ), λ)− f(s, x(s, t0, x0, µ), µ)|ds
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≤ |y − x0|+
∫ t

t0
|f(s, x(s, t0, y, λ), λ)− f(s, x(s, t0, x0, µ), λ)

+f(s, x(s, t0, x0, µ), λ)− f(s, x(s, t0, x0, µ), µ)|ds

≤ |y − x0|+ k

∫ t

t0
|x(s, t0, y, λ)− x(s, t0, x0, µ)|ds

+

∫ t

t0
|f(s, x(s, t0, x0, µ), λ)− f(s, x(s, t0, x0, µ), µ)|ds

≤ |y − x0|+ k|t− t0|max
s∈I

|x(s, t0, y, λ)− x(s, t0, x0, µ)|

+ |t− t0|max
s∈I

|f(s, x(s, t0, x0, µ), λ)− f(s, x(s, t0, x0, µ), µ)|

≤ |y − x0|+ krmax
s∈I

|x(s, t0, y, λ)− x(s, t0, x0, µ)|

+ rmax
s∈I

|f(s, x(s, t0, x0, µ), λ)− f(s, x(s, t0, x0, µ), µ)|. (3.28)

Next, we require r to be small such that kr ≤ 1
2 . Then (3.28) becomes

1

2
max
t∈I

|x(t, t0, y, λ)− x(t, t0, x0, µ)| ≤ |y − x0|

+ rmax
s∈I

|f(s, x(s, t0, x0, µ), λ)− f(s, x(s, t0, x0, µ), µ)|. (3.29)

Now, as f(s, x(s, t0, x0, µ), λ) is continuous for (s, λ) in the closed and
bounded set [t0 − r, t0 + r] × D00, it is uniformly continuous. Therefore,
taking a limit as (y, λ) → (x0, µ) in (3.29), we get

lim
(y,λ)→(x0,µ)

1

2
max
t∈I

|x(t, t0, y, λ)− x(t, t0, x0, µ)| ≤ lim
(y,λ)→(x0,µ)

{
|y − x0|

+ rmax
s∈I

|f(s, x(s, t0, x0, µ), λ)− f(s, x(s, t0, x0, µ), µ)|
}
= 0,

which completes the proof. ♠

Another way to see why Theorem 2.3.8 is true is to use the fact that µ
is fixed, such that we can rewrite Eq. (3.20) as

x′(t) = f(t, x(t), µ(t)),
µ′(t) = 0,
x(t0) = x0, µ(t0) = µ.

(3.30)

That is, we “stack” the parameter µ (in ℜk) to x and come up with a
differential equation about (x, µ) in ℜn+k where µ is actually a constant.
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Now, Eq. (3.30) is a differential equation in the variables (x, µ) ∈ ℜn+k

without parameters, so Eq. (3.30) can be regarded as a special case of the
general differential equation (1.7). Thus Theorems 2.3.2 and 2.3.3 can be
applied to obtain the continuity of solutions of Eq. (3.30) with respect to
(x(t0), µ(t0)) = (x0, µ), which is the same as the continuity of solutions of
Eq. (3.20) with respect to (x0, µ). But, anyway, we proved Theorem 2.3.8
directly in case you want to see a “real proof” dealing with parameters.

The continuity of solutions of Eq. (3.20) with respect to (t, t0, x0, µ) is
left as an exercise.

Next, we verify that if f(t, x, µ) is continuously differentiable with respect
to (x, µ), then x(t, t0, x0, µ) is also continuously differentiable with respect to
(x0, µ), which is certainly the case for the solutions given in Examples 2.3.1
and 2.3.7. To this end, we introduce the following result which is a useful
replacement of the mean value theorem of scalar functions when dealing with
vector functions.

Lemma 2.3.9 Assume f(t, x) : ℜ×D1 ⊂ ℜ×ℜn → ℜn, and has continuous
partial derivatives, where x = (x1, x2, · · · , xn) and the domain D1 ⊂ ℜn is
convex, that is, x1, x2 ∈ D1 implies λx1 + (1 − λ)x2 ∈ D1 for 0 ≤ λ ≤ 1.
Then there exist continuous (vector) functions fk(t, x1, x2), k = 1, · · · , n, on
ℜ×D1 ×D1 such that

fk(t, x, x)=
∂f

∂xk
(t, x), f(t, x2)− f(t, x1)=

n∑
k=1

fk(t, x1, x2)(x
k
2 − xk1). (3.31)

The functions fk are given by

fk(t, x1, x2) =

∫ 1

0

∂f

∂xk
(t, sx2 + (1− s)x1)ds. (3.32)

Proof. Now, we can define F (s) = f(t, sx2 + (1 − s)x1) for s ∈ [0, 1] and
x1, x2 ∈ D1. Then

F ′(s) =
n∑

k=1

(xk2 − xk1)
∂f

∂xk
(t, sx2 + (1− s)x1).

Thus we obtain, for fk defined in (3.32),

f(t, x2)− f(t, x1) = F (1)− F (0) =

∫ 1

0
F ′(s)ds
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=
n∑

k=1

(xk2 − xk1)

∫ 1

0

∂f

∂xk
(t, sx2 + (1− s)x1)ds

=
n∑

k=1

fk(t, x1, x2)(x
k
2 − xk1),

which gives (3.31). This completes the proof. ♠

Theorem 2.3.10 Assume that f(t, x, µ) is continuous on D × D0 ⊂ ℜ ×
ℜn × ℜk (D is from Theorem 2.2.7) and is continuously differentiable with
respect to (x, µ), then the solution x(t, t0, x0, µ) of Eq. (3.20) is continuously
differentiable with respect to (x0, µ) in its interval of existence.

Proof. We have seen that Eq. (3.20) can be reformulated as Eq. (3.30)
without parameters, and Eq. (3.30) can be regarded as a special case of the
general Eq. (1.7), thus we only need to prove the results for Eq. (1.7), which
in turn implies the corresponding results for the solutions of Eq. (3.20).
That is, let (t0, η) ∈ D and let x(t, t0, η) be the solution of Eq. (1.7) with
x(t0) = η, then we need to prove that x(t, t0, η) is continuously differentiable

with respect to η, or ∂x(t,t0,η)
∂ηi

exists and is continuous in η for i = 1, 2, · · · , n.
Notice from Theorem 2.3.2 that there is an r > 0 such that for sufficiently

small scalar h,

xh(t) = x(t, t0, η + hei) (3.33)

is a solution (passing through (t0, η + hei)) defined on I = (t0 − r, t0 + r),
where {ei} is the standard unit basis of ℜn. From Theorem 2.3.3,

xh(t) → x(t) = x(t, t0, η), h→ 0, (3.34)

uniformly on the interval I. Define

wh(t) =
xh(t)− x(t)

h
, h ̸= 0, (3.35)

then, to prove the existence and continuity of ∂x(t,t0,η)
∂ηi

, we need to prove
that limh→0wh(t) exists and is continuous in η.

Now, using Lemma 2.3.9,

w′
h(t) =

1

h
[xh(t)− x(t)]′ =

1

h
[f(t, xh(t))− f(t, x(t))]
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=
1

h

n∑
k=1

fk(t, x(t), xh(t))[x
k
h(t)− xk(t)] (3.36)

def
= A(t;h)

1

h
[xh(t)− x(t)]

= A(t;h)wh(t), (3.37)

where A(t;h) is the matrix from (3.36) such that the kth column is the vector
fk(t, x(t), xh(t)). Thus, for h ̸= 0, wh(t) is a solution of the homogeneous
linear differential equation with a parameter h,

y′(t) = A(t;h)y(t), y(t0) = ei. (3.38)

For Eq. (3.38), h can be zero, in which case we have, from Lemma 2.3.9,

A(t;h)|h=0 = A(t; 0) =
∂f

∂x

(
t, x(t)

)
=
∂f

∂x

(
t, x(t, t0, η)

)
. (3.39)

Now, the proof in Theorems 2.2.7 and 2.3.2 indicate that for r and h
small, the solutions x(t) = x(t, t0, η) and xh(t) = x(t, t0, η + hei) are all

inside a closed, bounded, and convex set R ⊂ D. Moreover, ∂f(t, x)
∂x is con-

tinuous and hence is bounded on R, thus the matrix A(t;h) is continuous
and bounded for t ∈ I = (t0−r, t0+r) when h is small, and A(t;h) → A(t; 0)
as h → 0. Therefore, on (t0 − r, t0 + r)× ℜn, Eq. (3.38) satisfies a (global)
Lipschitz condition independently of small parameter h. Hence, Theorem
2.3.8 implies that the solutions of Eq. (3.38) are continuous with respect to
the parameter h. That is, when the parameter h → 0, the unique solution
wh(t) of Eq. (3.38) satisfies

wh(t) → w(t), h→ 0, (3.40)

where w(t) is the unique solution of Eq. (3.38) with h = 0, that is, w(t) is
the unique solution of

w′(t) = A(t; 0)w(t) =
[∂f
∂x

(
t, x(t, t0, η)

)]
w(t), w(t0) = ei. (3.41)

Therefore, x(t, t0, η) has a partial derivative with respect to η since
limh→0wh(t) = w(t) exists. To get the continuity of this derivative, we
need to check the continuity of w(t) with respect to η. To this end, we can
regard Eq. (3.41) as an equation with the parameter η and apply Theorem
2.3.8 again to obtain the continuity of w(t) with respect to η. This completes
the proof. ♠
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Corollary 2.3.11 Assume that f(t, x) is continuous in (t, x) and continu-
ously differentiable in x ∈ ℜn, then the corresponding solution x = x(t, t0, x0)
(in its interval of existence) is continuously differentiable in x0, and the n×n
matrix J(t, t0, x0) =

∂x(t, t0, x0)
∂x0

is the solution of

J ′(t, t0, x0) =
∂f

∂x
(t, x(t, t0, x0))J(t, t0, x0), J(t0, t0, x0) = E,

where E is the n× n unit or identity matrix. ♠

The differentiability of solutions with respect to t0 is left as an exercise.
In fact, if f is analytic, as are the cases in most applications, then the
corresponding solutions are also analytic. Use Picard’s approximations to
prove this and argue that each successive approximation is analytic, and
hence a solution, which is the uniform limit of these analytic functions, is
also analytic. We leave it to you to find the conditions and formulate and
prove the results.

Exercises 2.3

1. Consider

x′(t) = F (t, x(t)), x(t0) = x0, t ∈ [t0, t0 + T ],

y′(t) = G(t, y(t)), y(t0) = y0, t ∈ [t0, t0 + T ].

If |F (t, w) − G(t, w)| ≤ ε, and F or G satisfies a Lipschitz condition,
then show that

|x(t)− y(t)| ≤ [|x0 − y0|+ εT ]eTk,

where k is the corresponding Lipschitz constant. Roughly speaking,
this result says that if |x0−y0| → 0 and |F −G| → 0, then |x−y| → 0.

2. Let {fm(t, x)} be a sequence of continuous functions defined on R =
{(t, x) : |t− t0| ≤ a, |x− x0| ≤ b} for some positive constants a and b,
and let xm(t) be a solution of

x′m(t) = fm(t, xm(t)), xm(tm) = x0m, t ∈ [t0 − a, t0 + a],

where tm → t0, x
0
m → x0 as m→ ∞. If

f(t, x) = lim
m→∞

fm(t, x)
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uniformly on R and if

x′(t) = f(t, x(t)), x(t0) = x0,

has a unique solution x on [t0 − a, t0 + a], then show that

x(t) = lim
m→∞

xm(t)

uniformly on [t0 − a, t0 + a].

3. Prove Theorem 2.3.6.

4. Formulate the conditions and prove the continuity of solutions with
respect to (t, t0, x0, µ).

5. Formulate the conditions and prove the differentiability of solutions
with respect to t0.

6. Formulate the conditions and prove the analyticity of solutions when
f is analytic.

7. Can you prove the continuity and differentiability of solutions with
respect to the variables using Picard’s approximations?

8. Prove Corollary 2.3.11.

2.4 Maximal Interval of Existence

From Theorem 2.2.7, we know that under some Lipschitz conditions, the
differential Eq. (1.7) has a unique solution x(t) = x(t, t0, x0) on an interval
I = (t0 − r, t0 + r) for some r > 0. However, x(t) may exist on an interval
that is larger than I = (t0 − r, t0 + r), or x(t) may even exist on the whole
t-interval (−∞,∞).

For example, for the differential equation x′(t) = x2(t), x(0) = 1, in
Example 2.2.8, using the region R selected there, we derive r ≤ 1

4 , thus,
I = (t0 − r, t0 + r) ⊂ (−1

4 ,
1
4). However, the solution is given by x(t) =

(1− t)−1 and hence is defined on the interval (−∞, 1). The solutions of the
linear differential equation x′(t) = k(t)x(t) + f(t) given in Chapter 1 exist
on (−∞,∞).

Therefore, the question here is: What is the largest interval on which
x(t) is a unique solution? To answer this question, we first define what do
we mean by “the largest interval.”



90 Chapter 2. Existence and Uniqueness

Definition 2.4.1 For a differential equation (such as Eq. (1.7)), if x(t) is
a unique solution defined on an interval q, and if there is no interval p such
that q ⊂ p, q ̸= p, and x(t) is also a unique solution of the same differential
equation on p, then q is called the maximal interval of existence of x(t).

In other words, q is the largest or maximal interval of existence of a
solution x if there is no interval of existence of x that properly contains
q. In applications in biology, chemistry, and physics, the variable t in a
differential equation means the “time,” and “time goes on.” So in this section
we sometimes only consider the maximal interval of existence of a solution
to the right-hand side of an “initial time,” such as t0 in Eq. (1.7). The same
results can be obtained to the left-hand side as well.

In order to find the maximal intervals of existence, let’s look at the
following situation: If x(t) is a solution of an equation which is defined on
a domain D, and if (t, x(t)) has a limit that is inside the domain D when
t approaches a finite value, then this limit of (t, x(t)) can be regarded as
an initial point from which another solution u(t) can be derived. Now, we
may glue the two solutions x(t) and u(t) such that x(t) can be extended.
Accordingly, we have the following result.

Theorem 2.4.2 (Extension) Assume that f(t, x) is continuous on a do-
main D ⊂ ℜ × ℜn and satisfies a Lipschitz condition (or weak or local
Lipschitz condition) with respect to x on D. Let (t0, x0) ∈ D and let x(t) =
x(t, t0, x0) be the unique solution of Eq. (1.7) on an interval [t0, d) with
d < ∞. If limt→d− x(t) exists with (d, xd) ∈ D, where xd = limt→d− x(t),
then there exists a δ > 0 such that x(t) can be extended to become a unique
solution of Eq. (1.7) on [t0, d+ δ). That is, there is a function y(t) defined
on [t0, d+ δ) such that y(t) is the unique solution of Eq. (1.7) on [t0, d+ δ),
and y(t) = x(t) for t ∈ [t0, d). See Figure 2.21.

Proof. Since (d, xd) ∈ D, we can treat (d, xd) as an initial point in Theorem
2.2.7 to conclude that there exists a δ > 0 and a unique solution u(t) on
[d, d+ δ) with u(d) = xd. Now we “glue x(t) and u(t) together” (see Figure
2.21) by defining

y(t) =

{
x(t), t ∈ [t0, d),
u(t), t ∈ [d, d+ δ).

(4.1)

For t ∈ [t0, d), y
′(t) = x′(t) = f(t, x(t)) = f(t, y(t)); for t ∈ (d, d +

δ), y′(t) = u′(t) = f(t, u(t)) = f(t, y(t)). Next, let’s check the derivative of
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(d,x
d 
)

t
0

d d + δ

Figure 2.21: Glue x(t) and u(t) together

y(t) at t = d. To do this, we observe that

for t ∈ [t0, d) : y(t) = x(t) = x0 +

∫ t

t0
f(s, x(s))ds

= [x0 +

∫ d

t0
f(s, x(s))ds] +

∫ t

d
f(s, x(s))ds

= lim
t→d−

x(t) +

∫ t

d
f(s, x(s))ds

= xd +

∫ t

d
f(s, x(s))ds

= y(d) +

∫ t

d
f(s, y(s))ds, (4.2)

for t ∈ (d, d+ δ) : y(t) = u(t) = xd +

∫ t

d
f(s, u(s))ds

= y(d) +

∫ t

d
f(s, y(s))ds, (4.3)

which, by using the mean value theorem for integration, implies that the
left and the right derivatives of y(t) at t = d are both given by f(d, y(d))
(see an exercise). Thus we have verified that y(t) is a solution of Eq. (1.7)
on [t0, d + δ). The uniqueness of y(t) can be shown in the same way as in
Theorem 2.2.7. ♠

Theorem 2.4.2 indicates that to find the maximal intervals of existence,
we only need to look at open intervals, because closed intervals can be ex-
tended. Now we are ready to prove that the maximal intervals of existence
do exist.
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Theorem 2.4.3 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×ℜn

and satisfies a Lipschitz condition (or weak or local Lipschitz condition) with
respect to x on D. Let (t0, x0) ∈ D and let x(t) = x(t, t0, x0) be the unique
solution of Eq. (1.7). Then there exist constants α ≥ −∞ and β ≤ ∞
such that t0 ∈ (α, β) and (α, β) is the maximal interval of existence of x(t).
Moreover, α and β depend continuously on (t0, x0).

Proof. From Theorem 2.2.7, we know that there exists an r > 0 such that
Eq. (1.7) has a unique solution x(t) = x(t, t0, x0) on (t0 − r, t0 + r). Hence
the following collection of intervals

K={I=(a, b) : t0∈I, x(t, t0, x0) is a unique solution of Eq.(1.7) on I},(4.4)

is nonempty (here, every element in K is an interval). In (4.4), we only use
open intervals because from Theorem 2.4.2, closed intervals can be extended.
Let’s consider the union of these intervals in ℜ,

I∗ =
∪
I∈K

I, (4.5)

given in Figure 2.22.

t
0

b
1 b

2

t

( )( )
a
1 a

2

Figure 2.22: The union of the intervals in (4.4)

From the construction of I∗, we find that there is no such interval I ′ that
I∗ ⊂ I ′, I ′ ̸= I∗, and x(t) is a unique solution of Eq. (1.7) on I ′. Therefore,
all we need is to verify that x(t) = x(t, t0, x0) is a unique solution of Eq.
(1.7) on I∗ and I∗ has the form of (α, β) for some constants α ≥ −∞ and
β ≤ ∞, that is, I∗ must be an open interval.

First, t0 ∈ I∗ from (4.4)–(4.5). And we will only consider the structure
of I∗ on the right-hand side of t0 and leave the structure on the left-hand
side as an exercise. We need to consider two cases.

The first case is that there exist intervals Im = (am, bm) ∈ K such
that limm→∞ bm = ∞. Then for any t0 ∈ [t0,∞), there is an N such that



2.4. Maximal Interval of Existence 93

t0 ∈ [t0, bN ), and x(t) is a unique solution of Eq. (1.7) on [t0, bN ). Therefore,
x(t) is a solution of Eq. (1.7) on [t0,∞). If y(t) is another solution of Eq.
(1.7) on [t0,∞), then on any [t0, bn), we must have x(t) = y(t) since x(t) is
the only solution on [t0, bn). Thus, x(t) is a unique solution of Eq. (1.7) on
[t0,∞), in which case, we define β = ∞.

The second case is that all the right-end values of the intervals in K are
bounded by a finite value, that is,

b∗ = sup
(a,b)∈K

b <∞. (4.6)

Now, there exist intervals Im = (am, bm) ∈ K such that limm→∞ bm = b∗.
Similar to the case of limm→∞ bm = ∞ discussed above, we conclude that
x(t) is a unique solution of Eq. (1.7) on [t0, b

∗). Now, we define β = b∗

and claim that [t0, β) is the maximal interval of existence on the right-hand
side of t0, since x(t) cannot exist on any interval that is beyond b∗ in view
of (4.6). The continuity of α and β on (t0, x0) is left as an exercise. This
completes the proof. ♠

Theorem 2.4.2 also indicates that a solution can be extended further if
there is no “barrier.” In fact, utilizing the notion of a weak Lipschitz condi-
tion, we obtain the following “global existence” result for differential equa-
tions defined on ℜ× ℜn, which can be applied directly to linear differential
equations (see Example 2.2.10).

Theorem 2.4.4 (Global existence) Assume that f(t, x) is continuous on
ℜ×ℜn and satisfies a weak Lipschitz condition with respect to x on ℜ×ℜn.
Let x(t) = x(t, t0, x0) be the unique solution of Eq. (1.7) on its maximal
interval of existence (α, β). Then α = −∞, β = ∞.

Proof. We only prove β = ∞, since the case for α is similar. We will use
the method of proof by contradiction, that is, we assume β < ∞ and
then derive a contradiction.

Suppose β <∞. We first show that x(t) is bounded for t ∈ [t0, β). From
Lemma 2.2.1 and a weak Lipschitz condition,

|x(t)− x0| = |
∫ t

t0
f(s, x(s))ds|

≤ |
∫ t

t0
[f(s, x(s))− f(s, x0)]ds|+ |

∫ t

t0
f(s, x0)ds|

≤
∫ t

t0
k(s)|x(s)− x0|ds+|

∫ t

t0
f(s, x0)ds|, t ∈ [t0, β), (4.7)
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(where k(t) is from a weak Lipschitz condition.) Since x0 is fixed, there
exists a constant M > 0 such that

k(s) ≤M, |f(s, x0)| ≤M, s ∈ [t0, β]. (4.8)

Thus (4.7) becomes

|x(t)− x0| ≤M(β − t0) +M

∫ t

t0
|x(s)− x0|ds, t ∈ [t0, β), (4.9)

hence, Gronwall’s inequality implies that

|x(t)− x0| ≤M(β − t0) exp
(
M(β − t0)

)
, t ∈ [t0, β), (4.10)

therefore, x(t) is bounded for t ∈ [t0, β).
Next, we show that limt→β− x(t) exists. The boundedness of x(t) for

t ∈ [t0, β) from (4.10) implies that the closure

{(t, x(t)) : t ∈ [t0, β)} (4.11)

is bounded in ℜ×ℜn. Therefore, since a continuous function on a bounded
and closed set is bounded, f(t, x(t)) is bounded for t ∈ [t0, β). That is, there
exists a constant M1 > 0 such that

max
t∈[t0, β)

|f(t, x(t))| ≤M1. (4.12)

Then, using Lemma 2.2.1, we see that for t0 ≤ t1 ≤ t2 < β,

|x(t2)− x(t1)| =

∫ t2

t1
|f(s, x(s))|ds

≤ M1(t2 − t1), t0 ≤ t1 ≤ t2 < β. (4.13)

This property says that for any tm → β−, x(tm) is a Cauchy sequence
(consult a reference book if needed, such as Goldberg [1976]). Therefore,
limt→β− x(t) exists, and we denote it by xβ.

Now, (β, xβ) is a finite point in ℜ×ℜn, hence the result of Theorem 2.4.2
can be applied to extend the solution x(t) to the right-hand side of β, which
contradicts the assumption that (α, β) is the maximal interval of existence
of x(t). Thus we must have β = ∞. This completes the proof. ♠

From the proof of Theorem 2.4.4, we see that the most important step is
to show (4.12), that is, f(t, x(t)) is bounded. Therefore, we also derive the
following result, whose proof is left as an exercise.
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Theorem 2.4.4.a (Global existence) Assume that f(t, x) is continuous
on ℜ × ℜn and satisfies a local Lipschitz condition with respect to x on
ℜ × ℜn, and that for some constant M > 0, |f(t, x)| ≤ M, (t, x) ∈ ℜ × ℜn.
Let x(t) = x(t, t0, x0) be the unique solution of Eq. (1.7) on its maximal
interval of existence (α, β). Then α = −∞, β = ∞. ♠

Theorem 2.4.4.a says that if the weak Lipschitz condition in Theorem
2.4.4 is reduced to a local Lipschitz condition, but an additional assumption
that f is bounded is assumed, then we still have the global existence. Next,
note that the solution of x′ = x2, x(0) = 1, exists only on (−∞, 1), and
f(t, x) = x2 satisfies only a local Lipschitz condition and is unbounded on ℜ×
ℜ. Therefore, it indicates that the weak Lipschitz condition in Theorem 2.4.4
cannot be weakened to a local Lipschitz condition, and that the boundedness
assumption in Theorem 2.4.4.a cannot be removed.

Now, let’s look at Example 2.2.10 again, where x′ = A(t)x + f(t) is an
equation in ℜn. We assume that A(t) and f(t) are continuous on ℜ so that
the equation is defined on ℜ × ℜn. Using Theorem 2.4.4, we immediately
obtain that solutions exist globally on ℜ. However, Theorem 2.4.4.a does
not apply well in this case, because now f(t, x) = A(t)x + f(t) may not be
bounded on ℜ× ℜn.

Theorems 2.4.4 and 2.4.4.a deal with differential equations defined on
ℜ × ℜn. However, we note from the proof of Theorem 2.4.4 that we have
actually shown the following interesting results that are useful when dealing
with differential equations defined on a general domain D ⊂ ℜ×ℜn.

Proposition 2.4.5 Assume that f(t, x) is continuous on a domain D ⊂
ℜ×ℜn and satisfies a weak Lipschitz condition with respect to x on D. Let
(t0, x0) ∈ D and let x(t) = x(t, t0, x0) be the unique solution of Eq. (1.7) on
an interval [t0, b) with b <∞. Then the following are true:

(P1). If k(t) (from a weak Lipschitz condition) and f(t, x0) are bounded for
t ∈ [t0, b), then x(t) is bounded for t ∈ [t0, b).

(P2). If {(t, x(t)) : t ∈ [t0, b)} is in D and is bounded, or if f(t, x(t)) is
bounded for t ∈ [t0, b), then limt→b− x(t) exists. ♠

A condition that guarantees Proposition 2.4.5(P2) is given below.

Proposition 2.4.6 Assume that f(t, x) is continuous on D, the closure of
D. Let y(t) be a function on a finite interval I such that (t, y(t)) ∈ D for
t ∈ I. If y(t) is bounded for t ∈ I, then f(t, y(t)) is bounded for t ∈ I.
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Proof. In this case, when y(t) is bounded on a finite interval I,

{(t, y(t)) : t ∈ I} is a closed and bounded set in D. Hence f(t, x) is bounded

on {(t, y(t)) : t ∈ I}, which implies that f(t, y(t)) is bounded for t ∈ I. ♠

To determine the structure of the maximal interval of existence (α, β)
for a general domain D ⊂ ℜ × ℜn, and also to determine the behavior of
solutions as t→ β−, we look at the following examples.

Example 2.4.7 We have seen that β = ∞ for linear differential equations
defined on ℜ. Next, for x′ = x2, x(0) = 1, defined on ℜ × ℜ, we have
(α, β) = (−∞, 1). That is, β = 1 < ∞. In this case, when t → β− = 1−,
one has limt→β− |x(t)| = limt→1−(1− t)−1 = ∞, see Figure 2.23. ♠

1 t

1

x

Figure 2.23: A case where limt→β− |x(t)| = ∞

Example 2.4.8 Consider x′ = x2, x(0) = 1, defined on D = ℜ × (−2, 2).
The solution is given by x(t) = (1−t)−1, thus if we solve x(t) = (1−t)−1 = 2,
we get t = 1

2 and conclude that the maximal interval of existence is (α, β) =
(−∞, 1

2), and
lim
t→β−

|x(t)| = lim
t→ 1

2

−
(1− t)−1 = 2.

Now, observe that (12 , 2) is on the boundary of the domain D = ℜ ×
(−2, 2), see Figure 2.24. ♠

We claim that the three cases described in Examples 2.4.7 and 2.4.8 are
all the possible cases. That is, we can prove the following result.
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Figure 2.24: A case where limt→β−(t, x(t)) is a boundary point

Theorem 2.4.9 Assume that f(t, x) is continuous on a domain D ⊂ ℜ ×
ℜn and satisfies a weak Lipschitz condition with respect to x on D, and
assume further that f(t, x) is continuous on D (or assume that for every
finite interval I, f(t, y(t)) is defined and bounded on I for every y(t) that
is defined and bounded on I, see Propositions 2.4.5 and 2.4.6). Let x(t) =
x(t, t0, x0) be the unique solution of Eq. (1.7) on its maximal interval of
existence (α, β). Then one of the following three cases (given in Figure
2.25) must happen:

(C1). β = ∞.

(C2). β <∞, and there exists tm → β− as m→ ∞ such that limm→∞ |x(tm)|
= ∞.

(C3). β < ∞, and limt→β−(t, x(t)) exists as a finite point in ℜ × ℜn, and
this point lies on the boundary of D.

Proof. If (C1) and (C2) do not happen, then β < ∞ and x(t) remains
bounded on [t0, β). From the assumption and Proposition 2.4.6, f(t, x(t))
is bounded on [t0, β). Using Proposition 2.4.5(P2), we see that limt→β− x(t)
exists. Therefore, limt→β−(t, x(t)) exists as a finite point in ℜ × ℜn. This
point must lie on the boundary of D, because otherwise Theorem 2.4.2 (Ex-
tension) can be applied to extend the solution further to the right-hand side
of β, which contradicts the definition of β. This completes the proof. ♠
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Figure 2.25: Three cases for the maximal intervals of existence

Corollary 2.4.10 Assume that f(t, x) is continuous on ℜ×ℜn and satisfies
a weak Lipschitz condition with respect to x on ℜ×ℜn. If the unique solution
of Eq. (1.7) is bounded on any finite t interval, then it is defined on ℜ. ♠

From Proposition 2.4.5(P2) and the proof in Theorem 2.4.9, we find that
when f is bounded, further results can be obtained, which we state below.

Corollary 2.4.11 Assume that f(t, x) is continuous on a domain D ⊂ ℜ×
ℜn and satisfies a local Lipschitz condition with respect to x on D, and
assume further that f(t, x) is bounded on D. Let x(t) = x(t, t0, x0) be the
unique solution of Eq. (1.7) on its maximal interval of existence (α, β).
Then one of the following two cases must happen:

(D1). β = ∞.

(D2). β < ∞, and limt→β−(t, x(t)) exists as a finite point in ℜ × ℜn, and
this point lies on the boundary of D. ♠
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Remark 2.4.12 Note that f(t, x) = x2 in Example 2.4.7 satisfies a local
Lipschitz condition, thus Example 2.4.7 indicates that a local Lipschitz con-
dition cannot guarantee the global existence of solutions on (−∞,∞). Thus,
to get the global existence on (−∞,∞), many texts, such as Coddington and
Levinson [1955], Perko [1991], and Cronin [1994], assumed that either the
function f satisfies a (global) Lipschitz condition or f is bounded on ℜ×ℜn.
When this assumption is checked for the simplest case, that is, the linear
differential equation x′ = A(t)x + f(t), the boundedness of A(t)x does not
apply in ℜ × ℜn (because x is unbounded in ℜn); and the (global) Lips-
chitz condition would require that A(t) to be bounded on ℜ, which is too
strong and restrictive. Therefore, Theorem 2.4.4 of this book gives a better
result for the global existence on (−∞,∞) by utilizing the notion of a weak
Lipschitz condition, and this condition can be applied directly to the linear
differential equations x′ = A(t)x+ f(t) in ℜn. ♠

Note that in our later studies, such as stability, boundedness, and peri-
odicity for general differential equations, we will examine the “long term”
behavior of solutions and require that the solutions exist on [t0,∞) in those
studies.

Exercises 2.4

1. In the proof of Theorem 2.4.2, find the left and the right derivatives of
y(t) at t = d.

2. For x ∈ ℜ, determine the maximal interval of existence for

(a) x′ = x sin t, x(0) = a.

(b) x′ = x2, x(t0) = a.

(c) x′ = x2 − 3, x(t0) = a.

(d) x′ = x3, x(t0) = a.

(e) x′ = 1/x, x(t0) = a.

3. Determine the maximal interval of existence for the system x′1 =
x21, x

′
2 = x21 + x2.

4. For x′ = x(x − 1), x(0) = x0 ∈ ℜ, determine the maximal interval of
existence according to different x0 values.
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5. In the proof of Theorem 2.4.3, discuss the cases for the left-end point
α.

6. In the proof of Theorem 2.4.3, verify the continuity of α and β on
(t0, x0).

7. Prove that α = −∞ in Theorem 2.4.4.

8. Prove Theorem 2.4.4.a.

9. Prove Proposition 2.4.5.

10. Prove that the scalar equation

x′(t) =
e−x4 cos4 t

3 + t6 sin2 t
, x(t0) = x0,

has a unique solution on ℜ.

11. Let (α, β) be the maximal interval of existence of x of x′ = f(t, x).
If the arc length of {x(t) : 0 ≤ t < β} is finite, then prove that
limt→β− x(t) exists.

12. Prove Corollary 2.4.10.

13. Prove Corollary 2.4.11.

2.5 Fixed Point Method

Here, we provide a brief treatment showing that fixed point method can
be used to derive existence and uniqueness of solutions if a local Lipschitz
condition is satisfied; and, if a local Lipschitz condition is not assumed,
then we can still obtain existence of solutions, in which case, uniqueness is
not guaranteed. Since some knowledge of Functional Analysis is used, this
section may be optional.

Let f : ℜ × ℜn → ℜn be continuous. From Lemma 2.2.1, we know that
for some r > 0, a continuous function x on [t0 − r, t0 + r] is a solution of

x′(t) = f(t, x(t)), x(t0) = x0, t ∈ [t0 − r, t0 + r], (5.1)

if and only if

x(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ [t0 − r, t0 + r]. (5.2)
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Thus, we are led to the following definition of a mapping P , such that
if x is a continuous function on [t0 − r, t0 + r], then define

(Px)(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ [t0 − r, t0 + r]. (5.3)

We observe that a continuous function x on [t0 − r, t0 + r] is a solution
of Eq. (5.1) if and only if

x(t) = x0 +

∫ t

t0
f(s, x(s))ds = (Px)(t), t ∈ [t0 − r, t0 + r], (5.4)

or if and only if

x = Px. (5.5)

Such an x is called a fixed point of the mapping P . Thus, we obtain

Lemma 2.5.1 A continuous function x on [t0 − r, t0 + r] is a solution of
Eq. (5.1) on [t0 − r, t0 + r] if and only if x is a fixed point of the mapping P
defined by (5.3). ♠

Therefore, we are going to utilize two fixed point theorems presented in
the Appendix to deal with Eq. (5.1). (See the Appendix for the definitions
of the notions used in the following analysis.)

Contraction mapping principle. Let P be a contraction mapping on a
complete metric space X, then there is a unique x ∈ X with Px = x. ♠

Schauder’s second fixed point theorem. Let X be a nonempty, convex,
and bounded subset of a Banach space Y and let P : X → X be a compact
mapping (that is, P is continuous and maps a bounded set into a precompact
set). Then P has a fixed point in X. ♠

First, we apply the contraction mapping principle to derive local exis-
tence and uniqueness of solutions for Eq. (5.1) if a local Lipschitz condition
is satisfied.

Theorem 2.5.2 (Local existence and uniqueness) Assume that f(t, x)
is continuous on a domain D ⊂ ℜ × ℜn and satisfies a local Lipschitz
condition with respect to x on D. Let (t0, x0) ∈ D. Then there exists a
positive constant r = r(t0, x0) such that Eq. (5.1) has a unique solution
x(t) = x(t, t0, x0) on I = (t0 − r, t0 + r).
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Proof. For (t0, x0) ∈ D given, as f(t, x) satisfies a local Lipschitz condition
with respect to x onD, there exists a domainD1 such that (t0, x0) ∈ D1 ⊂ D
and there exists a positive constant k1 = k1(t0, x0) such that

|f(t, x)− f(t, y)| ≤ k1|x− y| for (t, x), (t, y) ∈ D1. (5.6)

As D1 is a domain, there exist positive constants a and b such that

R =
{
(t, x) : |t− t0| ≤ a, |x− x0| ≤ b

}
⊂ D1, (5.7)

see Figure 2.26.

(t
0
,x

0
)

R D
1

D

Figure 2.26: A picture for R, D1 and D

Similar to the proof of Theorem 2.2.7, we letM = max(t,x)∈R |f(t, x)| and
r = min{a, b

M }. Now, if a function x satisfies |x(t)− x0| ≤ b for |t− t0| ≤ r,
then (t, x(t)) ∈ R, hence

|
∫ t

t0
|f(s, x(s))|ds| ≤Mr ≤ b for |t− t0| ≤ r. (5.8)

Next, let C([t0− r, t0+ r],ℜn) be the linear space of all continuous func-
tions from [t0 − r, t0 + r] to ℜn with the sup-norm

∥ϕ∥C = sup
|t−t0|≤r

|ϕ(t)|,

then it can be checked (see an exercise) that C([t0−r, t0+r],ℜn) is a Banach
space, and that

X =
{
x ∈ C([t0 − r, t0 + r],ℜn) : x(t0) = x0, |x(t)− x0| ≤ b,

t ∈ [t0 − r, t0 + r]
}

(5.9)
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is a complete metric space with the metric

ρ(x, y) = ∥x(·)− y(·)∥C = sup
|t−t0|≤r

|x(t)− y(t)|,

(note that X is not a linear space).

Consider the mapping P defined by (5.3) on X, that is, for x ∈ X,

(Px)(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ [t0 − r, t0 + r]. (5.10)

For x ∈ X, we see that Px is in C([t0 − r, t0 + r],ℜn) and (Px)(t0) = x0.
Moreover, from (5.8),

|(Px)(t)− x0| = |
∫ t

t0
f(s, x(s))ds| ≤Mr ≤ b, t ∈ [t0 − r, t0 + r]. (5.11)

Therefore, we have

P : X → X.

To apply the contraction mapping principle, note that for x, y ∈ X, one
has (t, x(t)), (t, y(t)) ∈ R ⊂ D1 for |t− t0| ≤ r. Thus,

|(Px)(t)− (Py)(t)| = |
∫ t

t0
|f(s, x(s))− f(s, y(s))|ds|

≤ k1|
∫ t

t0
|x(s)− y(s)|ds|

≤ k1r sup
|s−t0|≤r

|x(s)− y(s)|

= k1rρ(x, y), t ∈ [t0 − r, t0 + r]. (5.12)

Therefore, if we make an additional assumption that r1 = k1r < 1, then
we obtain

ρ(Px, Py) ≤ r1ρ(x, y), (5.13)

hence, P is a contraction mapping on the complete metric space X, thus P
has a unique fixed point x ∈ X. That is, x(t) ∈ C([t0− r, t0+ r],ℜn) is such
that

x(t) = x0 +

∫ t

t0
f(s, x(s))ds, t ∈ [t0 − r, t0 + r], (5.14)
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therefore, x(t) gives rise to a solution of Eq. (5.1) on I = (t0 − r, t0 + r)
using Lemma 2.2.1. Finally, x(t) is the unique solution of Eq. (5.1) since
any solution of Eq. (5.1) is a fixed point of the mapping P , and P has a
unique fixed point. This completes the proof. ♠

In Theorem 2.5.2, a local Lipschitz condition is assumed such that we
can derive existence and uniqueness. Next, we present a result showing that
we can still obtain existence of solutions even if a local Lipschitz condition
is not satisfied, in which case, uniqueness is not guaranteed.

Theorem 2.5.3 (Existence without uniqueness) Assume that f(t, x) is
continuous on a domain D ⊂ ℜ× ℜn and let (t0, x0) ∈ D. Then there exist
positive constants a and b such that

R =
{
(t, x) : |t− t0| ≤ a, |x− x0| ≤ b

}
⊂ D, (5.15)

and Eq. (5.1) has a solution x(t) on I = (t0−r, t0+r), where r = min{a, b
M }

with M = max(t,x)∈R |f(t, x)|.

Proof. Since (t0, x0) is in domain D, the a, b, R,M , and r specified above
can be defined. Now, X defined by (5.9) is a nonempty, convex, and bounded
subset of the Banach space C([t0 − r, t0 + r],ℜn), and P : X → X, where P
is defined by (5.3).

First, we show that P : X → X is continuous. For ϕ, ψ ∈ X,

|(Pϕ)(t)− (Pψ)(t)| ≤ |
∫ t

t0
|f(s, ϕ(s))− f(s, ψ(s))|ds|. (5.16)

Now, f(t, x) is uniformly continuous on R, thus for any ε > 0 there is a
δ = δ(ε) > 0 such that ∥ϕ− ψ∥C = sup|s−t0|≤r |ϕ(s)− ψ(s)| ≤ δ implies

|f(s, ϕ(s)) − f(s, ψ(s))| ≤ ε
r . Therefore, if ∥ϕ − ψ∥C ≤ δ, then for t ∈

[t0 − r, t0 + r], (5.16) becomes

|(Pϕ)(t)− (Pψ)(t)| ≤ |
∫ t

t0
|f(s, ϕ(s))− f(s, ψ(s))|ds| ≤ (

ε

r
)r = ε.

That is, ∥ϕ − ψ∥C ≤ δ implies ∥Pϕ − Pψ∥C ≤ ε, hence P is a continuous
mapping on X.

Next, we show that P is a compact mapping. Note that for ϕ ∈ X, one
has (t, ϕ(t)) ∈ R for |t− t0| ≤ r. Thus, for ϕ ∈ X and t, h ∈ [t0 − r, t0 + r],

|(Pϕ)(t)− (Pϕ)(h)| ≤ |
∫ t

h
|f(s, ϕ(s))|ds| ≤M |t− h|. (5.17)
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Therefore,
P : X → S0 ⊂ X,

where

S0 =
{
ϕ ∈ C([t0 − r, t0 + r],ℜn) : ϕ(t0) = x0, |ϕ(t)− ϕ(h)| ≤M |t− h|,

|ϕ(t)− x0| ≤ b, t, h ∈ [t0 − r, t0 + r]
}
.

Now, any sequence in the set S0 is uniformly bounded and equi-continuous
on the interval [t0 − r, t0 + r]. Hence, from Arzela-Ascoli’s theorem (see the
Appendix), this sequence has a convergent subsequence, thus the set S0 is
compact and, therefore, P is a compact mapping. By Schauder’s second
fixed point theorem, P has a fixed point, which gives rise to a solution of
Eq. (5.1) on I = (t0 − r, t0 + r). This completes the proof. ♠

Note that in the proof of Theorem 2.5.3, we used Schauder’s second fixed
point theorem, which does not guarantee uniqueness of fixed points. There-
fore, uniqueness of solutions in Theorem 2.5.3 is not guaranteed, because
solutions are derived from fixed points of the mapping P .

Exercises 2.5

1. Prove that C([t0 − r, t0 + r],ℜn) in the proof of Theorem 2.5.2 is a
Banach space.

2. Prove that X defined in (5.9) is a nonempty convex subset of the
Banach space C([t0 − r, t0 + r],ℜn).

3. Prove that X defined in (5.9) is a complete metric space with the
metric

ρ(x, y) = ∥x(·)− y(·)∥C = sup
|t−t0|≤r

|x(t)− y(t)|.

4. Prove that the set S0 in the proof of Theorem 2.5.3 is a compact set.



Chapter 3

Linear Differential Equations

3.1 Introduction

In this chapter, we study linear differential equations, which means that
f(t, x) = f(t, x1, x2, · · · , xn) in the differential equation x′(t) = f(t, x(t)) is
given by

f(t, x) =


a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + f1(t)
a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + f2(t)

· · ·
an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + fn(t)



=


a11(t) a12(t) . . a1n(t)
a21(t) a22(t) . . a2n(t)
. . . . .
. . . . .

an1(t) an2(t) . . ann(t)




x1
x2
.
.
xn

+


f1(t)
f2(t)
.
.

fn(t)

 , (1.1)

where aij(t) and fi(t) are some real functions. Now, we use matrix notations
and let A(t) = [aij(t)]1≤i,j≤n be the n × n matrix function formed from
functions aij(t) and let f(t) = [f1(t), f2(t), · · · , fn(t)]T be the n × 1 vector
function formed from functions fi(t). Therefore, the differential equation

x′(t) = f(t, x(t)), x(t0) = x0,

will take the following form in ℜn:

x′(t) = A(t)x(t) + f(t), x(t0) = x0. (1.2)

106
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The study of linear differential equations is very important for the fol-
lowing reasons. First, the study provides us with some basic knowledge
for understanding general nonlinear differential equations. Second, certain
nonlinear differential equations can be written as summations of linear dif-
ferential equations and some small nonlinear perturbations. Thus, under
certain conditions, the qualitative properties of linear differential equations
can be used to infer essentially the same qualitative properties for nonlinear
differential equations. For example, let’s look at the following two cases.

Example 3.1.1 Consider the scalar nonlinear differential equation

x′ = sinx. (1.3)

As sinx = x − x3

3! + x5

5! − · · · = x + O(x3) (where O, called “big O,”
denotes the terms of the same or higher orders than x3), Eq. (1.3) becomes

x′ = x+O(x3). (1.4)

We know from calculus that when x ≈ 0, we have sinx ≈ x or sinx
x ≈ 1,

see Figure 3.1.

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

Figure 3.1: sinx ≈ x when x ≈ 0

Therefore, O(x3) can be regarded as a small perturbation when x ≈ 0.
We will see later that when x ≈ 0, Eq. (1.4) or Eq. (1.3) will have essentially
the same qualitative properties as the linear differential equation

x′ = x. ♠ (1.5)
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Example 3.1.2 For the motion of a simple pendulum given by

θ′′(t) + kθ′(t) + q sin θ(t) = 0, (1.6)

we let x1 = θ, x2 = θ′, then we obtain the system{
x′1 = x2,
x′2 = −kx2 − q sinx1 = −kx2 − qx1 +O(x31),

(1.7)

or in matrix notations,[
x1
x2

]′
=

[
0 1
−q −k

] [
x1
x2

]
+

[
0

O(x31)

]
. (1.8)

We will see later that when [x1, x2]
T ≈ [0, 0]T , Eq. (1.8) will have essentially

the same qualitative properties as the linear differential equation[
x1
x2

]′
=

[
0 1
−q −k

] [
x1
x2

]
. ♠ (1.9)

We will also verify that the semigroup and evolution system properties,
as well as the variation of parameters formulas derived in Chapter 1 for one-
dimensional linear differential equations can be derived for linear differential
equations in ℜn, n ≥ 1. Therefore, we can develop an elegant theory that
will allow us to completely understand the structure of solutions of linear
differential equations in ℜn, n ≥ 1, and provide further knowledge related
to the study of linear algebra.

In Eq. (1.2), if f(t) is not identically zero, then Eq. (1.2) is called a
nonhomogeneous linear differential equation in ℜn. If, otherwise, f(t) is
identically zero, that is, if we have

x′(t) = A(t)x(t), x(t0) = x0, (1.10)

then Eq. (1.10) is called a homogeneous linear differential equation in ℜn.
For homogeneous linear differential equations, a very important result is

the principle of superposition: A linear combination of solutions is also a
solution, see Theorem 3.1.3.

Theorem 3.1.3 (Principle of Superposition) If x1(t) and x2(t) are both
solutions of

x′(t) = A(t)x(t) (1.11)

on an interval I, and if a and b are constants, then ax1(t) + bx2(t) is also a
solution of Eq. (1.11) on I.
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Proof. Let x1(t) and x2(t) be solutions of Eq. (1.11) on I, then

d

dt

[
ax1(t) + bx2(t)

]
= ax′1(t) + bx′2(t)

= aA(t)x1(t) + bA(t)x2(t)

= A(t)
[
ax1(t) + bx2(t)

]
, t ∈ I, (1.12)

which completes the proof. ♠

Example 3.1.4 Let x1(t) and x2(t) be solutions of

x′(t) = 5x(t) + sin t. (1.13)

Then

d

dt

[
x1(t) + x2(t)

]
= x′1(t) + x′2(t)

= 5x1(t) + sin t+ 5x2(t) + sin t

= 5[x1(t) + x2(t)] + 2 sin t. (1.14)

Thus x1(t) + x2(t) is not a solution of Eq. (1.13). ♠

Therefore, we conclude that the principle of superposition holds only for
homogeneous linear differential equations. Some important consequences of
the principle of superposition will be seen later.

Note, a scalar linear differential equation of order n can be written as a
first-order linear differential equation in ℜn governed by Eq. (1.2).

Example 3.1.5 Consider the scalar linear differential equation of order n,

x(n)(t) + a1(t)x
(n−1)(t) + · · ·+ an−1(t)x

′(t) + an(t)x(t) + an+1(t) = 0.

We can define

x1(t) = x(t), x2(t) = x′(t), · · · , xn−1(t) = x(n−2)(t), xn(t) = x(n−1)(t),

and then obtain

x′1(t) = x2(t),

x′2(t) = x3(t),

· · ·
x′n−1(t) = xn(t),

x′n(t) = x(n)(t) = −a1(t)xn(t)− a2(t)xn−1(t)− · · · − an+1(t),

which is a first-order linear differential equation in ℜn of the form of Eq.
(1.2). ♠
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This chapter is organized as follows: In Section 2, we study general non-
homogeneous linear differential equations and obtain the fundamental matrix
solutions and verify that they satisfy the “evolution system property.” Then
we derive the variation of parameters formula using the fundamental matrix
solutions and observe what these solutions should look like. In Section 3, we
look at equations with constant coefficients and examine detailed structure
of solutions in terms of eigenvalues of the leading constant matrix, using the
Jordan canonical form theorem. In addition we derive the Putzer algorithm
that can be used to actually solve or compute solutions for equations with
constant coefficients. This result will appeal to readers interested in com-
putation. In Section 4, we look at equations with periodic coefficients and
study Floquet theory, which allows us to transform equations with periodic
coefficients into equations with constant coefficients. The results of Section
3 can then be applied to the transformed equations. The concept of the
Liapunov exponent is also briefly introduced in Section 4.

Exercises 3.1

1. For the equations

x′1(t) = 2(cos t)x3(t)− x1(t) + sin t,

x′2(t) = etx1(t)− 2x3(t) + 5tx2(t)− e2t,

x′3(t) = x2(t)− 4t2x1(t)− cos t+ t2,

find a matrix A(t) and a vector f(t) so as to rewrite the above equations
as x′(t) = A(t)x(t) + f(t).

2. Rewrite 3x′′′(t)+5(sin t)x′′(t)−8etx′(t)−ln(3t) = 7 as a system of linear
differential equations, and then discuss the existence and uniqueness
of solutions.

3. Rewrite

3x′′1(t) + 5x1(t) + 2x2(t)− 2x′2(t) + 5 = 0,

4x′1(t) + x2(t)− 5x′2(t)− 6 = 0,

as a system of linear differential equations, and then discuss the exis-
tence and uniqueness of solutions.



3.2. General Nonhomogeneous Linear Equations 111

4. Rewrite x(n)(t)+a1x
(n−1)(t)+ · · ·+an−1x

′(t)+anx(t) = 0 as a system
of linear differential equations and verify that the coefficient matrix is

A =



0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
. . . . . . .
0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1


.

Then verify, using an induction, that det[A − λE] = (−1)n(λn +
a1λ

n−1 + · · · + an−1λ + an), where E is the unit or identity n × n
matrix, and det means determinant.

5. Find the solution of the system x′ = Ax, x(t0) = x0, where

A =

 1 −1 1
0 2 1
0 0 2

 .
6. If a ∈ ℜ is not an eigenvalue of matrix A, then find a constant vector

P such that Peat is a solution of x′(t) = Ax(t) + Ceat.

3.2 General Nonhomogeneous Linear Equations

In Chapter 2, we defined |A| =
∑n

i,j=1 |aij | for an n × n matrix A = [aij ].
Similarly, we make the following definitions.

Definition 3.2.1 For an n×n matrix function A(t) = [aij(t)] on an interval
(a, b), define

|A(t)|=
n∑

i,j=1

|aij(t)|,
d

dt
A(t) = [

d

dt
aij(t)],

∫ b

a
A(t)dt = [

∫ b

a
aij(t)dt]. (2.1)

It follows, similar to the results in Chapter 2, that for n × n matrices
A(t), B(t), and an n× 1 vector x,

|A(t) +B(t)| ≤ |A(t)|+ |B(t)|,
|A(t)B(t)| ≤ |A(t)||B(t)|,

|A(t)x| ≤ |A(t)||x|.
(2.2)
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Now, we can directly apply some results in Chapter 2 to obtain the
existence and uniqueness for the linear differential equation (1.2).

Theorem 3.2.2 Assume that A(t) and f(t) are continuous on an interval
(a, b). Let t0 ∈ (a, b). Then for any x0 ∈ ℜn, Eq. (1.2) has a unique
solution x(t) = x(t, t0, x0), and its maximal interval of existence is (a, b).
In particular, if (a, b) = (−∞,∞), then the maximal interval of existence is
(−∞,∞).

Proof. Now, the right-hand side of Eq. (1.2) is given by f(t, x) = A(t)x+
f(t) on (a, b)× ℜn, so it satisfies a weak Lipschitz condition. By Theorems
2.2.7.a and 2.4.3 in Chapter 2, Eq. (1.2) has a unique solution on its maximal
interval of existence, denoted by (α, β). Hence a ≤ α < β ≤ b.

If β < b, then A(t), f(t), and f(t, x0) = A(t)x0+f(t) are all bounded on
[t0, β]. From Proposition 2.4.5(P1), x(t) is bounded on [t0, β). This implies
that f(t, x(t)) = A(t)x(t) + f(t) is bounded on [t0, β). Then Proposition
2.4.5(P2) implies that limt→β− x(t) exists, which we denote by xβ.

Now, the domain for f(t, x) = A(t)x+f(t) in Eq. (1.2) is D = (a, b)×ℜn,
thus (β, xβ) ∈ D. Then Theorem 2.4.2 (Extension) can be applied to extend
x(t) to the right-hand side of β, which is a contradiction. Similarly, α = a.
This completes the proof. ♠

Theorem 3.2.2 indicates that for a general linear differential equation, if
it is defined on (a, b), then its maximal interval of existence is (a, b); that is,
its maximal interval of existence will not reduce from the original interval on
which the equation is defined. This is not the case for nonlinear differential
equations. For example, equation x′ = x2, x(0) = 1, is defined on ℜ, but its
maximal interval of existence is (−∞, 1) ̸= ℜ.

Recall from Chapter 1 that for the scalar homogeneous linear differential
equation,

x′(t) = k(t)x(t), x(t0) = 1, (2.3)

its unique solution is given by

U1(t, t0) = e

∫ t

t0
k(h)dh

, (2.4)

and any solution of Eq. (2.3) with x(t0) = x0 is given by

x(t, t0, x0) = U1(t, t0)x0. (2.5)
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Note here that

U1(t0, t0) = 1, (2.6)

where 1 is the unit (or identity) element in ℜ.
In this section, we attempt to generalize the results concerning formulas

(2.4), (2.5), and (2.6) to the homogeneous linear differential equation (1.10)
in ℜn, n ≥ 1.

Compare Eq. (2.3) and Eq. (1.10). We find that the counterpart of the
scalar function k(t) in Eq. (2.3) is now the n×nmatrix function A(t) in
Eq. (1.10). Thus, the counterpart of “1” in Eq. (2.6) for scalar differential
equations will now be the n× n unit or identity matrix, given by

E =


1 0 . . 0
0 1 . . 0
. . . . .
. . . . .
0 0 . . 1

 = [e1, e2, · · · , en], (2.7)

where

ei =



0
.
.
0
1i
0
.
.
0


= [0, · · · , 0, 1i, 0, · · · , 0]T , i = 1, 2, · · · , n.

Now, we assume that A(t) and f(t) are continuous on an interval (a, b),
so from Theorem 3.2.2, for t0 ∈ (a, b) and for each i = 1, 2, · · · , n,

x′(t) = A(t)x(t), x(t0) = ei, (2.8)

has a unique solution on (a, b), which we denote by x(i)(t). Let’s construct
a matrix by putting these x(i)(t), i = 1, 2, · · · , n, as the columns. That is,
define

U(t, t0) = [x(1)(t), x(2)(t), · · · , x(n)(t)]. (2.9)
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Example 3.2.3 Consider x′ = A(t)x, x(0) = ei, i = 1, 2, where

A(t) =

[
t 1
0 2

]
.

To find U(t, 0), we solve

x′(1)(t) = A(t)x(1)(t), x(1)(0) =

[
1
0

]
,

x′(2)(t) = A(t)x(2)(t), x(2)(0) =

[
0
1

]
.

For x(1)(t), we find that the second component is from a linear differential
equation with the zero initial value, thus the second component is zero. The
first component is now from x′ = tx, x(0) = 1. Therefore,

x(1)(t) =

[
et

2/2

0

]
.

For x(2)(t), the second component is e2t. The first component is now
from x′ = tx + e2t, x(0) = 0. Therefore, using the variation of parameters
formula for scalar linear differential equations, we obtain

x(2)(t) =

[
et

2/2
∫ t
0 e

2s−(s2/2)ds
e2t

]
.

Accordingly, the matrix U in this case is given by

U(t, 0) =

[
et

2/2 et
2/2

∫ t
0 e

2s−(s2/2)ds
0 e2t

]
. ♠ (2.10)

The n × n matrix U(t, t0) defined by (2.9) has the following properties,

which are similar to those of the scalar U1(t, t0) = e

∫ t

t0
k(h)dh

for scalar ho-
mogeneous linear differential equations.

Theorem 3.2.4 For U(t, t0) defined in (2.9) with t, t0 ∈ (a, b),

(U1). U(t, t0) is the unique matrix solution of d
dtU(t, t0) = A(t)U(t, t0),

U(t0, t0) = E, t ∈ (a, b).
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(U2). For any x0 ∈ ℜn, the unique solution of Eq. (1.10) is given by
x(t, t0, x0) = U(t, t0)x0. That is, x(t, t0, x0) is a linear combination
of the columns in U(t, t0) with the combination coefficients given by
the components of x0.

(U3). For any fixed t ∈ (a, b), the columns of U(t, t0) are linearly independent
vectors in ℜn, and hence the matrix U(t, t0) is invertible.

Proof. (U1): Since U(t, t0) = [x(1)(t), x(2)(t), · · · , x(n)(t)], we have

d

dt
U(t, t0) = [x′(1)(t), x

′
(2)(t), · · · , x

′
(n)(t)],

and

A(t)U(t, t0) = A(t)[x(1)(t), x(2)(t), · · · , x(n)(t)]
= [A(t)x(1)(t), A(t)x(2)(t), · · · , A(t)x(n)(t)].

Thus we can compare each column to derive the equalities in (U1). The
uniqueness can also be obtained in this way using the uniqueness for Eq.
(2.8).

(U2): Since each column in U(t, t0) is a solution of Eq. (1.11), by the
principle of superposition, we find that U(t, t0)x0, as a linear combination
of n such solutions, is a solution of Eq. (1.10). Its uniqueness is guaranteed
by Theorem 3.2.2.

(U3): Suppose there exists a t1 ∈ (a, b) such that the vectors {x(1)(t1),
x(2)(t1), · · · , x(n)(t1)} are linearly dependent in ℜn. Then there exist con-
stants c1, c2, · · · , cn, not all zero, such that

c1x(1)(t1) + c2x(2)(t1) + · · ·+ cnx(n)(t1) = 0.

Now define

y(t) = c1x(1)(t) + c2x(2)(t) + · · ·+ cnx(n)(t), t ∈ (a, b). (2.11)

By the principle of superposition, we find that y(t) is a solution of

y′(t) = A(t)y(t), y(t1) = 0. (2.12)

But the 0 vector in ℜn is also a solution of (2.12), thus by the uniqueness
from Theorem 3.2.2, we get y(t) = 0, t ∈ (a, b). In particular, y(t0) = 0,



116 Chapter 3. Linear Differential Equations

which implies, from (2.8),

0 = y(t0) = c1x(1)(t0) + c2x(2)(t0) + · · ·+ cnx(n)(t0)

= c1e1 + c2e2 + · · ·+ cnen

= [c1, c2, · · · , cn]T , (2.13)

that is, ci = 0 for i = 1, 2, · · · , n, which is a contradiction to the assumption
that the constants c1, c2, · · · , cn are not all zero. ♠

Using the language of linear algebra, we have the following corollary of
Theorem 3.2.4. First, let’s recall some definitions in linear algebra.

Definition 3.2.5 Let I be an interval and let fi : I → ℜn be a vector
function, i = 1, 2, · · · , s. We say that f1(t), f2(t), · · · , fs(t) are linearly in-
dependent functions on I if there do not exist constants {a1, a2, · · · , as},
not all zero, such that

s∑
i=1

aifi(t) ≡ 0, t ∈ I. (2.14)

Or equivalently, if (2.14) is true for some constants {a1, a2, · · · , as}, then
we must have

a1 = a2 = · · · = as = 0.

Let S be a linear space consisting of some functions defined on I. We
say that S is n-dimensional if S has a set, called a basis, consisting of
n linearly independent functions, such that any element of S is a linear
combination of the functions in the basis.

Corollary 3.2.6 Let Eq. (1.11) be defined on an interval (a, b). Then all
solutions of Eq. (1.11) (which are defined on (a, b) by Theorem 3.2.2) form
an n-dimensional linear space. Let t0 be any value in (a, b), then the columns
in U(t, t0) is a basis for this space.

Proof. From the principle of superposition, all solutions of Eq. (1.11)
form a linear space. Let t0 be any value in (a, b), then the n columns of
U(t, t0) are n solutions of Eq. (1.11) and are linearly independent functions
on (a, b) using Theorem 3.2.4(U3) and Definition 3.2.5. Next, let x(t) be
any solution of Eq. (1.11) on (a, b). Then (t0, x(t0)) is well defined and
can be regarded as an initial point for x(t). Now, from Theorem 3.2.4(U2),
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one has x(t) = U(t, t0)x(t0). That is, any solution of Eq. (1.11) is a linear
combination of the columns in U(t, t0). Therefore, the columns in U(t, t0)
can be used as a basis. This completes the proof. ♠

Example 3.2.7 Consider Example 3.2.3 again, where A(t) =

[
t 1
0 2

]
,

and

x(1)(t) =

[
et

2/2

0

]
, x(2)(t) =

[
et

2/2
∫ t
0 e

2s−(s2/2)ds
e2t

]
.

If for some constants a and b, one has

a

[
et

2/2

0

]
+ b

[
et

2/2
∫ t
0 e

2s−(s2/2)ds
e2t

]
= 0,

then we must have b = 0 from the second component and then a = 0 from
the first component. Thus x(1)(t) and x(2)(t) are linearly independent. ♠

Now, we make the following definition concerning the matrix U(t, t0).

Definition 3.2.8 The matrix U(t, t0) defined in (2.9) is called the funda-
mental matrix solution of Eq. (1.10). That is, U(t, t0) is the unique
matrix solution of d

dtU(t, t0) = A(t)U(t, t0), U(t0, t0) = E.

Next, knowing that U(t, t0)x0 is the unique solution of the homogeneous
linear differential equation (1.10), we follow the ideas of the variation of
parameters formulas derived for scalar linear differential equations, and try
to find a solution of the nonhomogeneous linear differential equation (1.2) in
ℜn, n ≥ 1, of the form U(t, t0)C(t), where C(t) is an unknown n× 1 vector
function to be determined. Then, from Eq. (1.2) and the product rule, we
are led to

[
d

dt
U(t, t0)]C(t) + U(t, t0)C

′(t) = A(t)U(t, t0)C(t) + f(t).

From Theorem 3.2.4(U1), [ ddtU(t, t0)]C(t) = A(t)U(t, t0)C(t), hence

U(t, t0)C
′(t) = f(t).

Using Theorem 3.2.4(U3), U−1(t, t0) exists for t ∈ (a, b). Therefore,

C(t) = C(t0) +

∫ t

t0
U−1(s, t0)f(s)ds

= x0 +

∫ t

t0
U−1(s, t0)f(s)ds, (2.15)
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hence

U(t, t0)C(t) = U(t, t0)
[
x0 +

∫ t

t0
U−1(s, t0)f(s)ds

]
= U(t, t0)x0 +

∫ t

t0
U(t, t0)U

−1(s, t0)f(s)ds. (2.16)

This formula is similar to formula (1.13) in Section 1 of Chapter 1
for scalar differential equations, where we know for the scalar U1(t, t0) =

e

∫ t

t0
k(h)dh

that

U1(t, t0)U
−1
1 (s, t0) = e

∫ t

t0
k(h)dh

e
−
∫ s

t0
k(h)dh

= e
∫ t

s
k(h)dh = U1(t, s).

Thus, in order to simplify (2.16) and derive something that looks like
formula (1.14) in Section 1 of Chapter 1 involving an evolution system, let’s
find out what is U(t, t0)U

−1(s, t0) for differential equations in ℜn. First,
note that in a similar way, U(r, s) is defined to be the fundamental matrix
solution of d

drU(r, s) = A(r)U(r, s), U(s, s) = E.

Lemma 3.2.9 Let Eq. (1.10) be defined on (a, b). For the fundamental
matrix solutions, the evolution system property is satisfied. That is, we
have, for any t, t0, t1 ∈ (a, b),

U(t, t) = E,
U(t, t1)U

−1(t0, t1) = U(t, t0),
U−1(t0, t1) = U(t1, t0),
U(t, t1)U(t1, t0) = U(t, t0).

(2.17)

Proof. U(t, t) = E is from the definition. From Theorem 3.2.4(U2),
U(t, t0)x0 is the unique solution of Eq. (1.10). Next, define y(t) =
U(t, t1)U

−1(t0, t1)x0. We have y(t0) = U(t0, t1)U
−1(t0, t1)x0 = x0, and

y′(t) = [
d

dt
U(t, t1)][U

−1(t0, t1)x0]

= A(t)U(t, t1)[U
−1(t0, t1)x0]

= A(t)[U(t, t1)U
−1(t0, t1)x0]

= A(t)y(t),
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which imply that y(t) is also a solution of Eq. (1.10). Then the uniqueness
for Eq. (1.10) implies y(t) = [U(t, t0)]x0. That is, we have

[U(t, t1)U
−1(t0, t1)]x0 = [U(t, t0)]x0. (2.18)

But x0 in (2.18) can be arbitrary, so that by letting x0 = ei, i = 1, 2, · · · , n,
where {e1, e2, · · · , en} form the standard unit basis of ℜn, we obtain

U(t, t1)U
−1(t0, t1) = U(t, t0).

The third equality in (2.17) is true by letting t = t1 in the second equality,
and the last equality in (2.17) is true from the first three equalities. This
completes the proof. ♠

Example 3.2.10 In Example 3.2.3 with A(t) =

[
t 1
0 2

]
, we have calcu-

lated U(t, 0). Now, the same calculation gives

U(t, h) =

[
e(t

2/2)−(h2/2) et
2/2

∫ t
h e

2(s−h)−(s2/2)ds

0 e2(t−h)

]
.

Thus,

U−1(t, h) = e−(t2/2)+(h2/2)−2(t−h)

 e2(t−h) −et2/2
∫ t
h e

2(s−h)−(s2/2)ds

0 e(t
2/2)−(h2/2)

 .
Therefore,

U(t, t1)U
−1(t0, t1)

=

[
e(t

2/2)−(t21/2) et
2/2

∫ t
t1
e2(s−t1)−(s2/2)ds

0 e2(t−t1)

]

·e−(t20/2)+(t21/2)−2(t0−t1)

 e2(t0−t1) −et20/2
∫ t0
t1
e2(s−t1)−(s2/2)ds

0 e(t
2
0/2)−(t21/2)


=

[
e(t

2/2)−(t20/2) e(t
2/2)−2(t0−t1)

∫ t
t0
e2(s−t1)−(s2/2)ds

0 e2(t−t0)

]

=

[
e(t

2/2)−(t20/2) et
2/2

∫ t
t0
e2(s−t0)−(s2/2)ds

0 e2(t−t0)

]
= U(t, t0),

which is the second equality in (2.17). Based on this, other equalities in
(2.17) can be checked for this example. ♠
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After showing the evolution system property in Lemma 3.2.9, we derive
the following variation of parameters formula from (2.16). The formula is
similar to formula (1.14) in Section 1 of Chapter 1 for scalar linear differential
equations.

Theorem 3.2.11 (Variation of Parameters Formula) Assume that
A(t) and f(t) are continuous on an interval (a, b). Let t0 ∈ (a, b) and let
U(t, t0) be the fundamental matrix solution of Eq. (1.10). Then the unique
solution of Eq. (1.2) is given by

x(t) = U(t, t0)
[
x0 +

∫ t

t0
U−1(s, t0)f(s)ds

]
= U(t, t0)x0 +

∫ t

t0
U(t, s)f(s)ds, t ∈ (a, b). ♠ (2.19)

This approach to formula (2.19) demonstrates that structures of solutions
for all first-order linear differential equations in ℜn, n ≥ 1, are the same, and
are also determined by the fundamental matrix solutions which satisfy the
“evolution system property” described in Lemma 3.2.9. The solution formula
(2.19) also indicates the “affine” structure of Eq. (1.2), meaning that the
solution set is some particular solution of Eq. (1.2) plus any solution of the
corresponding homogeneous equation. This is very useful when we study
some qualitative properties of solutions for Eq. (1.2), such as stability.

We have one problem left, however. That is, for the scalar linear dif-
ferential equation x′(t) = k(t)x(t), we know from Chapter 1 that the funda-
mental (scalar) solution U1(t, t0) can be expressed as an exponential, that
is, we have

U1(t, t0) = exp
( ∫ t

t0
k(s)ds

)
. (2.20)

Now, for n > 1, we ask the following question:

What does the fundamental matrix solution U(t, t0) look like for
Eq. (1.10) in ℜn?

We may mimic the formula (2.20) for scalar differential equations and
guess that in ℜn the fundamental matrix solution U(t, t0) is given by

exp
( ∫ t

t0
A(s)ds

)
.

To pursue in this direction, we must understand the meaning of putting
a matrix into the exponential function. From the Taylor series expansion of
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ea = 1 + a+ a2

2! +
a3

3! + · · · in ℜ, we have

Lemma 3.2.12 Let A be an n× n matrix. Then the series

E +A+
A2

2!
+
A3

3!
+ · · · (2.21)

(where E is the n×n unit or identity matrix) converges to an n×n matrix.

Proof. Let m be any integer. Since |A| is a finite number, we have,

|E|+ |A|+ |A|2

2!
+

|A|3

3!
+ · · ·+ |A|m

m!
= n+ |A|+ |A|2

2!
+

|A|3

3!
+ · · ·+ |A|m

m!

≤ (n− 1) + e|A| <∞, (2.22)

which implies that the series in (2.21) converges absolutely. This completes
the proof. (Cauchy criterion can also be used to prove the result.) ♠

Definition 3.2.13 Based on Lemma 3.2.12, we define the limit in (2.21)
as eA, also written as exp(A). That is,

eA = exp(A) = lim
m→∞

[
E +A+

A2

2!
+
A3

3!
+ · · ·+ Am

m!

]
=

∞∑
k=0

Ak

k!
. (2.23)

Now we know how to put a matrix into the exponential function, thus

exp
( ∫ t

t0
A(s)ds

)
makes sense. For scalar equations, exp

( ∫ t
t0
A(s)ds

)
is al-

ways a fundamental (scalar) solution according to (2.20). Thus, at this stage,
we ask the following question:

For n > 1, is exp
( ∫ t

t0
A(s)ds

)
always a fundamental matrix solu-

tion of Eq. (1.10)?

Unfortunately, the answer is NO, as we shall see from the following ex-
ample.

Example 3.2.14 Consider x′(t) = A(t)x(t), where

A(t) =

[
t 1
0 0

]
.



122 Chapter 3. Linear Differential Equations

We have

exp
( ∫ t

0
A(s)ds

)
= exp

[
t2

2 t
0 0

]

=

[
1 0
0 1

]
+

[
t2

2 t
0 0

]
+

1

2!

[
t2

2 t
0 0

]2
+ · · ·

=

[
1 0
0 1

]
+

[
t2

2 t
0 0

]
+

1

2!

[
( t

2

2 )
2 t2

2 t
0 0

]
+ · · · . (2.24)

Now, the (1, 2) position (the first row and the second column) of the
matrix (2.24) is

t+
1

2!

t2

2
t+

1

3!
(
t2

2
)2t+

1

4!
(
t2

2
)3t+ · · ·

=
2

t
[
t2

2
+

1

2!
(
t2

2
)2 +

1

3!
(
t2

2
)3 +

1

4!
(
t2

2
)4 + · · ·]

=
2

t
[et

2/2 − 1], (2.25)

therefore, the matrix (2.24) becomes

exp
( ∫ t

0
A(s)ds

)
=

[
et

2/2 2
t [e

t2/2 − 1]
0 1

]
. (2.26)

If the matrix given in (2.26) is a matrix solution of x′ = A(t)x, then
g(t) = 2

t [e
t2/2 − 1] on the (1, 2) position shall satisfy

g′(t) = [t, 1]×
[
g(t)
1

]
= tg(t) + 1. (2.27)

However,

g′(t) =
d

dt

(2
t
[et

2/2 − 1]
)
=

−2

t2
[et

2/2 − 1] + 2et
2/2, (2.28)

but

tg(t) + 1 = t
2

t
[et

2/2 − 1] + 1 = 2[et
2/2 − 1] + 1 = 2et

2/2 − 1, (2.29)

thus (2.27) is not satisfied. Therefore, we conclude that exp
( ∫ t

0 A(s)ds
)
is

not a matrix solution of x′ = A(t)x. That is, for this A(t),

d

dt
exp

( ∫ t

0
A(s)ds

)
̸= A(t)

[
exp

( ∫ t

0
A(s)ds

)]
. ♠ (2.30)
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In view of Example 3.2.14, let’s define C(t) = exp
( ∫ t

t0
A(s)ds

)
and find

the conditions required for C(t) to be a fundamental matrix solution. Sup-
pose for the moment that C(t) is a fundamental matrix solution, that is,
C ′(t) = A(t)C(t); also suppose for the moment that we require the chain

rule to be held for C(t) = exp
( ∫ t

t0
A(s)ds

)
(in fact, it is a complicated

subject, see Example 3.2.17), that is, C ′(t) = C(t)A(t). Then we would re-

quire A(t)C(t) = C(t)A(t), or require A(t)
( ∫ t

t0
A(s)ds

)
=

( ∫ t
t0
A(s)ds

)
A(t).

We will show that under this condition, exp
( ∫ t

t0
A(s)ds

)
is a fundamental

matrix solution.

Theorem 3.2.15 Let Eq. (1.10) be defined on (a, b). If A(t) commutes
with its integral, that is, if

A(t)
( ∫ t

t0
A(s)ds

)
=

( ∫ t

t0
A(s)ds

)
A(t), t0, t ∈ (a, b), (2.31)

then the fundamental matrix solution U(t, t0) of Eq. (1.10) is given by

U(t, t0) = exp
( ∫ t

t0
A(s)ds

)
. (2.32)

In this case, the solution of Eq. (1.2) for t ∈ (a, b) is given by

x(t) =
[
exp

( ∫ t

t0
A(s)ds

)][
x0 +

∫ t

t0
{exp

( ∫ s

t0
A(r)dr

)
}−1f(s)ds

]
=

[
exp

( ∫ t

t0
A(s)ds

)]
x0 +

∫ t

t0

[
exp

( ∫ t

s
A(r)dr

)]
f(s)ds. (2.33)

Proof. Define B(t) =
∫ t
t0
A(s)ds. We first use an induction to verify that

d

dt
[B(t)]m = mA(t)[B(t)]m−1, m = 1, 2, · · · . (2.34)

Formula (2.34) is true when m = 1 because we have d
dtB(t) = A(t) from

the definition of B(t). Assume that (2.34) is true for m = k. Then for
m = k + 1, we have, from the product rule and the fact that A(t) and B(t)
commute,

d

dt
[B(t)]k+1 =

d

dt
{[B(t)]kB(t)}

= { d
dt
[B(t)]k}B(t) + [B(t)]k

d

dt
B(t)

= kA(t)[B(t)]k−1B(t) + [B(t)]kA(t)

= kA(t)[B(t)]k +A(t)[B(t)]k = (k + 1)A(t)[B(t)]k, (2.35)
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which proves (2.34) for m = k+1, and hence completes the induction. Next,
note that from the proof of Picard’s local existence and uniqueness theorem
2.2.7 in Chapter 2, the solution of Eq. (1.10) is the limit of the sequence

x0(t) = x0,

x1(t) = x0 +
∫ t
t0
A(s)x0(s)ds =

[
E +B(t)

]
x0,

xm+1(t) = x0 +
∫ t
t0
A(s)xm(s)ds, m = 1, 2, · · · .

(2.36)

Now, let’s use an induction to verify that xm(t) defined in (2.36) satisfies

xm(t) =
[
E +B(t) +

1

2!
B2(t) + · · ·+ 1

m!
Bm(t)

]
x0, m = 1, 2, · · · . (2.37)

If this can be verified, then taking a limit as m → ∞ in (2.37), we see
that the left-hand side of (2.37) goes to the solution of Eq. (1.10), given by
U(t, t0)x0; and the right-hand side of (2.37) goes to eB(t)x0. Thus,

U(t, t0)x0 = eB(t)x0 = e

∫ t

t0
A(s)ds

x0,

therefore, (2.32) is proved since x0 is arbitrary.

To verify (2.37), note that (2.37) is true for m = 1 from (2.36). Assume
that (2.37) is true for m = k. Then for m = k+1, we have, from (2.36) and

(2.34) (which also says that d
dt

[B(t)]m

m! = A(t)[B(t)]m−1

(m−1)! ),

d

dt
xk+1(t) = A(t)xk(t)

= A(t)
[
E +B(t) +

1

2!
B2(t) + · · ·+ 1

k!
Bk(t)

]
x0

=
[
A(t) +A(t)B(t) +

1

2!
A(t)B2(t) + · · ·+ 1

k!
A(t)Bk(t)

]
x0

=
d

dt

[
B(t) +

1

2!
B2(t) + · · ·+ 1

(k + 1)!
Bk+1(t)

]
x0, (2.38)

then

xk+1(t) = H +
[
B(t) +

1

2!
B2(t) + · · ·+ 1

(k + 1)!
Bk+1(t)

]
x0,

for some constant vector H. Since B(t0) = 0, we have

H = xk+1(t0) = x0,
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therefore

xk+1(t) = x0 +
[
B(t) +

1

2!
B2(t) + · · ·+ 1

(k + 1)!
Bk+1(t)

]
x0

=
[
E +B(t) +

1

2!
B2(t) + · · ·+ 1

(k + 1)!
Bk+1(t)

]
x0, (2.39)

which verifies (2.37) for m = k + 1, and hence completes the induction.
Therefore, (2.32) is true. Finally, note that (2.33) is from the variation of
parameters formula in Theorem 3.2.11. This completes the proof. ♠

Observe that (2.31) is not true in general. That is, if you randomly pick
up a matrix A(t), then chances are that (2.31) does not hold for that A(t).
Let’s look at the following example.

Example 3.2.16 Let

A(t) =

[
1 t
t2 t3

]
.

Then

A(t)
( ∫ t

0
A(s)ds

)
=

[
1 t

t2 t3

] t t2

2

t3

3
t4

4

 =

 t+ t4

3
t2

2 + t5

4

t3 + t6

3
t4

2 + t7

4

 ,
but( ∫ t

0
A(s)ds

)
A(t) =

 t t2

2

t3

3
t4

4

[
1 t

t2 t3

]
=

 t+ t4

2 t2 + t5

2

t3

3 + t6

4
t4

3 + t7

4

 ,
therefore, (2.31) does not hold for this A(t). ♠

However, if, for example, A(t) is independent of t, that is, A(t) = A for
a constant matrix A, then (2.31) is true, because now,

A(t)
( ∫ t

t0
A(s)ds

)
= A

( ∫ t

t0
Ads

)
= (t− t0)A

2 =
( ∫ t

t0
A(s)ds

)
A(t)

since A(t) is independent of t. This case will be treated in the next section.
Recall that the chain rule for exponential functions says that if a(t) is

a scalar differentiable function, then

d

dt
ea(t) = ea(t)

d

dt
a(t) =

[ d
dt
a(t)

]
ea(t).

Now, we point out that in general, chain rule does not hold for exp
( ∫ t

t0
A(s)ds

)
when A(t) is an n× n matrix function with n > 1.
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Example 3.2.17 (Chain rule doesn’t hold for exp
( ∫ t

t0
A(s)ds

)
when

n > 1). In general, for an n× n matrix function A(t) with n > 1,

d

dt
exp

( ∫ t

t0
A(s)ds

)
̸=

[
exp

( ∫ t

t0
A(s)ds

)]
A(t), (2.40)

d

dt
exp

( ∫ t

t0
A(s)ds

)
̸= A(t)

[
exp

( ∫ t

t0
A(s)ds

)]
. (2.41)

To see why, we look at Example 3.2.14 again, where A(t) =

[
t 1
0 0

]
,

and exp
( ∫ t

0 A(s)ds
)
=

[
et

2/2 2
t [e

t2/2 − 1]
0 1

]
. The (1, 2) position of

d
dt exp

( ∫ t
0 A(s)ds

)
is d

dt
2
t [e

t2/2 − 1] = −2
t2
[et

2/2 − 1] + 2et
2/2; but the (1, 2)

position of
[
exp

( ∫ t
0 A(s)ds

)]
A(t) is et

2/2, thus we get (2.40) in this case.

We also get (2.41) in this case because of (2.30) in Example 3.2.14. ♠

Next, we close this section by showing the following interesting result
concerning a general matrix solution (not necessarily the fundamental one).

Theorem 3.2.18 (Liouville’s formula) Let X(t) be an n×n matrix func-
tion such that X ′(t) = A(t)X(t), t ∈ (a, b). Then

d

dt
[detX(t)] = [trA(t)][detX(t)], t ∈ (a, b), (2.42)

and

detX(t) = [detX(t0)] exp
( ∫ t

t0
trA(s)ds

)
, t0, t ∈ (a, b), (2.43)

where trA(t) =
∑n

i=1 aii(t) for the n × n matrix A(t) = [aij(t)], and det
denotes determinant.

Proof. Let X(t) = [xij(t)]. From the operations of matrices,

[detX(t)]′ =

∣∣∣∣∣∣∣∣∣∣∣

x′11 x′12 . . x′1n
x21 x22 . . x2n
. . . . .
. . . . .
xn1 xn2 . . xnn

∣∣∣∣∣∣∣∣∣∣∣
+· · ·+

∣∣∣∣∣∣∣∣∣∣∣

x11 x12 . . x1n
x21 x22 . . x2n
. . . . .
. . . . .
x′n1 x′n2 . . x′nn

∣∣∣∣∣∣∣∣∣∣∣
. (2.44)
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Since X(t) satisfies X ′ = A(t)X(t), we have

x′ij(t) =
n∑

k=1

aik(t)xkj(t).

Thus, (2.44) becomes

[detX(t)]′

=

∣∣∣∣∣∣∣∣∣∣∣

∑n
k=1 a1kxk1

∑n
k=1 a1kxk2 . .

∑n
k=1 a1kxkn

x21 x22 . . x2n
. . . . .
. . . . .
xn1 xn2 . . xnn

∣∣∣∣∣∣∣∣∣∣∣
+ · · ·

+

∣∣∣∣∣∣∣∣∣∣∣

x11 x12 . . x1n
x21 x22 . . x2n
. . . . .
. . . . .∑n

k=1 ankxk1
∑n

k=1 ankxk2 . .
∑n

k=1 ankxkn

∣∣∣∣∣∣∣∣∣∣∣
. (2.45)

In the first determinant on the right-hand side of (2.45), multiply the
second row by a12 and subtract it from the first row, multiply the third row
by a13 and subtract it from the first row, · · ·, and multiply the last row by
a1n and subtract it from the first row. Then the first determinant on the
right-hand side of (2.45) now equals∣∣∣∣∣∣∣∣∣∣∣

a11x11 a11x12 . . a11x1n
x21 x22 . . x2n
. . . . .
. . . . .
xn1 xn2 . . xnn

∣∣∣∣∣∣∣∣∣∣∣
=a11

∣∣∣∣∣∣∣∣∣∣∣

x11 x12 . . x1n
x21 x22 . . x2n
. . . . .
. . . . .
xn1 xn2 . . xnn

∣∣∣∣∣∣∣∣∣∣∣
=a11[detX(t)].

Similar operations on other determinants on the right-hand side of (2.45)
yield

[detX(t)]′ = a11(t)[detX(t)] + a22(t)[detX(t)] + · · ·+ ann(t)[detX(t)]

= [trA(t)][detX(t)], (2.46)

which is (2.42). To derive (2.43), all we need is to observe that (2.42) implies
that detX(t) is a solution of w′ = [trA(t)]w. Solving it, we obtain (2.43).
This completes the proof. ♠
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Theorem 3.2.18 says that for a general matrix solution X(t) of X ′(t) =
A(t)X(t) on (a, b), detX(t) is always given as an exponential function, even
though the fundamental matrix solution or X(t) itself may not, in general,
be given as an exponential matrix function.

Theorem 3.2.18 also says that the linear independence of the vector func-
tions consisting of the columns of the matrix solution X(t) is determined at
any one point in (a, b). In fact, we have the following corollary from Theorem
3.2.18.

Corollary 3.2.19 Let X(t) be an n× n matrix function such that X ′(t) =
A(t)X(t), t ∈ (a, b). Then the following statements are equivalent.

1. There exists a t0 ∈ (a, b) such that detX(t0) ̸= 0.

2. The vector functions consisting of the columns of X(t) are linearly
independent on (a, b).

3. For any t ∈ (a, b), detX(t) ̸= 0.

Proof. We have (3) ⇒ (1), and the proof of (1) ⇒ (2) is left as an exercise.
So we only need to prove (2) ⇒ (3).

Assume the statement in (2). If the statement in (3) is not true, then
there exists a t0 ∈ (a, b) such that detX(t0) = 0. Let {x(1)(t), x(2)(t), · · · ,
x(n)(t)} be the n columns of the matrix solution X(t). Then detX(t0) = 0
implies that the n vectors {x(1)(t0), x(2)(t0), · · · , x(n)(t0)} in ℜn are linearly
dependent. Thus there exist constants c1, c2, · · · , cn, not all zero, such that

c1x(1)(t0) + c2x(2)(t0) + · · ·+ cnx(n)(t0) = 0.

Now define

y(t) = c1x(1)(t) + c2x(2)(t) + · · ·+ cnx(n)(t), t ∈ (a, b). (2.47)

Since each x(i)(t) is a solution of x′(t) = A(t)x(t), by the principle of super-
position, we find that y(t) is a solution of

y′(t) = A(t)y(t), y(t0) = 0. (2.48)

But the 0 vector in ℜn is also a solution of (2.48), hence by the uniqueness
from Theorem 3.2.2, we get y(t) = 0, t ∈ (a, b), or

c1x(1)(t) + c2x(2)(t) + · · ·+ cnx(n)(t) = 0, t ∈ (a, b), (2.49)
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which means that the vector functions {x(1)(t), x(2)(t), · · · , x(n)(t)} are lin-
early dependent on (a, b), a contradiction to the statement (2). This com-
pletes the proof. ♠

Consequently, for a matrix solution X(t) on an interval (a, b), detX(t)
is either identically zero on (a, b) or never zero on (a, b), that is, the linear
independence of the columns of X(t) on (a, b) is determined at any one
point in (a, b). Notice that this is only true for a matrix solution because
any column of a matrix solution is a solution. This may not be true for
an arbitrary matrix function because for a set of functions, we deduce from
Definition 3.2.5 that the linear independence at one point t0 implies the
linear independence on any interval containing t0, the converse, however, is
not true: The linear independence on an interval does not imply the linear
independence at any point in that interval, see the following example.

Example 3.2.20 The scalar functions sin t and cos t are linearly indepen-
dent on any t interval. But for any fixed t1, sin t1 and cos t1 are linearly
dependent numbers in ℜ. Accordingly, f1(t) = [sin t, sin t]T and f2(t) =
[cos t, cos t]T are linearly independent vector functions on any t interval, but
for any fixed t1, [sin t1, sin t1]

T and [cos t1, cos t1]
T are linearly dependent

vectors in ℜ2. In other words, [sin t, sin t]T and [cos t, cos t]T are linearly
independent vector functions on any t interval, but for any t,

det

[
sin t cos t
sin t cos t

]
= 0. ♠ (2.50)

Exercises 3.2

1. Find 2× 2 matrices A and B such that AB ̸= BA.

2. Randomly pick up a matrix A(t) and check if A(t)
( ∫ t

t0
A(s)ds

)
=( ∫ t

t0
A(s)ds

)
A(t).

3. Let A(t) be an n × n matrix function and let B be an n × n con-
stant matrix, show that

∫ b
a A(t)Bdt = [

∫ b
a A(t)dt]B and

∫ b
a BA(t)dt =

B[
∫ b
a A(t)dt], provided the integrals exist.
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4. Use the definition of eA to show that for A =

[
λ 0
0 µ

]
, eA =[

eλ 0
0 eµ

]
.

5. Find [etA]−1.

6. Let A,B,C be n × n constant matrices. Show that etACetB satisfies
the matrix differential equation X ′ = AX +XB.

7. Find the fundamental matrix solution U(t, t0) for

(a) A(t) =

[
t 1
0 2

]
; (b) A(t) =

 1 −2 0
0 2 3
0 0 −2

 .
8. Find solutions for the equation x′ = Ax+ f(t), where

A =

[
2 1
0 2

]
, f(t) =

[
0
e−t

]
.

9. Find an n × n (n > 1) matrix A(t) (other than the one in Example

3.2.14) such that exp
( ∫ t

t0
A(s)ds

)
is not a matrix solution of x′ =

A(t)x. (Recall that it is a solution when n = 1.)

10. (a) Show that x(t) ≡ 0 is the only solution of 3x′′(t) + 5(sin t)x′(t)−
etx(t) = 0 with x(t0) = 0, x′(t0) = 0.

(b) Show that if x(t) is a solution of 3x′′(t)+5(sin t)x′(t)−etx(t) = 0
such that x(t1) = 0, x′(t1) = 0 for some t1 ∈ ℜ, then x(t) ≡ 0 for
all t ∈ ℜ.

11. Let Φ(t) be an n×nmatrix function and write Φ(t) = [Φ1(t), Φ2(t), · · · ,
Φn(t)] with Φi(t) a column, i = 1, 2, · · · , n. Show that for the matrix
function Φ(t), one has

(a) Φ′(t) = A(t)Φ(t) if and only if Φ′
i(t) = A(t)Φi(t), i = 1, 2, · · · , n.

(b) Φ′(t) = A(t)Φ(t) if and only if Φ(t) = U(t, t0)Φ(t0) for some t0,
where U(t, t0) is the fundamental matrix solution. In particular,
if Φ(t0) is nonsingular for some t0, then Φ(t) is nonsingular for
every t.
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12. Show that if x′(t) = A(t)x(t), x(t0) = x0, has a unique solution for any
x0, then y

′(t) = A(t)y(t) + f(t), y(t0) = y0, also has a unique solution
for any y0.

13. Let ϕi(t), i = 1, 2, · · · , n, be n solutions of x(n)(t)+a1(t)x
(n−1)(t)+· · ·+

an−1(t)x
′ + an(t)x(t) = 0, where ai(t), i = 1, 2, · · · , n, are continuous

on an interval I, and let ci, i = 1, 2, · · · , n, be constants. Define X(t) =
c1ϕ1(t) + c2ϕ2(t) + · · ·+ cnϕn(t), and

Φ(t) = c1


ϕ1(t)
ϕ′1(t)
.
.

ϕ
(n−1)
1 (t)

+ c2


ϕ2(t)
ϕ′2(t)
.
.

ϕ
(n−1)
2 (t)

+ · · ·+ cn


ϕn(t)
ϕ′n(t)
.
.

ϕ
(n−1)
n (t)

 .

Prove that the following statements are equivalent.

(a) There exists c ∈ I such that X(c) = 0.

(b) X(t) = 0 for all t ∈ I.

(c) There exists c ∈ I such that Φ(c) = 0.

(d) Φ(t) = 0 for all t ∈ I.

14. Let ϕi(t), i = 1, 2, · · · , n, be n solutions of x(n)(t)+a1(t)x
(n−1)(t)+· · ·+

an−1(t)x
′ + an(t)x(t) = 0, where ai(t), i = 1, 2, · · · , n, are continuous

on an interval I, and define the Wronskian for ϕi, i = 1, 2, · · · , n, as
the determinant

W (ϕ1, ϕ2, · · · , ϕn)(t) = det


ϕ1(t) . . . ϕn(t)
ϕ′1(t) . . . ϕ′n(t)
. . . . .
. . . . .

ϕ
(n−1)
1 (t) . . . ϕ

(n−1)
n (t)

 .

Prove that the following statements are equivalent.

(a) There exists t0 ∈ I such that W (ϕ1, ϕ2, · · · , ϕn)(t0) ̸= 0.

(b) ϕ1, ϕ2, · · · , ϕn are linearly independent on the interval I (there
do not exist constants ci, i = 1, 2, · · · , n, not all zero, such that
c1ϕ1(t) + c2ϕ2(t) + · · ·+ cnϕn(t) = 0 for all t ∈ I).

(c) For any t ∈ I, W (ϕ1, ϕ2, · · · , ϕn)(t) ̸= 0.
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15. Let I be any interval containing 0. Prove that ϕ1(t) = t5, ϕ2(t) = t7

cannot be solutions of x′′ + a1(t)x
′ + a2(t)x = 0 with ai(t) continuous

on I.

16. For x′(t) = A(t)x(t), prove that for the fundamental matrix solution
U(t, t0),

det U(t, t0) = exp
( ∫ t

t0
trA(s)ds

)
.

17. Verify, using Definition 3.2.5, that for a set of vector functions, lin-
ear independence at one point t0 implies linear independence on any
interval containing t0.

18. Prove that (1) ⇒ (2) in Corollary 3.2.19.

19. Let X(t) be an n× n matrix function such that X ′(t) = A(t)X(t), t ∈
(a, b). Prove that the following statements are equivalent.

(a) There exists t0 ∈ (a, b) such that detX(t0) = 0.

(b) The vector functions consisting of the columns ofX(t) are linearly
dependent on (a, b).

(c) For any t ∈ (a, b), detX(t) = 0.

3.3 Linear Equations with Constant Coefficients

In this section, we assume that A(t) is independent of t, that is,

A(t) = A

is a constant matrix for t in an interval (a, b). Now, the matrix A com-
mutes with its integral, so Theorem 3.2.15 can be applied to express the
fundamental matrix solution as an exponential,

U(t, t0) = exp
( ∫ t

t0
A(s)ds

)
= e(t−t0)A. (3.1)

To simplify the notation, we assume that t0 = 0 in the rest of this section,
hence Eq. (1.2) now becomes

x′(t) = Ax(t) + f(t), x(0) = x0, (3.2)
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with the unique solution given by

x(t) = etA
[
x0 +

∫ t

0
{esA}−1f(s)ds

]
= etAx0 +

∫ t

0
e(t−s)Af(s)ds. (3.3)

The corresponding homogeneous linear differential equation becomes

x′(t) = Ax(t), x(0) = x0, (3.4)

with the unique solution given by

x(t) = etAx0. (3.5)

In the following, we take advantage of the fact that the matrix A is
constant, and analyze the properties of the fundamental matrix solution etA

so as to get a better understanding of the structure of solutions of Eq. (3.4)
and Eq. (3.2).

We will do two things here. First, examine the theoretical structure of
etA, which will provide us with a basis for long-term behavior of solutions of
Eq. (3.2). Second, derive an algorithm that can be used to actually compute
etA and solve Eq. (3.2).

To begin, we observe that if A is a diagonal matrix or a triangular matrix,
then the solution of Eq. (3.4) can be easily computed. For example, if

A = diag(λ1, λ2, · · · , λn) =



λ1 0 0 . . . 0 0
0 λ2 0 . . . 0 0
0 0 λ3 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
0 0 0 . . . λn−1 0
0 0 0 . . . 0 λn


,

then an inspection shows that the fundamental matrix solution etA is given
by
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etA=diag(eλ1t, eλ2t, · · · , eλnt)=



eλ1t 0 0 . . . 0 0
0 eλ2t 0 . . . 0 0
0 0 eλ3t . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
0 0 0 . . . eλn−1t 0
0 0 0 . . . 0 eλnt


.

Hence the solution of Eq. (3.4) is given by

x(t) = [x01e
λ1t, x02e

λ2t, · · · , x0neλnt]T ,

where [x01, x02, · · · , x0n]T = x0. Another way to look at this situation is
that in this case, we actually have n uncoupled homogeneous scalar linear
differential equations, and each has the form of y′ = λiy, y(0) = x0i, thus
the solution is given by x0ie

λit.

If the matrix A is, say for example, lower triangular,

A =



a 0 0 . . . 0 0
b c 0 . . . 0 0
d e f . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . . 0
. . . . . . . .


,

then we can solve x1(t) first from {x′1(t) = ax1(t), x1(0) = x01} to get
x1(t) = x01e

at. For x2(t), we have x′2(t) = cx2(t) + bx1(t) = cx2(t) +
bx01e

at. Then we can compute x2(t) using the variation of parameters for-
mula (3.3) for scalar equations. Continuing in this way, we can compute
x3(t), · · · , xn(t). For an upper triangular matrix, we can compute xn(t) first,
and then xn−1(t), · · · , x1(t).

For a general square matrix A, there is a result saying that A can be
transformed into a square matrix that is almost diagonal. To understand
this, let’s recall something from linear algebra.
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Definition 3.3.1 Let B be an n × n constant matrix. The roots (may be
complex valued) of

det(B − λE) = 0 (3.6)

(where E is the n×n unit or identity matrix) are called the eigenvalues of
B. An eigenvalue λ0 is of multiplicity m if m is the largest integer such that
det(B − λE) = (λ − λ0)

mP (λ) for some polynomial P (λ). A vector x ̸= 0
(may be complex valued) satisfies (B − λE)x = 0 is called an eigenvector
corresponding to the eigenvalue λ.

Definition 3.3.2 Two n × n matrices A and B are said to be similar if
there exists a nonsingular n× n matrix C such that C−1AC = B.

Theorem 3.3.3 If the n× n matrices A and B are similar, then A and B
have the same eigenvalues.

Proof. See the Appendix. ♠

Note, for a triangular matrix, the eigenvalues are the numbers on the
(main) diagonal. In general, we have the following result which transforms
any square matrix into an almost diagonal matrix. The proof can be found
in some texts on linear algebra, such as Halmos [1958].

Theorem 3.3.4 (Jordan canonical form theorem) For any n×n con-
stant matrix A (may be complex valued), there exists a nonsingular constant
matrix P (may be complex valued) such that

P−1AP = J, (3.7)

here the matrix J (may be complex valued) has the form

J =



J1 0 0 . . . 0 0
0 J2 0 . . . 0 0
0 0 J3 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
0 0 0 . . . Js−1 0
0 0 0 . . . 0 Js


, (3.8)
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where the zero matrices 0 may not be square matrices, but each Ji, i =
1, 2, · · · , s, is a square matrix, and has the form

Ji =



λi 1 0 . . . 0 0
0 λi 1 . . . 0 0
0 0 λi . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 1 0
0 0 0 . . . λi 1
0 0 0 . . . 0 λi


, (3.9)

and all the eigenvalues of A are given by λi, i = 1, 2, · · · , s, (not neces-
sarily distinct). Matrix Ji may be a 1 × 1 matrix. Except for the order in
which the matrices Ji, i = 1, 2, · · · , s, appear on the diagonal, the matrix J
is unique.

♠

The most important aspect of Theorem 3.3.4 is that the matrix A is
similar to the “almost” diagonal matrix J , whose special format can be
exploited to help us understand the structure of etA.

However, we point out that the weakness of this theorem is that the
matrix P in the theorem is very hard to construct in general. Only in some
special cases, such as when we have n linearly independent eigenvectors for
the n× n matrix A, is P easy to construct. We verify this in the following.

Proposition 3.3.5 If an n× n matrix A has n linearly independent eigen-
vectors v1, v2, · · · , vn, then the matrix P in the Jordan transformation can
be taken as P = [v1, v2, · · · , vn].

Proof. For the eigenvectors v1, v2, · · · , vn, let λ1, λ2, · · · , λn be the corre-
sponding eigenvalues (may not be distinct). Then

P−1AP = P−1A[v1, v2, · · · , vn] = P−1[Av1, Av2, · · · , Avn]
= P−1[λ1v1, λ2v2, · · · , λnvn] = [λ1P

−1v1, λ2P
−1v2, · · · , λnP−1vn]

= [λ1e1, λ2e2, · · · , λnen] = diag(λ1, λ2, · · · , λn),

where [e1, e2, · · · , en] is the n× n unit matrix. This completes the proof. ♠

The following result from linear algebra can be used to check linear in-
dependency of eigenvectors.
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Proposition 3.3.6 If the eigenvalues λ1, λ2, · · · , λn of an n × n matrix A
are distinct, then the corresponding eigenvectors v1, v2, · · · , vn are linearly
independent.

Proof. See the Appendix. ♠

From Propositions 3.3.5 and 3.3.6, we have

Corollary 3.3.7 If an n× n matrix A has n distinct eigenvalues, then the
matrix P in the Jordan transformation can be taken as P = [v1, v2, · · · , vn],
where v1, v2, · · · , vn are the corresponding eigenvectors. ♠

Now we use some examples to illustrate how to transform a matrix A
into J .

Example 3.3.8 Consider the matrix

A =

[
1 6
5 2

]
.

The eigenvalues of A are λ1 = −4 and λ2 = 7, and eigenvectors are
v1 = [6,−5]T and v2 = [1, 1]T , respectively. Then we can form P = [v1, v2]
to obtain

P−1AP =
1

11

[
1 −1
5 6

] [
1 6
5 2

] [
6 1
−5 1

]
=

[
−4 0
0 7

]
,

in which case, J =

[
J1 0
0 J2

]
, where J1 = −4 and J2 = 7 are 1 × 1

matrices.
♠

Example 3.3.9 Consider the matrix

A =

[
7 −2
2 3

]
.

In this case, 5 is the only eigenvalue with multiplicity 2, and u1 = [1, 1]T

is an eigenvector. Now, we try u2 = [a, b]T , a ̸= b, so that u1 and u2 are
linearly independent. We can play with

P = [u1, u2] =

[
1 a
1 b

]
, (a ̸= b)
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and then find that we can choose a = 1
2 , b = 0 to obtain

P−1AP = −2

[
0 −1

2
−1 1

] [
7 −2
2 3

] [
1 1

2
1 0

]
=

[
5 1
0 5

]
,

in which case, J = J1 =

[
5 1
0 5

]
. ♠

Next, let’s take advantage of the special form of J and use it to simplify
etA. From P−1AP = J in Theorem 3.3.4, we have A = PJP−1. Then,

etA = etPJP−1

= E + tPJP−1 +
[tPJP−1]2

2!
+

[tPJP−1]3

3!
+ · · ·

= E + tPJP−1 +
P [tJ ]2P−1

2!
+
P [tJ ]3P−1

3!
+ · · ·

= P{E + tJ +
[tJ ]2

2!
+

[tJ ]3

3!
+ · · ·}P−1

= PetJP−1. (3.10)

In order to understand the structure of the fundamental matrix solution
etA, we must understand the structure of etJ . From (3.8), we have

etJ = E + tJ +
[tJ ]2

2!
+

[tJ ]3

3!
+ · · ·

= E + t



J1 0 0 . . . 0 0
0 J2 0 . . . 0 0
0 0 J3 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
0 0 0 . . . Js−1 0
0 0 0 . . . 0 Js


+
t2

2!
J2 + · · ·

= E +



tJ1 0 0 . . . 0 0
0 tJ2 0 . . . 0 0
0 0 tJ3 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
0 0 0 . . . tJs−1 0
0 0 0 . . . 0 tJs





3.3. Linear Equations with Constant Coefficients 139

+



t2

2!J
2
1 0 0 . . . 0 0

0 t2

2!J
2
2 0 . . . 0 0

0 0 t2

2!J
2
3 . . . 0 0

. . . . . . 0 0

. . . . . . 0 0

. . . . . . 0 0

0 0 0 . . . t2

2!J
2
s−1 0

0 0 0 . . . 0 t2

2!J
2
s


+ · · ·

=



etJ1 0 0 . . . 0 0
0 etJ2 0 . . . 0 0
0 0 etJ3 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
0 0 0 . . . etJs−1 0
0 0 0 . . . 0 etJs


. (3.11)

Hence, we must understand etJi , i = 1, 2, · · · , s, in order to understand
the fundamental matrix solution etA. Since Ji is given by (3.9), we have

etJi = et(λiE+Ni), (3.12)

where E is the unit or identity matrix of the same size of the matrix Ji, and

Ni =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0


. (3.13)

Now, we need the following result to help us simplify et(λiE+Ni). Al-
though the result looks like something in linear algebra, the idea from dif-
ferential equations can be used to prove it.

Lemma 3.3.10 If the constant square matrices B and C commute, that is,
BC = CB, then

CetB = etBC, etB+tC = etBetC , t ∈ ℜ. (3.14)
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Proof. From Theorem 3.2.15, it follows that if Q is a constant square
matrix, then etQ is a fundamental matrix solution that satisfies

(etQ)′ = QetQ. (3.15)

Let Z(t) = CetB − etBC. Then,

Z ′(t) = CBetB −BetBC = B[CetB − etBC] = BZ(t), Z(0) = C − C = 0.

Hence from uniqueness, Z(t) = 0, t ∈ ℜ. This shows that

CetB = etBC, t ∈ ℜ. (3.16)

Next, let W (t) = et(B+C) and Y (t) = etBetC . Then we have W (0) =
E, Y (0) = E. Now, treat (B + C) as Q in (3.15), we obtain

W ′(t) =
d

dt
et(B+C) = (B + C)et(B+C) = (B + C)W (t). (3.17)

Also, from (3.16) and the product rule, we have

Y ′(t) = BetBetC + etBCetC

= BetBetC + CetBetC = (B + C)etBetC

= (B + C)Y (t). (3.18)

Therefore, by applying uniqueness to (3.17) and (3.18) with W (0) = E and
Y (0) = E, we obtain W (t) = Y (t), that is, etB+tC = etBetC . This completes
the proof. ♠

Now, we can apply Lemma 3.3.10 to verify that

etJi = et(λiE+Ni) = etλiEetNi = (eλitE)etNi = (eλit)etNi . (3.19)

Therefore, according to (3.10), (3.11), and (3.19), we must examine the
structure of etNi in order to understand the fundamental matrix solution
etA. Assume that the size of Ni is mi×mi, and observe that Ni is nilpotent,
that is, for h ≥ mi, N

h
i = 0, (see an exercise). Therefore,

etNi = E + tNi +
1

2!
[tNi]

2 +
1

3!
[tNi]

3 + · · ·+ 1

(mi − 1)!
[tNi]

mi−1
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= E +



0 t 0 . . . 0 0
0 0 t . . . 0 0
0 0 0 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . t 0
0 0 0 . . . 0 t
0 0 0 . . . 0 0


+

1

2!



0 t 0 . . . 0 0
0 0 t . . . 0 0
0 0 0 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . t 0
0 0 0 . . . 0 t
0 0 0 . . . 0 0



2

+ · · ·+ 1

(mi − 1)!



0 t 0 . . . 0 0
0 0 t . . . 0 0
0 0 0 . . . 0 0
. . . . . . 0 0
. . . . . . 0 0
. . . . . . t 0
0 0 0 . . . 0 t
0 0 0 . . . 0 0



mi−1

=



1 t t2

2!
t3

3! . . . . tmi−1

(mi−1)!

0 1 t t2

2! . . . . .
0 0 1 . . . . . .
. . . . . . . . .
. . . . . . . . .

. . . . . . . t2

2!
t3

3!

. . . . . . . t t2

2!
0 0 0 . . . . 1 t
0 0 0 . . . . 0 1


mi×mi

. (3.20)

Therefore, we have, from (3.19) and (3.20),

etJi = (eλit)



1 t t2

2!
t3

3! . . . . tmi−1

(mi−1)!

0 1 t t2

2! . . . . .
0 0 1 . . . . . .
. . . . . . . . .
. . . . . . . . .

. . . . . . . t2

2!
t3

3!

. . . . . . . t t2

2!
0 0 0 . . . . 1 t
0 0 0 . . . . 0 1


mi×mi

. (3.21)
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Formulas (3.10), (3.11), and (3.21) together give a clear picture of the
fundamental matrix solution etA:

etA looks like, subject to a transformation etA = PetJP−1, a
matrix with some square matrices on the diagonal and with other
parts being zero; and for any square matrix on the diagonal, each
entry is either 0, or a product of eλit and a polynomial in t, where
λi is an eigenvalue of the matrix A. Here P, J may be complex
matrices, but etA is a real matrix since A in this chapter is real.

With this structure, we find that long-term property of etA is determined
by the eigenvalues of matrix A. In fact, we have the following result con-
cerning long-term property of etA.

Theorem 3.3.11 Let λ be a complex number and denote R(λ) the real part
of λ. Then,

(A). |etA| ≤ C0, 0 ≤ t < ∞, for some positive constant C0 if and only
if the following is true: for each eigenvalue λ of the matrix A, either
R(λ) < 0, or R(λ) = 0 but in this case λ appears only in matrices Ji
(in the Jordan canonical form for A) such that Ji is a 1× 1 matrix.

(B). limt→∞ |etA| = 0 if and only if each eigenvalue of the matrix A has a
negative real part.

(C). limt→∞ |etA| = ∞ if and only if either there is an eigenvalue λ of the
matrix A with R(λ) = 0 and λ appears in a matrix Ji that is at least
2 × 2, or there is an eigenvalue of the matrix A with a positive real
part.

Proof. Note first that |etA| ≤ |P ||etJ ||P−1| and |etJ | ≤ |P−1||etA||P | with
|P | and |P−1| fixed constants, then from (3.11) and (3.21), we only need to
consider each |etJi |, i = 1, 2, · · · , s. Observe that

|eλit| = eR(λi)t, t ∈ ℜ,

then each |etJi | is given as

|etJi | = eR(λi)tMi(t), t ≥ 0,

whereMi(t) is a polynomial in t of order less than n, andMi(t) ≥ 1 for t ≥ 0
because the size of etJi is at least 1× 1.
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If R(λi) < 0, then l’Hôpital’s rule can be applied to verify that

|etJi | = eR(λi)tMi(t) → 0, t→ ∞.

If R(λi) > 0, then, since |Mi(t)| ≥ 1, we have

|etJi | = eR(λi)tMi(t) → ∞, t→ ∞.

If R(λi) = 0 and if the size of Ji is 1× 1, then

|etJi | = eR(λi)tMi(t) = e0t1 = 1.

Otherwise, if R(λi) = 0 and if the size of Ji is at least 2× 2, then

|etJi | = eR(λi)tMi(t) ≥ e0t(2 + t) = (2 + t) → ∞, t→ ∞.

Now, the results in (A), (B), and (C) will follow from the cases analyzed
above for R(λi) (see an exercise), hence the proof is complete. ♠

Translating Theorem 3.3.11 in terms of the corresponding solutions of
Eq. (3.4), we have

Theorem 3.3.12 Consider Eq. (3.4). Then,

(A). Every solution of Eq. (3.4) satisfies |x(t, 0, x0)| ≤ C1|x0|, 0 ≤ t < ∞,
for some positive constant C1 if and only if the following is true: for
each eigenvalue λ of the matrix A, either R(λ) < 0, or R(λ) = 0 but in
this case λ appears only in matrices Ji such that Ji is a 1× 1 matrix.

(B). Every solution of Eq. (3.4) satisfies limt→∞ |x(t, 0, x0)| = 0 if and only
if each eigenvalue of the matrix A has a negative real part.

(C). There is a solution x of Eq. (3.4) with limt→∞ |x(t, 0, x0)| = ∞ if and
only if either there is an eigenvalue λ of the matrix A with R(λ) = 0
and λ appears in a matrix Ji that is at least 2 × 2, or there is an
eigenvalue of the matrix A with a positive real part.

Proof. Observe that the solutions of Eq. (3.4) are given by x(t, 0, x0) =
etAx0, so we can use Theorem 3.3.11 to prove the result. For (A) and (B),
we can choose x0 = ei = [0, · · · , 0, 1i, 0, · · · , 0]T , i = 1, 2, · · · , n, and use
Theorem 3.3.11. For (C): If Eq. (3.4) has a solution that goes to ±∞,
then etA has an entry that goes to ±∞ (otherwise, no solutions can go to
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±∞). Thus, |etA| goes to ∞, hence Theorem 3.3.11 can be applied. On the
other hand, if |etA| goes to ∞, then etA has an entry, say for example q(t)
on the position (1, 2) that goes to ±∞. In this case, we choose x0 = e2 =
[0, 1, 0, · · · , 0]T , such that the corresponding solution satisfies |x(t, 0, x0)| =
|etAe2| ≥ |q(t)| → ∞, t→ ∞. This completes the proof. ♠

Example 3.3.13 Consider x′(t) = Ax(t) with

A =

 4 −1 12
37 −8 76
0 0 −4

 .
The eigenvalues are given by −4, −2 ± i (i =

√
−1). Since the real part of

each eigenvalue is negative, every solution goes to zero. ♠

With the help of the variation of parameters formula (3.3), results in
Theorem 3.3.12 will allow us to determine long-term behavior of the solutions
of Eq. (3.2) by examining eigenvalues of the matrix A. For example, in
Chapter 1 we noted that eigenvalues can be used to determine stabilities
for scalar linear differential equations. We will give a detailed analysis in
this direction for linear differential equations in ℜn, n ≥ 1, when we study
stability in Chapter 5.

The detailed structures of etA, etJ , and etJi analyzed above also show
a very interesting result concerning the relationship between eigenvalues of
etA and eigenvalues of A, which is the version for finite dimensional spaces
of the “spectral mapping theorem” in functional analysis.

Theorem 3.3.14 (Spectral mapping theorem) Let A be an n× n ma-
trix with the eigenvalues λi, i = 1, 2, · · · , n, (not necessarily distinct). Then
all eigenvalues of eA are given by eλi , i = 1, 2, · · · , n. That is, if we define
σ(B) to be the set of all eigenvalues of matrix B, then

σ(eA) = eσ(A).

Moreover, for any fixed real number τ ,

σ(eτA) = eτσ(A). ♠ (3.22)

In the above, we analyzed the theoretical structure of etA, and found that
most properties of etA, especially long-term properties, can be determined
by using the eigenvalues of matrix A. These results are summarized in
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Theorem 3.3.11, and their applications to differential equations x′ = Ax are
summarized in Theorem 3.3.12.

Next, we take a different approach to etA. That is, we will provide an
algorithm that can be used to actually calculate etA. For a polynomial in
λ given by

P (λ) = λm + a1λ
m−1 + · · ·+ am−1λ+ am,

we can define, for a square matrix A,

P (A) = Am + a1A
m−1 + · · ·+ am−1A+ amE,

which is also a square matrix, where E is the unit or identity matrix of the
same size of the matrix A. The following is a result from linear algebra.

Theorem 3.3.15 (Cayley-Hamilton) Let A be an n × n matrix and let
P (λ) = det(λE − A) be the characteristic polynomial of the matrix A, then
P (A) = 0 (the 0 matrix).

Proof. See the Appendix. ♠

With this preparation, we can verify the following algorithm.

Theorem 3.3.16 (Putzer algorithm (1966)) Let A be an n× n matrix
with the eigenvalues λ1, λ2, · · · , λn (not necessarily distinct). Then

etA =
n−1∑
j=0

uj+1(t)Pj , (3.23)

where

P0 = E, Pj =
j∏

k=1

(A− λkE), j = 1, 2, · · · , n, (3.24)

and {u1(t), · · · , un(t)} is the solution of the lower triangular system

u′1(t) = λ1u1(t), u1(0) = 1,

u′j(t) = λjuj(t) + uj−1(t), uj(0) = 0, j = 2, 3, · · · , n. (3.25)
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Proof. Define Y (t) =
∑n−1

j=0 uj+1(t)Pj . If we can show that Y ′(t) =

AY (t), Y (0) = E, then by uniqueness, etA = Y (t), proving the theorem.
Now,

Y (0) =
n−1∑
j=0

uj+1(0)Pj = u1(0)P0 = E, (3.26)

and

Y ′(t) =
n−1∑
j=0

u′j+1(t)Pj

=
n−1∑
j=0

[
λj+1uj+1(t) + uj(t)

]
Pj , (3.27)

where we define u0(t) = 0. Thus, as Pj+1 = (A− λj+1E)Pj , one has

Y ′(t)− λnY (t) =
n−1∑
j=0

[
λj+1uj+1(t) + uj(t)

]
Pj − λn

n−1∑
j=0

uj+1(t)Pj

=
n−1∑
j=0

[λj+1 − λn]uj+1(t)Pj +
n−1∑
j=1

uj(t)Pj

=
n−1∑
j=0

[λj+1 − λn]uj+1(t)Pj +
n−2∑
j=0

uj+1(t)Pj+1

=
n−2∑
j=0

[λj+1 − λn]uj+1(t)Pj +
n−2∑
j=0

uj+1(t)
[
(A− λj+1E)Pj

]

=
n−2∑
j=0

[
λj+1E − λnE + (A− λj+1E)

]
uj+1(t)Pj

=
n−2∑
j=0

[
A− λnE

]
uj+1(t)Pj

=
[
A− λnE

] n−2∑
j=0

uj+1(t)Pj

=
[
A− λnE

][ n−1∑
j=0

uj+1(t)Pj − un(t)Pn−1

]
=

[
A− λnE

][
Y (t)− un(t)Pn−1

]
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=
[
A− λnE

]
Y (t)−

[
A− λnE

]
un(t)Pn−1

=
[
A− λnE

]
Y (t)− un(t)Pn. (3.28)

The characteristic equation for the matrix A can be written in factored
form as

P (λ) = (λ− λ1)(λ− λ2) · · · (λ− λn), (3.29)

then from the Cayley-Hamilton theorem 3.3.15,

Pn = (A− λ1E)(A− λ2E) · · · (A− λnE) = P (A) = 0. (3.30)

Therefore, (3.28) becomes Y ′(t) = AY (t), hence we have completed the
proof. ♠

The Putzer algorithm says that to compute etA, all we need is to solve
u1, u2, · · · , un successively from the lower triangular system, starting with
u1, then u2, · · · , then un, which can be done using the variation of parameters
formula for scalar linear differential equations.

Let’s use the following example to illustrate how to apply the Putzer
algorithm.

Example 3.3.17 Consider

A =

 3 −1 0
1 1 0
−1 2 1

 .
The characteristic equation is det(λE − A) = (λ2 − 4λ + 4)(λ − 1) = 0, so
the eigenvalues are given by λ1 = 2, λ2 = 2, λ3 = 1. Now, P0 = E,

P1 = (A− λ1E) =

 1 −1 0
1 −1 0
−1 2 −1

 , P2 = P1(A− λ2E) =

 0 0 0
0 0 0
2 −3 1

 .
Next, we compute ui(t), i = 1, 2, 3. For u1(t), u

′
1(t) = λ1u1(t) = 2u1(t) and

u1(0) = 1, so u1(t) = e2t. For u2(t), u
′
2(t) = λ2u2(t)+u1(t) = 2u2(t)+e

2t and
u2(0) = 0, so u2(t) = te2t. For u3(t), u

′
3(t) = λ3u3(t) + u2(t) = u3(t) + te2t

and u3(0) = 0, so u3(t) = te2t − e2t + et. Therefore,

etA = u1(t)P0 + u2(t)P1 + u3(t)P2
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= e2tE + te2t

 1 −1 0
1 −1 0
−1 2 −1

+
(
te2t − e2t + et

) 0 0 0
0 0 0
2 −3 1


=

 te2t + e2t −te2t 0
te2t e2t − te2t 0

te2t − 2e2t + 2et 3e2t − te2t − 3et et

 . (3.31)

We check by taking a derivative in t that the right-hand side of (3.31) is the
unique matrix solution of X ′ = AX, X(0) = E; therefore, it is the same as
etA. That is, etA can be computed as in (3.31). ♠

Next, we introduce another method to compute etA:

etA = e(A−λE)t+λEt = e(A−λE)teλEt

= e(A−λE)teλt

=
[ ∞∑
m=0

(A− λE)m

m!
tm

]
eλt. (3.32)

Formula (3.32) is useful sometimes, especially when the n× n matrix A
has n linearly independent vectors vi, i = 1, 2, · · · , n, with λi, i = 1, 2, · · · , n,
the corresponding eigenvalues. Because in that case, (A− λiE)vi = 0, thus
etAvi = eλitvi. Now, any x0 ∈ ℜn is a linear combination of vi, x0 =

∑n
i=1 civi

for some constants ci, therefore,

etAx0 = etA
n∑

i=1

civi =
n∑

i=1

cie
tAvi =

n∑
i=1

cie
λitvi.

Exercises 3.3

1. Let D and P be n× n matrices and let P be nonsingular. Show that
PeDP−1 = ePDP−1

.

2. Let A =

 0 1 0
0 0 1
0 0 0

. Compute Am, m = 2, 3, · · · .

3. Let Ni be the nilpotent matrix given by (3.13) with its size mi ×mi.
Show that Nk

i = 0 for k ≥ mi.
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4. Let N be an n×n nilpotent matrix and let A = diag(1, a, a2, · · · , an−1).
Prove that A−1NA = aN .

5. Transform the following matrices into the Jordan canonical forms:

A1 =

[
1 2
5 4

]
; A2 =

[
1 1
−1 3

]
.

6. Find etA for (a) A =

[
2 1
0 2

]
; (b) A =

 3 1 0
0 3 1
0 0 3

 ;

(c) A =


4 1 0 0 0
0 4 0 0 0
0 0 5 0 0
0 0 0 6 1
0 0 0 0 6

 .

7. Find etA for A =

 1 0 0
0 2 −1
0 0 2

 .
8. Prove that if x is an eigenvector of the matrix A corresponding to the

eigenvalue λ, then x is also an eigenvector of the matrix eA correspond-
ing to the eigenvalue eλ.

9. Let a(t) ∈ ℜ be differentiable and let A be an n× n matrix.

(a) Use the definitions of derivative and exponential for a matrix to
show that d

dte
a(t)A = a′(t)Aea(t)A.

(b) Show that e(ln t)A, t > 0, is a solution of x′(t) = (1t )Ax(t).

(c) Solve x′(t) = (1t )Ax(t) + f(t), x(1) = x0, t ≥ 1.

10. Review l’Hôpital’s rule and find limt→∞ e−2tt3.

11. Complete the proof of Theorem 3.3.11 by verifying the results in (A),
(B), and (C).

12. Prove the spectral mapping theorem 3.3.14.

13. In Example 3.3.17, take a derivative in t of the matrix etA computed
there, then compare the derivative with AetA.
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14. (a) Use the Putzer algorithm to compute etA for

(i). A =

[
1 −1
3 5

]
, (ii). A =

 1 −1 1
3 5 2
0 0 3

 .
(b) Use formula (3.32) to compute etAx0 for matrix A given in (i) and

(ii) above.

3.4 Periodic Coefficients and Floquet Theory

From the previous section, we see that for linear differential equations x′(t) =
A(t)x(t), the simplest case is when A(t) = A is independent of t, because
then the fundamental matrix solution, given by

U(t, t0) = e(t−t0)A, (4.1)

is completely understood using the eigenvalues of matrix A.

The next simplest case for linear differential equations where we can still
get a good understanding of the structure of solutions is given by linear
periodic differential equations. That is, in the differential equation

x′(t) = A(t)x(t), x(t0) = x0, (4.2)

there exists a constant T > 0, called a period, such that A(t) is T -periodic,
written as

A(t) = A(t+ T ), t ∈ ℜ.

We remark that A(t) = A(t + T ) means that every entry in the matrix
A(t) is T -periodic, and we choose T > 0 to be the smallest period.

When A(t) is periodic, A(t) may not commute with its integral, thus
the fundamental matrix solution U(t, t0) of Eq. (4.2) may not be given

by an exponential exp
( ∫ t

t0
A(s)ds

)
. However, we will show for periodic

equations that U(t, t0) is represented by a formula that looks almost like
(4.1), therefore we can still understand U(t, t0) in a better way.

In order to find a good approach to treat periodic linear differential
equations in ℜn, n ≥ 1, let’s first analyze a scalar periodic linear differential
equation.
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Example 3.4.1 Consider the scalar periodic linear differential equation,

x′(t) = a(t)x(t), a(t+ T ) = a(t). (4.3)

Now, U(t, 0) = e
∫ t

0
a(s)ds. Let C be a scalar such that

U(T, 0) = e
∫ T

0
a(s)ds = eTC , or C =

1

T

∫ T

0
a(s)ds,

and define

P (t) = U(t, 0)e−tC = e
∫ t

0
a(s)dse−tC ,

and

y(t) = P−1(t)x(t),

where x(t) is a solution of (4.3). Then we have

U(t, 0) = P (t)etC , (4.4)

and

y′(t) = −P−2(t)P ′(t)x(t) + P−1(t)x′(t)

= −P−2(t)P (t)[a(t)− C]x(t) + P−1(t)a(t)x(t) = P−1(t)Cx(t)

= Cy(t). ♠ (4.5)

From Example 3.4.1, we find that the fundamental (scalar) solution is
given by U(t, 0) = P (t)etC , which is almost an exponential function; and
y(t) = P−1(t)x(t) transforms the periodic Eq. (4.3) into Eq. (4.5), an equa-
tion with a constant coefficient. In order to carry these to linear periodic
equations in ℜn, n ≥ 1, we introduce a result that defines the natural loga-
rithmic function for a nonsingular matrix. Recall that for a complex number
B ̸= 0, C = lnB is well defined, and B = eC . The following result is similar
for matrices.

Lemma 3.4.2 If B is an n× n constant nonsingular matrix (may be com-
plex valued), then there exists an n× n constant matrix C (may be complex
valued), such that B = eC .

Proof. Applying the Jordan canonical form theorem 3.3.4 to the matrix
B, we obtain matrices P and J such that B = PJP−1 and J is given by
(3.8) with Ji on the diagonal given by (3.9). If we can prove that J is given
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by an exponential, say for example J = eD, then B must be given by an
exponential, because J = eD implies

B = PJP−1 = PeDP−1 = ePDP−1
, (4.6)

hence we can let C = PDP−1 to finish the proof.
To prove that J is given by an exponential, note from (3.8) that we only

need to verify that each Ji can be written as an exponential. Since B is
nonsingular, det(B − 0E) = detB ̸= 0, thus each eigenvalue λi of B (or of
J since they are similar) is nonzero. Then we can write

Ji = λiE +Ni = λi(E +
Ni

λi
), (4.7)

where the nilpotent matrix Ni is given by (3.13), with its size mi ×mi.
Recall that for x ∈ ℜ and |x| < 1, the series

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · (4.8)

converges, hence we can define

ln(E +
Ni

λi
) =

Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+· · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)
+ · · ·

=
Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+· · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)
, (4.9)

which has finite number of terms because Nh
i = 0 for h ≥ mi. Next, for

x ∈ ℜ and |x| < 1,

1 + x = eln(1+x) = 1 + (x− x2

2
+ · · ·) + 1

2!
(x− x2

2
+ · · ·)2 + · · · , (4.10)

thus, for any k ≥ 2, the coefficient of xk in the expansion on the right-hand
side of (4.10) is zero. The same is true if we replace ln(1 + x) by the finite
summation ln(E + Ni

λi
). That is, from (4.10), we have

E +
Ni

λi
= E +

[Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+ · · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)

]
+

1

2!

[Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+ · · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)

]2
+

1

3!

[Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+ · · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)

]3
+ · · · .

(4.11)
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Now, from (4.9) and (4.11), we obtain

e
ln(E+

Ni
λi

)
= E + ln(E +

Ni

λi
) +

1

2!

[
ln(E +

Ni

λi
)
]2

+ · · ·

= E +
[Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+ · · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)

]
+

1

2!

[Ni

λi
−

(Ni
λi
)2

2
+

(Ni
λi
)3

3
−

(Ni
λi
)4

4
+ · · ·+ (−1)mi

(Ni
λi
)mi−1

(mi − 1)

]2
+ · · ·

= E +
Ni

λi
. (4.12)

Therefore, from (4.12) and Lemma 3.3.10, we can rewrite (4.7) as

Ji = λi(E +
Ni

λi
) = λie

ln(E+
Ni
λi

)
= elnλie

ln(E+
Ni
λi

)
= [elnλiE]e

ln(E+
Ni
λi

)

= [e(lnλi)E ]e
ln(E+

Ni
λi

)
= e

(lnλi)E+ln(E+
Ni
λi

)
, (4.13)

which verifies that Ji can be written as an exponential, hence we have com-
pleted the proof. ♠

With the help of Lemma 3.4.2, we will be able to transform the fun-
damental matrix solution U(t, t0) of a linear periodic differential equation
into a simpler form that is “almost” an exponential matrix function. This
study is called Floquet theory, which will eventually allow us to transform
Eq. (4.2) with A(t) periodic into a linear differential equation with constant
coefficients.

Theorem 3.4.3 (Floquet theory) Let A(t) = A(t+T ) for some constant
T > 0 and let U(t, t0) be the fundamental matrix solution of Eq. (4.2). Then
there exists a constant matrix C and a nonsingular, continuous, T -periodic
matrix function P (t), such that

U(t, t0) = P (t)etC , (4.14)

or

U(t, t0) = P (t)e(t−t0)C , (4.15)

where P (t) = P (t)et0C is T -periodic and P (t0) = E.
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Proof. Define Y (t) = U(t+ T, t0). Then, since A(t) is T -periodic,

Y ′(t) = U ′(t+ T, t0) = A(t+ T )U(t+ T, t0) = A(t)U(t+ T, t0)

= A(t)Y (t), Y (t0) = U(t0 + T, t0). (4.16)

However, X(t) = U(t, t0)U(t0 + T, t0) is also a solution of (4.16), then by
uniqueness, Y (t) = X(t), or

U(t+ T, t0) = U(t, t0)U(t0 + T, t0). (4.17)

From Lemma 3.4.2, there exists a matrix C such that

U(t0 + T, t0) = eTC . (4.18)

Now, define

P (t) = U(t, t0)e
−tC .

Since U(t, t0) is nonsingular and e−tC has the inverse etC , P (t) is non-
singular, and we have

U(t, t0) = P (t)etC .

Also, from (4.17) and (4.18),

P (t+ T ) = U(t+ T, t0)e
−(t+T )C = U(t, t0)U(t0 + T, t0)e

−(t+T )C

= U(t, t0)e
TCe−(t+T )C = U(t, t0)e

−tC = P (t), (4.19)

hence P (t) is T -periodic, and then the proof is complete. ♠

Next, let’s look at how to apply the Floquet theory to transform Eq.
(4.2) with A(t) periodic into a linear differential equation with constant
coefficients.

Theorem 3.4.4 Let A(t) be T -periodic and let C and P (t) be given in The-
orem 3.4.3, and define y(t) = P−1(t)x(t) with x(t) = x(t, t0, x0) the unique
solution of Eq. (4.2). Then y(t) satisfies the linear differential equation

y′(t) = Cy(t), y(t0) = P−1(t0)x0. (4.20)

That is, y(t) = P−1(t)x(t) transforms the solution x of a linear periodic
differential equation to the solution y of a linear differential equation with
constant coefficients.
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Proof. We have x(t) = P (t)y(t) and x′ = A(t)x, then

A(t)x(t) = x′(t) = P ′(t)y(t) + P (t)y′(t),

hence

y′(t) = P−1(t)[A(t)x(t)− P ′(t)y(t)] = P−1(t)[A(t)P (t)y(t)− P ′(t)y(t)]

= P−1(t)[A(t)P (t)− P ′(t)]y(t).

Next, since P (t) = U(t, t0)e
−tC from Theorem 3.4.3, we have

P ′(t) = U ′(t, t0)e
−tC − U(t, t0)e

−tCC

= A(t)U(t, t0)e
−tC − U(t, t0)e

−tCC = A(t)P (t)− P (t)C.

Therefore,{
y′(t) = P−1(t)[A(t)P (t)− P ′(t)]y(t) = P−1(t)[P (t)C]y(t) = Cy(t),
y(t0) = P−1(t0)x0,

which completes the proof. ♠

Notice from the Floquet theory that P (t) in (4.15) is T -periodic and
P (t0) = E, then

U(T + t0, t0) = P (T + t0)e
TC = P (t0)e

TC = eTC .

Thus, due to the relationship between the matrices eTC and C, and its
applications in the related studies, we define the following.

Definition 3.4.5 Consider Eq. (4.2) with A(t) of period T and let C be the
constant matrix from the Floquet theory in Theorem 3.4.3. The eigenvalues
of matrix eTC are called the characteristic multipliers of A(t) (or of
Eq. (4.2)). The eigenvalues of matrix C are called the characteristic
exponents (or Floquet exponents) of A(t) (or of Eq. (4.2)).

From the spectral mapping theorem 3.3.14, if λ is a characteristic expo-
nent (or Floquet exponents), then eTλ is a characteristic multiplier.

Now, since the matrix C in Eq. (4.20) is a constant matrix, the results
in the previous section, such as the Jordan canonical form theorem, and
Theorems 3.3.11 and 3.3.12 concerning long-term behavior of solutions, can
be applied to Eq. (4.20). The difference between the solutions x(t) of Eq.
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(4.2) and y(t) of Eq. (4.20) is just a continuous periodic (hence bounded)
transformation x(t) = P (t)y(t); therefore, when A(t) is periodic, long-term
behavior of solutions of Eq. (4.20) will determine long-term behavior of
solutions of Eq. (4.2). We state these results below and leave the proof as
an exercise.

Theorem 3.4.6 Consider Eq. (4.2) with A(t) periodic, and let the matrix
C be given in Theorem 3.4.3.

(A). The following statements are equivalent:

(1). There is a constant C1 > 0 such that every solution of Eq. (4.2)
satisfies |x(t, t0, x0)| ≤ C1|x0|, t0 ≤ t <∞;

(2). There is a constant C2 > 0 such that every solution of Eq. (4.20)
satisfies |y(t, t0, y0)| ≤ C2|y0|, t0 ≤ t <∞;

(3). For each characteristic exponent λ (eigenvalue of matrix C), ei-
ther R(λ) < 0, or R(λ) = 0 but in this case λ appears only in
matrices Ji (Jordan canonical form for C) such that Ji is a 1× 1
matrix;

(4). For each characteristic multiplier η (eigenvalue of matrix eTC),
either |η| < 1, or |η| = 1 but in this case η appears only in
matrices Ji (Jordan canonical form for eTC) such that Ji is a
1× 1 matrix.

(B). The following statements are equivalent:

(1). Every solution of Eq. (4.2) satisfies limt→∞ |x(t, t0, x0)| = 0;

(2). Every solution of Eq. (4.20) satisfies limt→∞ |y(t, t0, y0)| = 0;

(3). Each characteristic exponent (eigenvalue of matrix C) has a neg-
ative real part;

(4). Each characteristic multiplier η (eigenvalue of matrix eTC) satis-
fies |η| < 1.

(C). The following statements are equivalent:

(1). There is a solution x of Eq. (4.2) with limt→∞ |x(t, t0, x0)| = ∞;

(2). There is a solution y of Eq. (4.20) with limt→∞ |y(t, t0, y0)| = ∞;

(3). Either there is a characteristic exponent λ (eigenvalue of matrix
C) with R(λ) = 0 and λ appears in a matrix Ji that is at least
2 × 2, or there is a characteristic exponent with a positive real
part;
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(4). Either there is a characteristic multiplier η (eigenvalue of matrix
eTC) with |η| = 1 and η appears in a matrix Ji that is at least
2× 2, or there is a characteristic multiplier η with |η| > 1. ♠

The relationship of the results in Theorem 3.4.6 and some long-term
properties, such as stability or boundedness of solutions, will be given later.

Remark 3.4.7 Theorem 3.4.6 is stated for the matrix eTC , but it can also
be stated for matrix eτC with τ being any fixed positive number. In fact,
there is a change of variables that transforms Eq. (4.2) with A(t) of period
T into an equation of any period (see an exercise). For example, let t = Ts
and define y(s) = x(Ts). Then in variable s,

y′(s) = x′(Ts)T = A(Ts)x(Ts)T = [TA(Ts)]y(s)

= A(s)y(s), (4.21)

where A(s) is defined in (4.21), and

A(s+ 1) = TA(T (s+ 1)) = TA(Ts+ T ) = TA(Ts) = A(s), (4.22)

thus A(s) is periodic with period 1. That is, y(s) = x(Ts) transforms the
T -periodic equation (4.2) to a 1-periodic equation (4.21). ♠

Looking at Theorem 3.4.6, it seems that the study of linear periodic equa-
tions is as easy as the study of linear equations with constant coefficients.
However, finding the periodic transformation matrix P (t) of Theorem 3.4.3
(Floquet theory) is difficult because the fundamental matrix solution U(t, t0)
of Eq. (4.2) would also be needed. The next example indicates that, un-
like linear differential equations with constant coefficients where eigenvalues
determine properties of solutions, eigenvalues of A(t) cannot determine the
properties of solutions for x′(t) = A(t)x(t), even when A(t) is periodic.

Example 3.4.8 (Marcus and Yamabe (1960)) Consider the periodic
equation x′ = A(t)x, where

A(t) =

[
−1 + 3

2 cos
2 t 1− 3

2 sin t cos t
−1− 3

2 sin t cos t −1 + 3
2 sin

2 t

]
, t ∈ ℜ.

The eigenvalues of A(t) are given by −1±
√
7 i

4 , thus the real parts are negative.
However, it can be checked that (see an exercise)

x(t) = et/2
[
− cos t
sin t

]
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is a solution. Accordingly, there are tm → ∞ as m→ ∞ such that |x(tm)| →
∞, m→ ∞. ♠

However, in some situations, the results in this section can be applied
to derive good results. One such case is Hill’s equation, given in the next
example.

Example 3.4.9 (Hill’s equation) Let ϕ(t) be real and continuous. Con-
sider the scalar linear periodic differential equation, called Hill’s equation,

y′′(t) + ϕ(t)y(t) = 0, ϕ(t+ T ) = ϕ(t), t ∈ ℜ, (4.23)

introduced by Hill [1886] in his study of the motion of the lunar perigee
which he described as a function of the mean motions of the sun and moon.
If we define x = [y, y′]T , then Eq. (4.23) becomes x′(t) = A(t)x(t), where

A(t) =

[
0 1

−ϕ(t) 0

]
. (4.24)

Let U(t, 0) be the fundamental matrix solution, then U(T, 0) = eTC ,
where C is from the Floquet theory. Now, trA(t) = 0. Thus, we have, using
Liouville’s formula in Theorem 3.2.18,

det eTC = detU(T, 0) = [detU(0, 0)] exp
( ∫ T

0
trA(s)ds

)
= [detE]e0 = 1.

Let η1 and η2 be two characteristic multipliers of A(t) (eigenvalues of
matrix eTC). Then using the characteristic polynomial of eTC , we obtain

det[eTC − ηE] = (η − η1)(η − η2),

which implies that

η1η2 = det eTC = 1. (4.25)

Due to (4.25), we cannot have |η1| < 1 and |η2| < 1, thus the conditions in
Theorem 3.4.6(B) are not satisfied. Therefore, Eq. (4.23) has solutions that
do not go to zero. This is what we can say for Hill’s equation right now.
Other long-term properties, such as stability or boundedness of solutions,
will be examined later after we make the corresponding definitions. For
example, we will restate “Eq. (4.23) has solutions that do not go to zero”
as “the zero solution of Eq. (4.23) is not asymptotically stable.” (Now that
we have made all necessary preparations, you can go directly to Chapter 5
to read the stability definitions and see the analysis for Hill’s equation.) ♠
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We know that the real parts of eigenvalues of matrix C in Eq. (4.20)
(or characteristic exponents) determine long-term properties of solutions of
Eq. (4.20) and Eq. (4.2). Next, let’s find some relationship between the real
parts of eigenvalues of matrix C and solutions of Eq. (4.2).

For a (real) scalar autonomous linear differential equation

x′(t) = ax(t), x(0) = x0, (4.26)

the transformed equation using the Floquet theory is itself, or C = a. In
this case, the solution of Eq. (4.26) is given by x(t, 0, x0) = x0e

at. Thus, for
x0 ̸= 0,

1

t
ln

( |x(t, 0, x0)|
|x0|

)
=

1

t
ln

( |eatx0|
|x0|

)
=

1

t
ln

(
eat

)
=

1

t
(at) = a = C. (4.27)

For a (real) scalar T -periodic linear differential equation

x′(t) = a(t)x(t), x(0) = x0, (4.28)

we know from Example 3.4.1 that C = 1
T

∫ T
0 a(s)ds in the transformed equa-

tion using the Floquet theory. In this case, the solution of Eq. (4.28) is

given by x(t, 0, x0) = x0e
∫ t

0
a(s)ds. Thus, for x0 ̸= 0, a calculation (see an

exercise) shows that

lim
t→∞

1

t
ln

( |x(t, 0, x0)|
|x0|

)
= lim

t→∞

1

t
ln

( |e∫ t

0
a(s)dsx0|
|x0|

)
= lim

t→∞

1

t

∫ t

0
a(s)ds

=
1

T

∫ T

0
a(s)ds = C. (4.29)

The formula in (4.29) is related to something called the “Liapunov ex-
ponent,” which is a very important concept in the study of differential equa-
tions. See Guckenheimer and Holmes [1986], Liapunov [1892], and Wiggins
[1990] for related studies. For periodic linear differential equation (4.2), the
Liapunov exponent is defined as follows.

Definition 3.4.10 Let U(t, 0) be the fundamental matrix solution of Eq.
(4.2). For a nonzero vector v in ℜn, the Liapunov exponent of Eq. (4.2)
with respect to v is

ξ(v) = lim sup
t→∞

1

t
ln

( |U(t, 0)v|
|v|

)
. (4.30)
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In view of (4.29), we have

Theorem 3.4.11 If β is a characteristic exponent (Floquet exponent) of
Eq. (4.2), then the real part of β is a Liapunov exponent of Eq. (4.2).

Proof. From the Floquet theory,

U(t, 0) = P (t)etC ,

where P and C are from Theorem 3.4.3 and P (t) is T -periodic. Since (by
definition) β is an eigenvalue of matrix C, using the spectral mapping theo-
rem 3.3.14, eβT is an eigenvalue of eTC . Thus there is a v ̸= 0 in ℜn such that
eTCv = eβT v. For t > 0 large, there is a positive integer m and a number τ
such that t = mT + τ, 0 ≤ τ < T , and t → ∞ if and only if m → ∞. Now,
for β = a+ bi,

ξ(v) = lim sup
t→∞

1

t
ln

( |U(t, 0)v|
|v|

)
= lim sup

m→∞

1

T

( mT

mT + τ

) 1

m
ln

( |U(mT + τ, 0)v|
|v|

)
= lim sup

m→∞

1

T

1

m
ln

( |P (mT + τ)e(mT+τ)Cv|
|v|

)
= lim sup

m→∞

1

T

1

m
ln

( |P (τ)eτC [eTC ]mv|
|v|

)
= lim sup

m→∞

1

T

1

m
ln

( |P (τ)eτCemβT v|
|v|

)
= lim sup

m→∞

1

T

[ 1
m

ln |emβT |+ 1

m
ln

( |P (τ)eτCv|
|v|

)]
= lim sup

m→∞

1

T

[ 1
m

ln emaT +
1

m
ln

( |P (τ)eτCv|
|v|

)]
= lim sup

m→∞

1

T

[ 1
m
maT +

1

m
ln

( |P (τ)eτCv|
|v|

)]
=

1

T
[aT + 0] = a = R(β), (4.31)

which completes the proof. ♠

For Eq. (4.2), if Liapunov exponents are positive, then according to
Theorems 3.4.6 and 3.4.11, Eq. (4.2) has solutions x such that |x| → ∞
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exponentially fast as t→ ∞, no matter how small their initial values are, or
how close their initial points are to the zero solution. This can be charac-
terized as “long-term sensitive dependence on the initial conditions,” in the
sense that solutions started from a small neighborhood separate exponen-
tially fast. This should not be confused with the continuous dependence of
solutions with respect to initial conditions on finite intervals.

In some related study of nonlinear differential equations, similar results
hold. That is, positive Liapunov exponents indicates that the system will
demonstrate some complex and strange behavior, or even chaos, for which,
one feature used to describe the chaotic behavior is the “sensitive dependence
on the initial conditions.” See Chapter 7 for some discussions, and also,
Guckenheimer and Holmes [1986], Liapunov [1892], and Wiggins [1990] for
further details.

Exercises 3.4

1. Verify all steps in equality (4.13).

2. Let A(t) = A(t + T ) for some constant T > 0. Show that a solution
x(t), x(t0) ̸= 0, of x′ = A(t)x has the property x(t + T ) = kx(t) for
some constant k if and only if k is an eigenvalue of eTC with x(t0) the
corresponding eigenvector, where the matrix C is from Theorem 3.4.3.

3. Let A(t) = A(t + T ) for some constant T > 0. Show that x′ = A(t)x
has a nonzero T -periodic solution if and only if 1 is an eigenvalue of
eTC .

4. Let A(t) = A(t+T ) for some constant T > 0 and let A(t) be odd, that
is, A(−t) = −A(t). Use the Floquet theory to show that the funda-
mental matrix solution U(t, 0) of x′ = A(t)x is even and T -periodic.

5. Let A(t) be T -periodic and assume that A(t) commutes with its inte-
gral. Prove that matrix C in Theorem 3.4.3 can be taken as

C =
1

T

∫ T

0
A(s)ds.

6. Examine long-term property of solutions of the scalar periodic equation
x′(t) = a(t)x(t), where a(t) is T -periodic.

7. Let a(t) be a T -periodic scalar function. Prove that e
∫ t

0
a(s)dse−tC is

T -periodic.
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8. Prove Theorem 3.4.6.

9. Let τ be any positive number. Verify that there is a change of variables
that transforms Eq. (4.2) with A(t) of period T into an equation of
period τ .

10. In Example 3.4.8, verify that −1±
√
7 i

4 are the eigenvalues and x(t) =

et/2
[
− cos t
sin t

]
is a solution, and there are tm → ∞ as m → ∞ such

that |x(tm)| → ∞, m→ ∞.

11. Let a(t) and ϕ(t) be real, continuous, and periodic with period T .
Consider the scalar equation,

y′′(t)− a(t)y′(t) + ϕ(t)y(t) = 0, t ∈ ℜ. (4.32)

Let η1 and η2 be two characteristic multipliers of A(t) (after formulat-
ing the equation as a system). Then show that

η1η2 = e
∫ T

0
a(s)ds. (4.33)

Can you derive any long-term properties of solutions from η1η2 =

e
∫ T

0
a(s)ds? Look at some special cases.

12. Let ϕ(t) be real, continuous, and periodic with period π. Consider the
scalar equation,

y′′(t)− (cos2 t)y′(t) + ϕ(t)y(t) = 0, t ∈ ℜ. (4.34)

Show that there is a solution that goes to ∞ as t→ ∞.

13. Calculate the Liapunov exponent directly for the scalar T -periodic
differential equation x′(t) = a(t)x(t).

14. Calculate the Liapunov exponents for the system x′(t) = ax(t), y′(t) =
by(t), where a and b are constants.



Chapter 4

Autonomous Differential
Equations in ℜ2

4.1 Introduction

In this chapter, we study autonomous differential equations, that is, f(t, x)
in the differential equation x′(t) = f(t, x(t)) is independent of t, or f(t, x) =
f(x) for (t, x) ∈ ℜ × ℜn. Hence we have

x′(t) = f(x(t)), or x′ = f(x). (1.1)

For example, x′ = sinx and x′ = Ax, for a constant matrix A, are au-
tonomous differential equations.

We assume that Eq. (1.1) is defined on ℜ×ℜn. For autonomous differen-
tial equations, a weak Lipschitz condition is the same as a (global) Lipschitz
condition (see an exercise). Thus, if f(x) satisfies a (global) Lipschitz con-
dition, or if f(x) is bounded and satisfies a local Lipschitz condition, then
the two global existence theorems in Section 4 of Chapter 2 can be applied
to guarantee that solutions of Eq. (1.1) exist on ℜ.

However, we need to take care of other cases where solutions may not
exist on ℜ. For example, the solution of the differential equation x′ =
x2, x(0) = 1, is given by x(t) = (1 − t)−1 and exists only on (−∞, 1), in
which case the two global existence theorems in Section 2.4 do not apply
because f(x) = x2 is unbounded and does not satisfy a (global) Lipschitz
condition for x in ℜ. For those cases, we will use an idea of Vinograd (see

163
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Nemytskii and Stepanov [1960]), in which the variable t of an autonomous
differential equation (whose solutions do not exist on ℜ) is rescaled so that
the equation will have the same solution curves in ℜn (not in ℜ × ℜn) as
another autonomous differential equation whose solutions exist on ℜ. See
the details below.

Lemma 4.1.1 Let f : ℜn → ℜn and g : ℜn → (0,∞) be continuous, then
Eq. (1.1) and y′ = f(y)g(y) have the same solution curves in ℜn.

Proof. Let x(t) = x(t, t0, x0) be a solution of Eq. (1.1) on an interval
(a, b) containing t0. Define τ(t) =

∫ t
t0

dh
g(x(h)) on (a, b). Since g > 0, τ(t) is

a strictly increasing function in t, hence τ(t) maps the interval (a, b) to an
interval (c, d) in a one-to-one fashion. Now define y(s) on (c, d) such that
y(s) = x(t) if s = τ(t), see Figure 4.1.

t s

a b c d
x(t) y(s)

>

s = τ(t)

Figure 4.1: Define y(s) = x(t) if s = τ(t)

From y(s) = x(t) (when s = τ(t)) we find that a point on x(t) is also on
y(s) and vice versa, thus x(t) and y(s) define the same curve in ℜn. Next,

f(y(s)) = f(x(t)) =
d

dt
x(t) =

d

dt
y(s) =

dy(s)

ds

ds

dt
=
dy(s)

ds
τ ′(t)

=
dy(s)

ds

1

g(x(t))
=
dy(s)

ds

1

g(y(s))
, (1.2)

thus

dy(s)

ds
= f(y(s))g(y(s)), (1.3)

therefore, y is a solution of

y′ = f(y)g(y). (1.4)
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On the other hand, if we start with a solution y of Eq. (1.4), then we
can regard fg as f and 1

g as g, thus the same arguments as above show that

there is a solution x of x′ = [f(x)g(x)][ 1
g(x) ] = f(x) such that y and x define

the same curve in ℜn. This completes the proof. ♠

Lemma 4.1.2 Assume that f : ℜn → ℜn satisfies a local Lipschitz condi-
tion. Then F (y) = f(y) 1

1+|f(y)| also satisfies a local Lipschitz condition, and

solutions of y′ = F (y) exist on ℜ. Moreover, Eq. (1.1) and y′ = F (y) have
the same solution curves in ℜn.

Proof. The proof of the local Lipschitz condition for F (y) = f(y) 1
1+|f(y)| is

left as an exercise. Next, as |F (y)| < 1, the second global existence theorem
in Section 4 of Chapter 2 can be used to guarantee that solutions of y′ = F (y)
exist on ℜ. Finally, Lemma 4.1.1 implies that Eq. (1.1) and y′ = F (y) have
the same solution curves in ℜn. This completes the proof. ♠

The proofs in Lemmas 4.1.1 and 4.1.2 indicate that these results can
only be applied to autonomous differential equations to guarantee that if
f(x) satisfies a local Lipschitz condition, then as long as solution curves
in ℜn are concerned, Eq. (1.1) is equivalent to an autonomous differential
equation whose solutions exist on ℜ.

Now, let’s explain the results in Lemmas 4.1.1 and 4.1.2 for the scalar
autonomous differential equation x′ = x2, x(0) = 1, whose solution x(t) =
(1− t)−1 exists only on (−∞, 1).

Example 4.1.3 For the scalar autonomous differential equation

x′ = x2, x(0) = 1, (1.5)

one has f(x) = x2, t0 = 0, and x(t) = (1− t)−1 is the solution that exists on
(−∞, 1). From Lemma 4.1.2, the function g of Lemma 4.1.1 is given by

g(y) =
1

1 + |f(y)|
=

1

1 + y2
,

thus the rescaling function s in the proof of Lemma 4.1.1 is given as

s = τ(t) =

∫ t

0

dh

g(x(h))
=

∫ t

0
[1 + x2(h)]dh (1.6)

=

∫ t

0
[1 +

1

(1− h)2
]dh = (h+

1

1− h
)
∣∣∣t
0
= t+

1

1− t
− 1. (1.7)
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From (1.6) we find that s = 0 implies t = 0. We also know from Lemmas
4.1.1 and 4.1.2 that y(s) = x(t) (when s = τ(t)) is the solution of the
autonomous differential equation

y′ = f(y)
1

1 + |f(y)|
=

y2

1 + y2
, y(0) = x(0) = 1. (1.8)

Using (1.7), we can verify (see an exercise) that when t takes values in
(−∞, 1) for the solution x(t) = (1 − t)−1, the variable s takes values in
(−∞, ∞) for the corresponding solution y(s). Therefore, y(s) exists on ℜ.

In fact, in this case we have another way to see why y(s) exists on ℜ, that
is, we can actually solve y(s) from Eq. (1.8) using separation of variables,
and obtain (see an exercise)

y(s) =
1

2
[s+

√
s2 + 4], (1.9)

which certainly exists on ℜ.
Finally, note that the solution curves in ℜ (or the ranges in this case)

for x(t) = (1 − t)−1 with t ∈ (−∞, 1) and for y(s) = 1
2 [s +

√
s2 + 4] with

s ∈ (−∞,∞) are the same: (0,∞), (see an exercise).
The above indicate that Eq. (1.5) and Eq. (1.8) have the same solution

curves in ℜ, and the solution of Eq. (1.8) exists on ℜ. This explains that
the situation for equation x′ = x2, x(0) = 1, can be handled very well using
Lemmas 4.1.1 and 4.1.2. ♠

Based on Lemmas 4.1.1 and 4.1.2, we assume in the rest of this chapter
that f : ℜn → ℜn satisfies a local Lipschitz condition, and, if necessary,
an appropriate rescaling of the time variable has been made, such that the
solutions of Eq. (1.1) exist on ℜ. We point out that sometimes a rescaling
may modify certain properties, such as stability.

To begin the study of Eq. (1.1), let’s look at a special feature of au-
tonomous differential equations. Assume that x(t) is a solution of Eq. (1.1),
and consider y(t) = x(t + c) for any constant c ∈ ℜ. Then, since f(x) is
independent of t, y(t) satisfies

y′(t) = x′(t+ c) = f(x(t+ c)) = f(y(t)), (1.10)

that is, y(t) = x(t+ c) is also a solution of Eq. (1.1). We point out that this
is not true for nonautonomous differential equations, as can be seen from
the following example.
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Example 4.1.4 Let x(t) be a nonzero solution of the scalar nonautonomous
differential equation

x′(t) = tx(t), (1.11)

which can be solved using separation of variables. Consider y(t) = x(t+ c)
for c ̸= 0, then

y′(t) = x′(t+ c) = (t+ c)x(t+ c) = tx(t+ c) + cx(t+ c) = ty(t) + cx(t+ c),

thus y(t) = x(t+ c) is not a solution of Eq. (1.11). ♠

Next, let’s continue with the idea of adding a constant to the variable
of a solution for autonomous differential equations. Assume that x(t) =
x(t, t0, x0) is a solution of

x′(t) = f(x(t)), or x′ = f(x), x(t0) = x0. (1.12)

Then, similar to the above, we see that y(t) = x(t+ t0, t0, x0) satisfies

y′(t) = x′(t+ t0) = f(x(t+ t0)) = f(y(t)), y(0) = x(t0) = x0. (1.13)

On the other hand, if y(t) is a solution of y′(t) = f(y(t)), y(0) = x0,
then x(t) = y(t− t0) satisfies

x′(t) = y′(t− t0) = f(y(t− t0)) = f(x(t)), x(t0) = y(0) = x0. (1.14)

That is, for autonomous differential equations, a solution starting at t0
can be shifted to become a solution starting at 0, and vice versa, see Figure
4.2.

Accordingly, we will simplify the notations by assuming t0 = 0 in Eq.
(1.12), hence we will consider the following autonomous differential equation
in this chapter,

x′(t) = f(x(t)), or x′ = f(x), x(0) = x0. (1.15)

The following is another point of view at shifting solutions around. Let
x(t, x0) be the unique solution of Eq. (1.15) defined on ℜ with x(0) = x0.
Recall that x0 in Eq. (1.15) should be regarded as a variable and that when
we say x(t, x0) is a solution of Eq. (1.15) we mean x′(t, x0) = f(x(t, x0))
and x(0, x0) = x0. Then, uniqueness and continuous dependence on initial
values of solutions imply the following (see an exercise).
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><

x

tt
0

x
0

0

Figure 4.2: For autonomous equations, a solution can be shifted

(i). x(0, x0) = x0,

(ii). x(t+ s, x0) = x(t, x(s, x0)), t, s ∈ ℜ,

(iii). x(−t, x(t, x0)) = x0, t ∈ ℜ,

(iv). x(t, x0) is continuous in (t, x0).

Conditions (i)–(iv) are related to the concept of a dynamical system,
therefore, we say that “the solutions of Eq. (1.15) define a dynamical sys-
tem.” The geometric interpretation of condition (ii) of a dynamical system
is that if we start with a point x0 and go a distance of s, and then use x(s, x0)
as a point and go a distance of t, the result is the same as starting at x0 and
going a distance of t+ s, see Figure 4.3.

The study of autonomous differential equations is a link between the
study of linear differential equations and general nonlinear differential equa-
tions, especially when we consider stability and boundedness of solutions.
To gain further insight and to understand geometric aspects of solutions
and dynamical systems of autonomous differential equations, we look at au-
tonomous differential equations in ℜ2. That is, in the rest of this chapter
we assume f(x) = [P (x), Q(x)]T : ℜ2 → ℜ2, and consider the autonomous
differential equation{

x′1(t) = P (x1(t), x2(t)),
x′2(t) = Q(x1(t), x2(t)), x1, x2, t ∈ ℜ, (1.16)
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0
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>
Figure 4.3: Geometric view of condition (ii) of a dynamical system

where the functions P (x1, x2) and Q(x1, x2) are continuous and satisfy a
local Lipschitz condition, and we assume that for any given point (x01, x

0
2)

in the (x1, x2) plane, Eq. (1.16) has a unique solution (x1(t), x2(t)) defined
on ℜ with

(x1(0), x2(0)) = (x01, x
0
2).

Now, as t varies, a solution (x1(t), x2(t)) of Eq. (1.16) describes a curve
in the (x1, x2) plane. We call this curve a trajectory or an orbit, and call
the (x1, x2) plane the phase plane, and call a picture with trajectories of
Eq. (1.16) a phase portrait, see Figure 4.4.

Note that the notion of “a solution” and “a trajectory” are different, see
the following example.

Example 4.1.5 Let α, β ∈ [0, π2 ] be different. Then (sin(t+α), cos(t+α))
and (sin(t + β), cos(t + β)) are different solutions of the system {x′1 =
x2, x

′
2 = −x1}. However, after the variable t varies in a large interval,

say [0, 2π] or (−∞, ∞), they represent the same trajectory: the unit circle
x21 + x22 = 1, see Figure 4.5. ♠

Example 4.1.5 indicates that if existence and uniqueness of solutions is
assumed, then for a given point in the (x1, x2) plane, there is a unique
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>
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Figure 4.4: A phase portrait in the phase plane (x1, x2) with some trajec-
tories

solution passing through the point at a specified time, but different solu-
tions could pass through that given point at different times. For example,
(sin t, cos t) passes through (0, 1) at t = 0, and (sin(t+ π

2 ), cos(t+
π
2 )) passes

through (0, 1) at t = 3π
2 . Example 4.1.5 also indicates that for a given point

in the (x1, x2) plane, exactly one trajectory will pass through it, which will
be proved below. But first, when we say “a trajectory,” we mean a curve
drawn in a phase plane after the variable t varies in a sufficiently large inter-
val, typically [0, ∞) or (−∞, ∞). (Otherwise, we may get only a segment
of a whole trajectory. For example, for (sin(t), cos(t)), if we only consider
t ∈ [0, π], then we get a half circle, but the trajectory is a whole circle.)

Theorem 4.1.6 Assume the existence and uniqueness of solutions for
Eq. (1.16). Then through any point in the phase plane ℜ2 passes exactly
one trajectory of Eq. (1.16).

Proof. If (x1(t), y1(t)), and (x2(t), y2(t)) are two trajectories of Eq. (1.16)
that pass through a common point in ℜ2 at the time t1 and t2 respectively,
that is,

(x1(t1), y1(t1)) = (x2(t2), y2(t2)), (1.17)

then we prove that the trajectories (x1(t), y1(t)) and (x2(t), y2(t)) coincide.
If t1 = t2, then by uniqueness of solutions, (x1(t), y1(t)) = (x2(t), y2(t)),

the two trajectories coincide. If t1 ̸= t2, then, as Eq. (1.16) is autonomous,
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x
1
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>

1

Figure 4.5: The unit circle x21 + x22 = 1 is a trajectory for {x′1 = x2, x
′
2 =

−x1}

an argument similar to the “shifting” in (1.13) shows that{
x(t) = x1(t+ t1 − t2),
y(t) = y1(t+ t1 − t2),

(1.18)

is also a solution of Eq. (1.16), with

(x(t2), y(t2)) = (x1(t1), y1(t1)) = (x2(t2), y2(t2)). (1.19)

Now, applying uniqueness of solutions again, we obtain (x(t), y(t)) =
(x2(t), y2(t)), or

(x1(t+ t1 − t2), y1(t+ t1 − t2)) = (x2(t), y2(t)). (1.20)

According to (1.20), a point passed by the trajectory (x2, y2) at t will
be passed by the trajectory (x1, y1) at t + t1 − t2. On the other hand, if a
point is passed by the trajectory (x1, y1) at s, then from s = t + t1 − t2, it
follows that the point will be passed by the trajectory (x2, y2) at s− t1+ t2.
Thus, after the variable t varies in a sufficiently large interval, or (−∞, ∞),
the two trajectories coincide. This completes the proof. ♠

Consequently, for any two trajectories in the phase plane ℜ2, either they
are identical, or they have no common points.

Next, let’s recall from calculus that the points in the domain of a scalar
function where the first derivative being zero are called critical points, or
extreme points, because they are “critically” or “extremely” important in
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understanding geometric properties of a function. For example, the maxi-
mum or minimum values may occur there. Similarly, we make the following
definition.

Definition 4.1.7 In Eq. (1.16), if a point (xc1, x
c
2) is such that

P (xc1, x
c
2) = Q(xc1, x

c
2) = 0, (1.21)

then (xc1, x
c
2) is called a critical point (or an equilibrium point) of Eq.

(1.16). A point is called a regular point of Eq. (1.16) if it is not a critical
point of Eq. (1.16).

Example 4.1.8 For the motion of a simple pendulum,

θ′′(t) + kθ′(t) + q sin θ(t) = 0, (1.22)

where k ≥ 0, q > 0 are constants, if we let x1 = θ and x2 = θ′, then it is
equivalent to {

x′1 = x2,
x′2 = −kx2 − q sinx1.

(1.23)

Now the critical points for Eq. (1.23) are from x2 = 0 and kx2+q sinx1 = 0,
hence they are given by (x1, x2) = (nπ, 0), n = 0,±1, ±2, · · · . ♠

For a regular point (xr1, x
r
2) ∈ ℜ2, the constant vector [xr1, x

r
2]
T is not

a constant solution of Eq. (1.16); and when a trajectory passes through
(xr1, x

r
2), the direction vector (or slope vector) of the trajectory at (xr1, x

r
2)

is given by the vector function [P,Q]T evaluated at (xr1, x
r
2). That is, the

direction vector at (xr1, x
r
2) is given by

[P (xr1, x
r
2), Q(xr1, x

r
2)]

T , (1.24)

which is a nonzero vector. Thus by continuity, if another point (x, y) is
very close to (xr1, x

r
2), then, for a trajectory passing through (x, y), the

direction vector at (x, y), given by [P (x, y), Q(x, y)]T , is very close to
[P (xr1, x

r
2), Q(xr1, x

r
2)]

T and is nonzero. The geometric interpretation is that
near a regular point, trajectoriesmove in essentially the same direction.
Therefore, the local geometrical and qualitative properties for regular points
are very clear, see Figure 4.6.

However, for a critical point (xc1, x
c
2) ∈ ℜ2, the constant vector [xc1, x

c
2]
T

is a constant solution of Eq. (1.16). The geometric interpretation is that a
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Figure 4.6: Local geometry for a regular point and a critical point

critical point (regarded as a constant solution) is the only trajectory pass-
ing through itself; and the direction vector at a critical point is zero, or
directionless. Thus, trajectories near a critical point could move in all
different directions, see Figure 4.6. Since this makes the local geometrical
and qualitative properties of critical points really complicated, the rest of
this chapter is devoted to analyzing them.

We first look at what kinds of trajectories are possible for Eq. (1.16)
in ℜ2. For example, you may wonder if figures that look like “4,” “6,”
“8,” or “0” are possible trajectories for Eq. (1.16). Accordingly, let’s recall
that the curves that look like a “0” are called simple closed curves. For
the curves that look like an “8,” even though they are closed curves, they
are not “simple” closed curves. The following result describes all possible
trajectories of Eq. (1.16) in ℜ2.

Theorem 4.1.9 Let (x1(t), x2(t)) be a solution of Eq. (1.16) for t ∈ ℜ. If
there exist t1 and t2 with t1 < t2 such that (x1(t1), x2(t1)) = (x1(t2), x2(t2)),
then only the following two cases can occur:

(i). The solution is a constant solution, that is, a critical point, or
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(ii). The solution is periodic with a least positive period.

Therefore, the possible trajectories for Eq. (1.16) in ℜ2 are (see Figure
4.7):

(a). Critical points, or

(b). Simple closed curves, also called periodic orbits, or

(c). Nonintersecting curves.

x
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x
2

x
1

x
1

x
2

x
2

>

>

>

Figure 4.7: Three possible trajectories for Eq. (1.16) in ℜ2

Proof. Under the assumption and using the fact that Eq. (1.16) is au-
tonomous, we have

(x1(t), x2(t)) = (x1(t+ t2 − t1), x2(t+ t2 − t1)), (1.25)

because they are all solutions of Eq. (1.16) and pass through the same point
when t = t1. This implies that (x1(t), x2(t)) is (t2 − t1)-periodic. Hence, we
can define

p = lim inf{ p : 0 < p ≤ t2 − t1, (x1(t), x2(t)) is p−periodic}. (1.26)

Consequently, 0 ≤ p ≤ t2 − t1, and there is a sequence pm ∈ [p, t2 − t1]
with limm→∞ pm = p, such that (x1(t), x2(t)) is pm-periodic, see Figure
4.8.
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Figure 4.8: 0 ≤ p ≤ t2 − t1 and limm→∞ pm = p

If p = 0, then let’s prove that for any t ∈ ℜ, (x1(t), x2(t)) = (x1(0), x2(0)),
which implies that (x1(t), x2(t)) is a critical point. We assume t > 0 because
the case of t < 0 is similar. Now, for pm > 0, we get an integer km ≥ 0 such
that t = kmpm+tm, with 0 ≤ tm < pm and 0 ≤ limm→∞ tm ≤ limm→∞ pm =
p = 0. Thus, as the solution (x1(·), x2(·)) is pm-periodic,

(x1(t), x2(t)) = (x1(kmpm + tm), x2(kmpm + tm)) = (x1(tm), x2(tm)),

therefore, using continuity of solutions, it follows that

(x1(t), x2(t)) = lim
m→∞

(x1(t), x2(t))

= lim
m→∞

(x1(tm), x2(tm)) = (x1(0), x2(0)),

that is, the solution (x1(t), x2(t)) is a critical point in this case.
If p > 0, let’s prove that the solution (x1(t), x2(t)) is a simple closed

curve. Applying continuity and periodicity again, we obtain

(x1(t), x2(t)) = lim
m→∞

(x1(t), x2(t)) = lim
m→∞

(x1(t+ pm), x2(t+ pm))

= (x1(t+ p), x2(t+ p)), (1.27)

which implies that p is the least positive period for the solution. Now, when
the solution (x1(t), x2(t)) starts from t = 0 at (x1(0), x2(0)) ∈ ℜ2, the p > 0
is the first time such that (x1(0), x2(0)) = (x1(p), x2(p)), (otherwise, if there
is a 0 < p0 < p, such that (x1(0), x2(0)) = (x1(p0), x2(p0)), then uniqueness
implies that (x1(t), x2(t)) = (x1(t + p0), x2(t + p0)), t ∈ ℜ; thus p0 < p is
also a positive period, which contradicts that p is the least positive period
for the solution). After t = p, the solution will repeat since it is p-periodic.
Therefore, the trajectory of the solution is now a simple closed curve. This
completes the proof. ♠

Accordingly, we find that figures that look like “4” or “6” are not possible
trajectories because they are intersecting curves. Curves that look like an
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“8” are not possible trajectories either because even though they are closed
curves, they are not simple closed curves. Curves that look like a “0” are
possible trajectories because they are simple closed curves. The following is
also true, whose proof is left as an exercise.

Corollary 4.1.10 Let x(t) = x(t, x0) be the unique solution of Eq. (1.16)
on ℜ with x(0) = x0. If x0 is not a critical point, then there exist t1 > 0 and
t2 < 0 such that x(t1) ̸= x0 and x(t2) ̸= x0. ♠

Next, if P (x1, x2) and Q(x1, x2) have continuous partial derivatives, and
have the Taylor expansion{

P (x1, x2) = ax1 + bx2 + ε1(x1, x2),
Q(x1, x2) = cx1 + dx2 + ε2(x1, x2),

(1.28)

at (x1, x2) = (0, 0) for some functions ε1(x1, x2) and ε2(x1, x2), where

a =
∂P

∂x1
(0, 0), b =

∂P

∂x2
(0, 0), c =

∂Q

∂x1
(0, 0), d =

∂Q

∂x2
(0, 0), (1.29)

then Eq. (1.16) becomes[
x1(t)
x2(t)

]′
=

[
ax1(t) + bx2(t) + ε1(x1(t), x2(t))
cx1(t) + dx2(t) + ε2(x1(t), x2(t))

]

=

[
a b
c d

] [
x1(t)
x2(t)

]
+

[
ε1(x1(t), x2(t))
ε2(x1(t), x2(t))

]
. (1.30)

Example 4.1.11 Consider{
x′1 = sinx2,
x′2 = x1e

x2 .
(1.31)

Since sinx2 = x2 −
x3
2
3! +

x5
2
5! − · · · and x1e

x2 = x1 + x1x2 +
x1x2

2
2! + · · ·, the

equation can be written as[
x1(t)
x2(t)

]′
=

[
0 1
1 0

] [
x1(t)
x2(t)

]
+

[
ε1(x1(t), x2(t))
ε2(x1(t), x2(t))

]
, (1.32)

where ε1(x1, x2) = −x3
2
3! +

x5
2
5! − · · · and ε2(x1, x2) = x1x2 +

x1x2
2

2! + · · ·. ♠
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Definition 4.1.12 With constants a, b, c, d given by (1.29), the linear dif-
ferential equation [

x1(t)
x2(t)

]′
=

[
a b
c d

] [
x1(t)
x2(t)

]
(1.33)

is called the linearization of Eq. (1.30) (or of Eq. (1.16)) at (0, 0).

Under certain conditions, we can regard Eq. (1.30) as a perturbation of
Eq. (1.33). Now it intuitively makes sense to expect that if ε1(x1, x2) and
ε2(x1, x2) are sufficiently small, then the behavior of Eq. (1.30) should be
similar to that of Eq. (1.33). It can be shown that this intuition is essentially,
but not completely, correct.

This chapter is organized as follows: In Section 2, we provide a complete
analysis for Eq. (1.33) and draw all phase portraits in ℜ2 for the different
cases according to eigenvalues of the coefficient matrix. We also introduce
some terminology, including stability, according to the properties revealed,
which leads us to detailed study of the same subject later for general differ-
ential equations in ℜn, n ≥ 1. In Section 3, we examine the conditions which
ensure that solutions of Eq. (1.30) and Eq. (1.33) have essentially the same
local geometric and qualitative properties near the origin. In Section 4, we
apply the results to analyze an equation of a simple pendulum. In Section
5, we generalize the ideas of a simple pendulum and study the Hamiltonian
systems and gradient systems.

Exercises 4.1

1. Verify for autonomous differential equations that a weak Lipschitz con-
dition is the same as a (global) Lipschitz condition.

2. Verify that f(x) = x2 is unbounded and does not satisfy a (global)
Lipschitz condition for x in ℜ.

3. In Example 4.1.3, use (1.7) to verify that when t takes values in (−∞, 1)
for the solution x(t) = (1−t)−1, the variable s takes values in (−∞, ∞)
for the corresponding solution y(s).

4. Assume that f : ℜn → ℜn satisfies a local Lipschitz condition. Prove
that F (x) = f(x) 1

1+|f(x)| also satisfies a local Lipschitz condition.

5. Solve y′ = y2

1+y2
, y(0) = 1.
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6. Verify that the range of y(s) in (1.9) is (0,∞).

7. Let x(t) be a solution of x′(t) = x2(t) sin t + x3(t). Is x(t + 2) also a
solution? Next, find k such that x(t+ k) is also a solution.

8. Let T > 0 be given. Find conditions on f(t, x) in x′(t) = f(t, x(t))
such that if x(t) is a solution, then so is y(t) = x(t+ T ).

9. Show that the solutions of Eq. (1.15) form a dynamical system.

10. Show that a point (xc1, x
c
2) is a critical point of Eq. (1.16) if and only

if (x1(t), x2(t)) = (xc1, x
c
2), t ∈ ℜ, is a constant solution.

11. Prove that a trajectory started from a regular point may not reach a
critical point in finite time.

12. Find critical points of the system{
x′ = x− 2x2 − xy,
y′ = −4y + 2xy.

13. Show that x(t) = cos t, y(t) = sin t satisfy{
x′(t) = −y(t),
y′(t) = x(t).

Then draw (x(t), y(t)) = (cos t, sin t) in the (x, y) plane for t ∈ [0, π],
t ∈ [0, 2π], t ∈ [0,∞), and t ∈ (−∞,∞).

14. Prove Corollary 4.1.10.

4.2 Linear Autonomous Equations in ℜ2

In this section, we consider[
x1(t)
x2(t)

]′
=

[
a b
c d

] [
x1(t)
x2(t)

]
= A

[
x1(t)
x2(t)

]
, (2.1)

where a, b, c, d are constants in ℜ. Consequently, the origin (0, 0) is a constant
solution, or a critical point.

Recall that if P is a 2 × 2 real matrix and v is a vector in ℜ2, then Pv
will transform (rotate and/or magnify or shrink) v to become another vector
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in ℜ2. Accordingly, we will find a real matrix P , and use it to transform Eq.
(2.1) into a simpler equation for which the trajectories can be drawn easily.
If this can be done, then the geometrical and qualitative properties of the
transformed simpler equations can be used to indicate the same geometrical
and qualitative properties of the original Eq. (2.1), because the trajectories
of the two equations differ only by a rotation and/or a magnification or
shrinking in ℜ2.

Note that the Jordan canonical form theorem in Chapter 3 cannot be ap-
plied here, because the transformation matrix P used there may be complex
valued. However, we are dealing with 2× 2 matrices here, so we can afford
to provide a complete analysis and then find ways to transform Eq. (2.1)
into simpler forms. First, we recall some general results (with no restrictions
on the size of matrices) from linear algebra.

Lemma 4.2.1 Let A be an n× n matrix. Then,

(a). If λ is an eigenvalue of the matrix A and v is the corresponding
eigenvector (they may be complex valued), then eλtv is a solution of
x′(t) = Ax(t).

(b). If A, u, v are real and if u(t)+ iv(t) (i =
√
−1) is a solution of x′(t) =

Ax(t), then u(t) and v(t) are both solutions of x′(t) = Ax(t). ♠

The proof is left as an exercise. With this preparation, we are able to
transform Eq. (2.1) into simpler forms.

Theorem 4.2.2 Let A be a real 2 × 2 constant matrix in Eq. (2.1). Then
there is a real 2 × 2 constant nonsingular matrix P , such that [x, y]T =
P−1[x1, x2]

T transforms Eq. (2.1) into[
x(t)
y(t)

]′
=

[
P−1AP

] [ x(t)
y(t)

]
= B

[
x(t)
y(t)

]
, (2.2)

where B = P−1AP is one of the following three real matrices

(I).

[
λ 0
0 µ

]
, (λ ̸= µ), (II).

[
λ ⋆
0 λ

]
, (III).

[
α β
−β α

]
, (2.3)

where ⋆ = 0 or 1. Moreover, (I) occurs when A has two distinct real eigenval-
ues (or equivalently (a−d)2+4bc > 0); (II) occurs when A has a double (or
repeated) real eigenvalue (or equivalently (a−d)2+4bc = 0); and (III) occurs
when A has complex conjugate eigenvalues (or equivalently (a−d)2+4bc < 0).
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Proof. We prove the theorem case by case.
Case (I): The matrix A has two real distinct eigenvalues λ and µ.

Now we can let u and v be the real eigenvectors corresponding to λ and µ
respectively. From the results in Chapter 3, we let P = [u, v] such that P is
nonsingular, and

P−1AP = P−1A[u, v] = P−1[λu, µv]

= [λP−1u, µP−1v] = [λe1, µe2] = diag(λ, µ). (2.4)

Case (II): The matrix A has a double real eigenvalue λ. Let u be
the corresponding real eigenvector, and let v be any real vector such that
P1 = [u, v] is nonsingular. Now,

P−1
1 AP1 = P−1

1 A[u, v] = P−1
1 [λu, Av] = [λP−1

1 u, P−1
1 Av]

= [λe1, P
−1
1 Av] =

[
λ g
0 h

]
, (2.5)

for some real numbers g and h. Since similar matrices have the same eigen-
values, we get h = λ. If g = 0, then we can take P = P1, such that

P−1AP =

[
λ 0
0 λ

]
. (2.6)

If g ̸= 0, let P2 =

[
1 1
0 1

g

]
, then

P−1
2

[
λ g
0 λ

]
P2 =

[
1 −g
0 g

] [
λ g
0 λ

] [
1 1
0 1

g

]
=

[
λ 1
0 λ

]
, (2.7)

hence, we can take P = P1P2, such that

P−1AP = P−1
2 P−1

1 AP1P2 = P−1
2

[
λ g
0 λ

]
P2 =

[
λ 1
0 λ

]
. (2.8)

Case (III): The matrix A has complex conjugate eigenvalues λ1 =
α + iβ, λ2 = α − iβ, β ̸= 0. Let u + iv be an eigenvector of λ1 with u
and v being real, then A(u+ iv) = (α+ iβ)(u+ iv). Equating the real and
imaginary parts, we get

Au = αu− βv, Av = βu+ αv. (2.9)
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Hence, as β ̸= 0, it follows from (2.9) that u = 0 if and only if v = 0. But
the eigenvector u + iv is nonzero, thus u ̸= 0 and v ̸= 0. That is, real or
pure imaginary vectors cannot be eigenvectors for the eigenvalue α+ iβ.

Moreover, u and v are linearly independent. Suppose this is not the case;
then u and v are linearly dependent, and there exist real constants c1 and
c2, both nonzero in this case, such that c1u + c2v = 0. Then A(u + iv) =
(α+ iβ)(u+ iv) becomes

A
(
1− c1

c2
i
)
u = (α+ iβ)

(
1− c1

c2
i
)
u, (2.10)

which implies Au = (α+iβ)u, hence u is a real eigenvector for the eigenvalue
α + iβ. This contradicts what we have just proved that α + iβ has no real
eigenvectors. Thus u and v are linearly independent.

Now, P = [u, v] is nonsingular, and we have, from (2.9),

P−1AP = P−1[Au, Av] = P−1[αu− βv, βu+ αv]

= [αe1 − βe2, βe1 + αe2] =

[
α β
−β α

]
. (2.11)

This completes the transformation of the matrix A into the three simpler
forms in (2.3). Next, from [x, y]T = P−1[x1, x2]

T and Eq. (2.1), we have[
x(t)
y(t)

]′
=P−1

[
x1(t)
x2(t)

]′
=P−1A

[
x1(t)
x2(t)

]
=
[
P−1AP

][ x(t)
y(t)

]
. (2.12)

Finally, observe that the characteristic equation for matrix A is

λ2 − (a+ d)λ+ ad− bc = 0,

thus the distributions of eigenvalues are determined by

(a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc.

This completes the proof. ♠

Next, we will draw all phase portraits according to the transformed sim-
pler equation (2.2) in the (x, y) phase plane, with B = P−1AP given by one
of the three forms in (2.3). The phase portraits for the original equation
(2.1) in the (x1, x2) phase plane will differ from them only by some rotations
and/or a magnification or shrinking of the trajectories in the (x, y) phase
plane.



182 Chapter 4. Autonomous Differential Equations in ℜ2

We first single out a special case when det(A) = 0, that is, when the zero
is an eigenvalue of the matrix A. Since the transformed forms in (2.3) have
the same eigenvalues as the matrix A, this may happen when λ = 0 or µ = 0
in Case (I), or when λ = 0 in Case (II).

If λ = 0 and µ ̸= 0 in Case (I), then the solutions of Eq. (2.2) are
{x(t) = x0, y(t) = y0e

µt}. In particular, any point on the x-axis (when
y0 = 0) is a critical point of Eq. (2.2). The phase portrait is given in
Figure 4.9, with arrows indicating the directions of increasing time t.

x x

y y

µ >0 µ <0

λ =0λ =0

critical points

>

>

Figure 4.9: Phase portrait for λ = 0 and µ ̸= 0 in Case (I) when det(A) = 0

If now we interchange x and y axes, or rotate the phase portrait for
{λ = 0, µ ̸= 0} in Figure 4.9 by 900, then we get the phase portrait for
{λ ̸= 0, µ = 0} in Case (I).

The phase portraits for Case (II) with λ = 0 can be drawn in a similar
way, see an exercise.

In the following, we assume det(A) ̸= 0, that is, the zero is not an eigen-
value of the matrix A, or equivalently, (0, 0) is the only critical point of Eq.
(2.2). Based on Theorem 4.1.9, we know that in this case, besides the only
critical point at the origin, other trajectories are periodic orbits or noninter-
secting curves. We will draw phase portraits for Eq. (2.2) in the (x, y) phase
plane case by case, according to different forms of B = P−1AP in (2.3).

Case (Ia) :

[
λ 0
0 µ

]
, (λ ̸= µ), two distinct real eigenvalues, λµ > 0.

In this case, the fundamental matrix solution of Eq. (2.2) is

[
eλt 0
0 eµt

]
,
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and solutions of Eq. (2.2) are {x(t) = x0e
λt, y(t) = y0e

µt}, where the
two eigenvalues λ and µ have the same sign. If λ < µ < 0, then, as t
approaches ∞, (x(t), y(t)) approaches (0, 0), and the slope of the trajectory,
dy(t)
dx(t) =

µy(t)
λx(t) =

µy0
λx0

e(µ−λ)t when x0y0 ̸= 0, approaches ±∞ depending on the

location of (x0, y0). The phase portrait is shown in Figure 4.10.

x x
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>
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>

>
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λ < µ <0 µ > λ >0

>

>

>

>

Figure 4.10: Case (Ia), λµ > 0. The origin is an improper node

In this case, all nonzero solutions go to the constant solution [0, 0]T as
t approaches ∞; or the constant solution [0, 0]T attracts other solutions.
In this sense, we say that the constant solution [0, 0]T is asymptotically
stable, or we say that [0, 0]T is a sink or an attractor. (A detailed study
of stability will be given later.) Now, we call the origin (0, 0) an improper
node, in the sense that trajectories approach and leave the origin in just
two directions. If µ < λ < 0, the phase portrait will be rotated by 900.

If λ > µ > 0, the phase portrait is the same as {λ < µ < 0} but with the
arrows reversed (consider t → −∞ near the origin). In this case, the origin
(0, 0) is an unstable node, or a repeller, or a source. If µ > λ > 0, the
phase portrait will be rotated by 900.

Case (Ib) :

[
λ 0
0 µ

]
, (λ ̸= µ), two distinct real eigenvalues, λµ < 0.

In this case, solutions of Eq. (2.2) are {x(t) = x0e
λt, y(t) = y0e

µt},
where the two eigenvalues λ and µ have the opposite signs. Now, as t→ ∞,
one component may go to 0 while the other goes to ±∞. For example, if
µ < 0 < λ, then |y(t)| = 0 or |y(t)| goes to 0, and |x(t)| = 0 or |x(t)| goes to
∞. The phase portrait is shown in Figure 4.11.
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x x

y y

µ <0< λ λ <0< µ

>

>

>

>

>> <<

Figure 4.11: Case (Ib), λµ < 0. The origin is a saddle point

In this case, we say that the origin (0, 0) is a saddle point, and the con-
stant solution [0, 0]T is unstable. The same is true for the case λ < 0 < µ,
whose phase portrait is obtained by reversing the arrows.

Case (IIa):

[
λ 0
0 λ

]
, double real eigenvalue λ ̸= 0.

Now, the fundamental matrix solution of Eq. (2.2) is

[
eλt 0
0 eλt

]
, and

solutions of Eq. (2.2) are {x(t) = x0e
λt, y(t) = y0e

λt}. The trajectories are
straight lines x = 0, y = 0, and y = y0

x0
x, x0 ̸= 0. The phase portrait is

shown in Figure 4.12.
The origin (0, 0) is called a proper node, in the sense that trajectories

approach or leave the origin in all directions. The constant solution [0, 0]T

is asymptotically stable (an attractor) if λ < 0 and unstable (a repeller)
if λ > 0.

Case (IIb):

[
λ 1
0 λ

]
, double real eigenvalue λ ̸= 0.

Now, the fundamental matrix solution of Eq. (2.2) is

[
eλt teλt

0 eλt

]
,

and solutions of Eq. (2.2) are {x(t) = x0e
λt + y0te

λt, y(t) = y0e
λt}. The

trajectories as t → ∞ go to (0, 0) if λ < 0, and go far away from (0, 0) if

λ > 0. Moreover, the slope dy(t)
dx(t) = λy(t)

λx(t)+y(t) = λy0
λx0+λy0t+y0

→ 0, t→ ∞.

The phase portrait is shown in Figure 4.13.
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Figure 4.12: Case (IIa), double eigenvalue λ ̸= 0. The origin is a proper
node

The origin (0, 0) now is also called an improper node, and the constant
solution [0, 0]T is asymptotically stable if λ < 0 and unstable if λ > 0.
Note that now an initial point in the second quadrant (x0 < 0, y0 > 0)
will be taken into the first quadrant after t > −x0

y0
(because then x(t) =

eλt(x0 + y0t) > 0). Similarly, an initial point in the fourth quadrant will be
taken into the third quadrant.

Case (IIIa):

[
α β
−β α

]
, two complex conjugate eigenvalues

α± iβ, α ̸= 0, β ̸= 0.

In this case, we can check that [1, i]T is an eigenvector corresponding to
the eigenvalue α+iβ. Then from Lemma 4.2.1(a), we know that eαt+iβt[1, i]T

is a solution of Eq. (2.2). Now,

eαt+iβt

[
1
i

]
= eαt(cosβt+ i sinβt)

[
1
i

]
=

[
eαt cosβt+ ieαt sinβt
−eαt sinβt+ ieαt cosβt

]

=

[
eαt cosβt
−eαt sinβt

]
+ i

[
eαt sinβt
eαt cosβt

]
, (2.13)

hence from Lemma 4.2.1(b), the real and the imaginary parts in (2.13) are
both solutions of Eq. (2.2). Note that at t = 0, the real part in (2.13) is
[1, 0]T = e1 and the imaginary part in (2.13) is [0, 1]T = e2. Thus, according
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Figure 4.13: Case (IIb), double eigenvalue λ ̸= 0. The origin is an im-
proper node

to the study in Chapter 3, the matrix[
eαt cosβt eαt sinβt
−eαt sinβt eαt cosβt

]
(2.14)

is the fundamental matrix solution of Eq. (2.2) in this case. Therefore, the
solution of Eq. (2.2) with the initial point (x0, y0) is given by[

x(t)
y(t)

]
=

[
eαt cosβt eαt sinβt
−eαt sinβt eαt cosβt

] [
x0
y0

]
, (2.15)

hence, we obtain

x2(t) + y2(t) = e2αt(x20 + y20). (2.16)

Now, note from (2.15) that when t→ ∞, x(t) and y(t) will change signs
according to sinβt and cosβt, or the trajectory (x(t), y(t)) will traverse every
quadrant infinitely many times as t → ∞. Thus, if α < 0, then from (2.15)
and (2.16), we find that the trajectory will spiral to the origin as t → ∞.
The trajectory will spiral out from the origin if α > 0. The phase portrait
is shown in Figure 4.14.

In this case, the origin is called a spiral point (or a focus), according
to the fashion a trajectory approaches or leaves the origin. The constant
solution [0, 0]T is asymptotically stable if α < 0 or unstable if α > 0.
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Figure 4.14: Case (IIIa). The origin is a spiral point

Case (IIIb):

[
0 β
−β 0

]
, two complex conjugate eigenvalues

±iβ, β ̸= 0.

In this case, all we need is to let α = 0 in (2.15)–(2.16) to obtain

x2(t) + y2(t) = x20 + y20, (2.17)

such that the trajectories are circles (periodic orbits). Now, any given tra-
jectory (circle) will not approach the origin, thus the constant solution [0, 0]T

is not asymptotically stable. However, if an initial point (x0, y0) is near the
origin, then the corresponding trajectory will stay near the origin. In this
sense, we say that the constant solution [0, 0]T is stable. The origin is now
called a center. The phase portrait is shown in Figure 4.15.

We have now completed the analysis and phase portraits for Eq. (2.2)
with B = P−1AP given by the three forms in (2.3). This detailed analysis
also reveals a Distribution Diagram given in Figure 4.16, which can be
used to determine the nature of the origin very easily by simply looking at
the coefficient matrix A of Eq. (2.1).

Corollary 4.2.3 For Eq. (2.1), let p = trA = a+d, q = detA = ad− bc ̸=
0. Then on the (p, q) plane, one has the Distribution Diagram in Figure 4.16
for the origin of Eq. (2.1). That is, one has

1. If q < 0, then the origin is a saddle point.
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Figure 4.15: Case (IIIb). The origin is a center

2. If q > 0 and p = 0, then the origin is a center.

3. If q > 0, p > 0, and q = 1
4p

2, then the origin is an unstable proper or
improper node.

4. If q > 0, p > 0, and q < 1
4p

2, then the origin is an unstable improper
node.

5. If q > 0, p > 0, and q > 1
4p

2, then the origin is an unstable spiral
point.

6. If q > 0, p < 0, and q = 1
4p

2, then the origin is a stable proper or
improper node.

7. If q > 0, p < 0, and q < 1
4p

2, then the origin is a stable improper node.

8. If q > 0, p < 0, and q > 1
4p

2, then the origin is a stable spiral point.

Proof. Let λ1 and λ2 be the two eigenvalues of the matrix A. Compare

det(A− λE) = λ2 − (a+ d)λ+ ad− bc = (λ− λ1)(λ− λ2),

we find that p and q can be replaced by

p = λ1 + λ2, q = λ1λ2.

Note that the matrix A is similar to the matrices given in (2.3), and sim-
ilar matrices have the same eigenvalues, thus λ1 and λ2 are also eigenvalues
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Figure 4.16: Distribution Diagram for the origin of Eq. (2.1)

of the matrices given in (2.3). Hence all we need next is to examine each of
the above cases from Case (Ia) to Case (IIIb).

In Case (Ia), p = λ1 + λ2 = λ + µ, q = λ1λ2 = λµ and λ ̸= µ. Thus,
q = λµ > 0 and q < 1

4p
2. If p < 0, which is the same as λ < 0 and µ < 0

since λµ > 0, then the origin is asymptotically stable and is an improper
node. If p > 0, which is the same as λ > 0 and µ > 0, then the origin is
unstable and is also an improper node. In Case (Ib), q = λµ < 0 and the
origin is a saddle point. In Case (IIa), p = 2λ, q = λ2. Thus, q = 1

4p
2 and

the origin is a proper node, which is asymptotically stable when p = 2λ < 0
or unstable when p = 2λ > 0. In Case (IIIb), q = (iβ)(−iβ) = β2 > 0 and
p = 0+ 0 = 0, and the origin is a center. Other cases are left as an exercise.
This completes the proof. ♠
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Figure 4.16 can also be regarded as a “bifurcation diagram” because
when the parameters p and q change in the (p, q) plane, the stability of the
origin of Eq. (2.1) will change among four types: asymptotically stable,
stable, unstable, and half stable (a saddle point).

Next, we point out that the phase portraits of the original differential
equation (2.1) differ from the above phase portraits using the three forms
in (2.3) only by some rotations and/or a magnification or shrinking of the
trajectories. To see this, let’s use some examples to demonstrate how to use
phase portraits of the transformed equation (2.2) to draw phase portraits of
the original equation (2.1). In doing so, we need to know the transformation
matrix P . From the proof of Theorem 4.2.2, we have

Corollary 4.2.4 The matrix P in the transformations in Theorem 4.2.2
can be constructed as follows:

(C1). If the matrix A has two real distinct eigenvalues, then P = [u, v], where
u and v are the corresponding real eigenvectors.

(C2). If the matrix A has a double real eigenvalue, then let u be the cor-
responding real eigenvector, and let v be any real vector such that
P1 = [u, v] is nonsingular. If g = 0 in (2.5), take P = P1; other-
wise take P = P1P2 with P2 given by (2.7).

(C3). If the matrix A has complex conjugate eigenvalues, then P = [u, v],
where u+ iv is an eigenvector with u and v being real vectors. ♠

Example 4.2.5 Consider the matrix

A =

[
−1 −2
−2 −1

]
. (2.18)

The eigenvalues of A are 1 and −3. Then the procedures described in
Corollary 4.2.4 can be used to find the corresponding real eigenvectors and
then construct

P =

[
1 1
−1 1

]
, (2.19)

such that

P−1AP =

[
1 0
0 −3

]
= B. (2.20)
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For the equation with the coefficient matrix B, the origin (0, 0) is a saddle
point in the (x, y) plane. The phase portrait for the original equation with
the coefficient matrix A in the (x1, x2) plane is determined by [x1, x2]

T =
P [x, y]T , or by

Pe1 =

[
1 1
−1 1

] [
1
0

]
=

[
1
−1

]
, P e2 =

[
1 1
−1 1

] [
0
1

]
=

[
1
1

]
.

Now, P takes e1 in the (x, y) plane into [1, −1]T in the (x1, x2) plane,
and takes e2 in the (x, y) plane into [1, 1]T in the (x1, x2) plane. Thus we
obtain the following phase portraits in Figure 4.17 for the trajectories of
the transformed equation in the (x, y) plane and the original equation in the
(x1, x2) plane, which differ by a rotation. ♠

x x
1

y x
2

>

>
>

>

>

<

>

<

B A

Figure 4.17: Trajectories for the original and the transformed equations
differ by a rotation

Example 4.2.6 Consider the matrix

A =

[
0 2
−1

2 0

]
. (2.21)

The eigenvalues of A are ±i, and
[
−2i
1

]
is an eigenvector for the eigen-

value i. Then, the procedures described in Corollary 4.2.4 can be used to
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construct

P =

[
0 −2
1 0

]
, (2.22)

such that

P−1AP =

[
0 1
−1 0

]
= B. (2.23)

For the equation with the coefficient matrix B, the origin (0, 0) is a center
in the (x, y) plane; and

Pe1=

[
0 −2
1 0

][
1
0

]
=

[
0
1

]
, P e2=

[
0 −2
1 0

][
0
1

]
=

[
−2
0

]
. (2.24)

Accordingly, we have the following phase portraits in Figure 4.18 for the
trajectories of the transformed equation in the (x, y) plane and the original
equation in the (x1, x2) plane, which differ by a magnification. ♠
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>

>

x
1
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2

AB

Figure 4.18: Trajectories for the original and the transformed equations
differ by a magnification

Examples for other cases can be given in a similar way to conclude that
Eq. (2.1) and Eq. (2.2) have essentially the same phase portraits, subject
to some transformations (rotations and/or a magnification or shrinking).
In this sense, we say that the phase portraits of Eq. (2.1) have the same
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geometrical and qualitative properties as those of Eq. (2.2) described above.
Therefore, we have now completed all phase portraits and the descriptions of
the geometric and qualitative properties of the autonomous linear differential
equation (2.1) in ℜ2.

Exercises 4.2

1. Prove Lemma 4.2.1.

2. Assume that the matrix A has a negative eigenvalue. Prove that x′ =
Ax has at least one nonzero solution that goes to zero as t→ ∞.

3. Draw the phase portraits for Case (II) with λ = 0. Also find all critical
points.

4. Show that if det(A) ̸= 0, then the zero is not an eigenvalue of the
matrix A, hence (0, 0) is the only critical point of x′(t) = Ax(t).

5. Verify that α+ iβ is an eigenvalue of the matrix

[
α β
−β α

]
, then find

the corresponding eigenvectors.

6. Complete the proof of Corollary 4.2.3.

7. For the following matrices, determine if the origin for x′ = Ax is a
saddle, a node, a spiral, or a center. Also determine stabilities of each
spiral or node.

(a) A =

[
1 2
3 4

]
; (b) A =

[
0 −1
2 0

]
; (c) A =

[
3 1
1 3

]
;

(d) A =

[
1 −1
2 3

]
.

8. Sketch phase portraits and solve x′ = Ax for

(a) A =

[
1 3
3 1

]
; (b) A =

[
1 3
0 −2

]
; (c) A =

[
1 −3
1 1

]
;

(d) A =

[
1 −3
0 1

]
.



194 Chapter 4. Autonomous Differential Equations in ℜ2

9. Solve the linear differential equation x′ = Ax+ f(t), x(0) = x0, where

A =

[
1 −1
1 1

]
, f(t) =

[
et

2et

]
, x0 =

[
1
0

]
.

4.3 Perturbations on Linear Equations in ℜ2

From the study of phase portraits of Eq. (2.2) in the previous section, we
observe two important things. First, the signs of the real parts of eigenvalues
determine the destinations of trajectories as t→ ∞; second, the function

V (t) = x21(t) + x22(t), (3.1)

where (x1(t), x2(t)) is a solution, can be used as a good measurement of how
close the trajectory (x1(t), x2(t)) is to the origin (0, 0).

Consequently, we expect that if a small perturbation given by ε1(x1, x2)
and ε2(x1, x2) is applied to the linear differential equation[

x1(t)
x2(t)

]′
=

[
a b
c d

] [
x1(t)
x2(t)

]
= A

[
x1(t)
x2(t)

]
(3.2)

to come up with the differential equation[
x1(t)
x2(t)

]′
=

[
a b
c d

] [
x1(t)
x2(t)

]
+

[
ε1(x1(t), x2(t))
ε2(x1(t), x2(t))

]
, (3.3)

then, in most cases, the geometrical and qualitative properties of Eq. (3.2)
near the origin (0, 0) may not be changed under this small perturbation. In
other words, we expect in most cases that Eq. (3.2) and Eq. (3.3) have
essentially the same geometrical and qualitative properties near the origin
when ε1 and ε2 are small.

To explain this, we first think of εi as being linear, so that Eq. (3.3) takes
the form of x′ = Bx with the matrix B close to A. Assume that the real parts
of eigenvalues of the matrix A are nonzero, then the real parts of eigenvalues
of the matrix B will have the same signs as those of A, hence Eq. (3.2)
and Eq. (3.3) have the same geometrical and qualitative properties near the
origin in this case. This can also be seen from the Distribution Diagram in
Figure 4.16, where, if the real parts of eigenvalues of A are nonzero, then the
corresponding point in the (p, q) plane of the Distribution Diagram is either
inside the first or the second quadrant, or below the p-axis, (remember
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that we assumed detA ̸= 0, or q ̸= 0). Thus, after a small change to that
point which resulted in the matrix B, the new point should still stay in the
corresponding region.

However, in some special cases, perturbations on Eq. (3.2) may cause
some significant changes. For example, if the matrix A has two complex
conjugate eigenvalues with zero real parts, then the origin for Eq. (3.2) is
a center, and hence the trajectories are periodic orbits enclosing the origin.
Now, after a linear perturbation, the periodicity (which is delicate) may be
destroyed, or the periodic orbits may be sufficiently distorted to make them
spiral. Thus in this case, the origin may not be a center after a perturbation.
The reason is that the real parts of eigenvalues are zero for a center, and
those zero real parts are so easily changed to nonzero after a perturbation.
Hence a center may be changed after a perturbation. This can also be seen
from the Distribution Diagram in Figure 4.16, where a center corresponds
to a point on the positive q-axis. After a perturbation, this point may move
inside the first or the second quadrant and hence becomes a spiral point.

Based on the above remarks, we can detect the following from the Distri-
bution Diagram in Figure 4.16. After a small linear perturbation, a saddle
point, a spiral point, and an improper node for a point below the graph of
q = 1

4p
2 will not change; however, a center for a point on the positive q-axis,

and a proper or improper node for a point on the graph of q = 1
4p

2 may
change.

When εi are nonlinear, we expect the same things to happen. For ex-
ample, when the trajectories of Eq. (3.2) spiral to the origin, then in Eq.
(3.3), the small εi(x1, x2) terms should not significantly change the direction
vector (or slope vector), thus the trajectories of Eq. (3.3) should also spiral
to the origin. To measure the smallness of εi(x1, x2) in Eq. (3.3), we make
the following hypothesis.

(H). In Eq. (3.3), assume that detA = ad− bc ̸= 0 and that

lim
r→0

εi(x1, x2)

r
= 0, r =

√
x21 + x22, i = 1, 2. (3.4)

This hypothesis guarantees that the perturbations εi(x1, x2) tend to zero
faster than the linear terms in Eq. (3.3) and that (see an exercise) the
origin is an isolated critical point for Eq. (3.3) (that is, there exists a circle
around the origin in which the origin is the only critical point). Under this
hypothesis, we have the following results, matching what are true for linear
perturbations and what we expect for nonlinear perturbations.
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Theorem 4.3.1 Let the Hypothesis (H) be satisfied and assume the exis-
tence and uniqueness of solutions for Eq. (3.3). Then the following state-
ments are true near the origin (0, 0).

(a). If the origin is a spiral point of Eq. (3.2), then it is a spiral point of
Eq. (3.3) (meaning roughly that trajectories starting near the origin
spiral into or out from the origin).

(b). If the origin is a saddle point of Eq. (3.2), then it is a saddle point of
Eq. (3.3) (meaning roughly that there are two trajectories approaching
the origin along opposite directions, and all other trajectories close to
either of them and to the origin tend away from them).

(c). If the origin is an improper node of Eq. (3.2), then it is an improper
node of Eq. (3.3) (meaning roughly that trajectories approach or leave
the origin along finite directions).

(d). If the origin is a proper node of Eq. (3.2), then, under a stronger

condition that limr→0
εi(x1,x2)

r1+a = 0 for some a > 0, it is a proper node
of Eq. (3.3) (meaning roughly that trajectories approach or leave the
origin along all directions).

(e). If the origin is a center of Eq. (3.2), then it is either a center of Eq.
(3.3) (meaning roughly that in any small neighborhood of the origin
there are at least countably many periodic orbits enclosing the origin)
or a spiral point of Eq. (3.3).

(f). If the origin is a node (proper or improper) of Eq. (3.2), and if εi, i =
1, 2, have continuous second partial derivatives, then it is a node of Eq.
(3.3). ♠

A complete proof of these results is extensive, since each individual case
needs a different treatment, which is not within the scope of this book.
However, reference books, such as Andronov, et al. [1973], Coddington and
Levinson [1955], and Perko [1991] offer some detailed analysis. When we
study stability in Chapter 5, Theorem 5.3.3 will provide a partial proof of
some results in Theorem 4.3.1, such as why stable spiral points and stable
nodes for linear differential equations in ℜ2 are preserved under the small
perturbations satisfying the Hypothesis (H). See also Remark 5.3.4. In ad-
dition, some similar results for differential equations in ℜn, called Stable
Manifolds and Hartman-Grobman theorems, will be given in Chapter 8.
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However, we will prove one special case here, since the proof introduces
the very useful Liapunov method. We will discuss this in detail when we
study stability in Chapter 5.

Proof of Theorem 4.3.1(a): Assume that the origin (0, 0) is a spiral point
of Eq. (3.2). Applying the transformation given in Theorem 4.2.2 if neces-
sary, we may assume that the matrix A in Eq. (3.3) has been transformed,
hence we consider[

x1(t)
x2(t)

]′
=

[
α β
−β α

][
x1(t)
x2(t)

]
+

[
ε1(x1(t), x2(t))
ε2(x1(t), x2(t))

]
, (αβ ̸= 0), (3.5)

where α < 0, (the case for α > 0 is similar). Let [x1(t), x2(t)]
T be a solution

of Eq. (3.5), whose existence and uniqueness is guaranteed (even though we
may not be able to find a formula for it). Define

V (t) =
1

2
[x21(t) + x22(t)]. (3.6)

Then, without solving Eq. (3.5), we obtain the following by plugging in Eq.
(3.5),

d

dt
V (t) = x1(t)x

′
1(t) + x2(t)x

′
2(t)

= x1(t)[αx1(t) + βx2(t) + ε1(x1(t), x2(t))]

+x2(t)[−βx1(t) + αx2(t) + ε2(x1(t), x2(t))]

= α[x21 + x22] + [x1ε1(x1, x2) + x2ε2(x1, x2)]. (3.7)

Under the Hypothesis (H), we find that

|x1ε1(x1, x2) + x2ε2(x1, x2)

x21 + x22
| = |x1

r

ε1(x1, x2)

r
+
x2
r

ε2(x1, x2)

r
|

≤ |ε1(x1, x2)
r

|+ |ε2(x1, x2)
r

| −→ 0, as r =
√
x21 + x22 → 0. (3.8)

Therefore, there is a δ > 0 such that r ≤ δ implies

x1ε1(x1, x2) + x2ε2(x1, x2) ≤
−α
2

[x21 + x22]. (3.9)

Thus, (3.7) and (3.9) imply

d

dt
V (t) ≤ α

2
[x21 + x22] ≤ 0, if r =

√
x21 + x22 ≤ δ. (3.10)
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Now, let the initial point of the solution [x1(t), x2(t)]
T start near the

origin, that is, assume r(0) =
√
x21(0) + x22(0) < δ. Then (3.10) implies that

V ′(t) ≤ 0 for t ≥ 0 and small, which implies that r(t) =
√
x21(t) + x22(t) < δ

for t ≥ 0 and small. Consequently, we obtain

r(t) =
√
x21(t) + x22(t) ≤ δ, t ≥ 0, (3.11)

therefore, we find that (3.10) becomes

V ′(t) ≤ α

2
[x21(t) + x22(t)] = αV (t), t ≥ 0. (3.12)

Now, applying a differential inequality (see an exercise), we obtain

1

2
[x21(t) + x22(t)] = V (t) ≤ V (0)eαt −→ 0, t→ ∞, (α < 0) (3.13)

which implies that the trajectory [x1(t), x2(t)]
T approaches the origin as

t→ ∞.
To determine the angles of the trajectory in order to check whether it

spirals, let’s change from Euclidean coordinates to polar coordinates. That
is, let

x1(t) = r(t) cos θ(t), x2(t) = r(t) sin θ(t). (3.14)

Then, by taking a derivative in t on both sides of

tan θ(t) =
x2(t)

x1(t)
,

we obtain

θ′(t) =
x′2(t)x1(t)− x2(t)x

′
1(t)

r2(t)

=
−β[x21(t) + x22(t)] + [x1(t)ε2(x1, x2)− x2(t)ε1(x1, x2)]

r2(t)

= −β +
x1(t)ε2(x1, x2)− x2(t)ε1(x1, x2)

r2(t)
. (3.15)

Since we have shown in (3.13) that [x21(t) + x22(t)] → 0, t → ∞, then we
can verify, similar to (3.8), that

x1(t)ε2(x1(t), x2(t))− x2(t)ε1(x1(t), x2(t))

r2(t)
−→ 0, t→ ∞.
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Hence,

lim
t→∞

θ′(t) = −β ̸= 0, (3.16)

then

lim
t→∞

θ(t) = ∞ or lim
t→∞

θ(t) = −∞. (3.17)

Therefore, the trajectory [x1(t), x2(t)]
T will spiral to the origin in this

case, or the origin is a spiral point of Eq. (3.3). ♠

In the above proof, we obtain some properties of solutions without solving
the differential equation; instead, we take a derivative of the function V (t) =
1
2 [x

2
1(t) + x22(t)] by plugging in the differential equation and then use V ′(t)

to tell us how small V (t) is or how close a solution is to the origin. This
will be a major point in understanding the treatment of stability for general
nonlinear differential equations in Chapter 5.

The above proof also shows that for some nonlinear differential equations,
the technique of changing from Euclidean coordinates to polar coordinates
is very useful in determining phase portraits. We will apply this technique
in the following examples in order to determine phase portraits for equations
with perturbations.

Example 4.3.2 (A spiral point to a spiral point) Consider the system

x′ = y − x[1− x2 − y2], y′ = −x− y[1− x2 − y2]. (3.18)

The linearization of Eq. (3.18) is

x′(t) = −x(t) + y(t), y′(t) = −x(t)− y(t), (3.19)

hence the origin is a stable spiral point for the linear system using the Dis-
tribution Diagram in Figure 4.16. Now, for Eq. (3.18), taking a derivative

in t on both sides of r2(t) = x2(t) + y2(t) and tan θ(t) = y(t)
x(t) , we obtain

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= −r(t)[1− r2(t)],

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
= −1.
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The initial point should start near the origin, so we assume r(0) < 1.
Then r′(t) ≤ 0, therefore r(t) < 1 for t ≥ 0. Now, using partial fractions, we
get∫

dr

r(1− r2)
=

∫
dr

r
+

1

2

∫
dr

1− r
− 1

2

∫
dr

1 + r
= ln

r√
1− r2

, (3.20)

hence the solutions are given by

r(t) =
1√

1 + ce2t
, c > 0, θ(t) = −t+ d, t ≥ 0, (3.21)

where c and d are constants, and the solutions spiral into the origin as t→ ∞.
Therefore, the origin is a spiral point for Eq. (3.18). ♠

Example 4.3.3 (A center to a spiral point) Consider the system

x′ = −y − x
√
x2 + y2, y′ = x− y

√
x2 + y2. (3.22)

The linearization of Eq. (3.22) is

x′(t) = −y(t), y′(t) = x(t), (3.23)

hence the origin is a center for the linear system. Now, for Eq. (3.22), the
polar system is

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= −r2(t),

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
= 1,

then the solutions are given by

r(t) =
1

t+ c
, c > 0, θ(t) = t+ d, t ≥ 0. (3.24)

The solutions spiral into the origin as t→ ∞, therefore the origin is a spiral
point for Eq. (3.22). ♠

Example 4.3.4 (A center to a spiral point) Consider the system

x′ = −y + x(x2 + y2), y′ = x+ y(x2 + y2). (3.25)
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The linearization of Eq. (3.25) is

x′(t) = −y(t), y′(t) = x(t), (3.26)

hence the origin is a center for the linear system. Now, for Eq. (3.25), the
polar system is

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= r3(t),

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
= 1,

then the solutions are given by

r(t) =
1√
c− 2t

, c > 0, θ(t) = t+ d, t ≥ 0. (3.27)

Therefore, the solutions spiral out of the origin as t → ∞, and hence the
origin is a spiral point for Eq. (3.25). ♠

Example 4.3.5 (A center to a center) Consider the system x′ = −y + x[x2 + y2] sin π√
x2+y2

,

y′ = x+ y[x2 + y2] sin π√
x2+y2

,
(3.28)

for (x, y) ̸= (0, 0), and define the right-hand side of Eq. (3.28) at (0, 0) as
f(0, 0) = (0, 0). The linearization of Eq. (3.28) is

x′(t) = −y(t), y′(t) = x(t), (3.29)

hence the origin is a center for the linear system. Now, for Eq. (3.28), the
polar system is

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= r3(t) sin

π

r
,

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
= 1.

For n = 1, 2, · · ·, the circles given by

r(t) =
1

n
, θ(t) = t+ d, t ≥ 0, (3.30)

are periodic orbits of Eq. (3.28) enclosing the origin, and their diameters
tend to zero. Therefore, the origin is a center for Eq. (3.28). ♠
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Example 4.3.6 (A center to a center) Consider the system{
x′ = y − xy2,
y′ = −x+ x2y.

(3.31)

The linearization of Eq. (3.31) is

x′(t) = y(t), y′(t) = −x(t), (3.32)

hence the origin is a center for the linear system. Now, for Eq. (3.31), the
polar system is

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= 0,

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
= xy − 1.

Thus for x and y sufficiently small, say for example |xy| < 1
2 , one has

r(t) = constant, θ′(t) ≤ −1

2
, t ≥ 0, (3.33)

hence, there are infinitely many periodic orbits of Eq. (3.31) enclosing the
origin with their diameters tend to zero. Therefore, the origin is a center for
Eq. (3.31). ♠

Example 4.3.7 (A proper node to a spiral point) Consider the
system  x′ = −x− y

ln
√

x2+y2
,

y′ = −y + x

ln
√

x2+y2
,

(3.34)

for (x, y) ̸= (0, 0), and define the right-hand side of Eq. (3.34) at (0, 0) as
f(0, 0) = (0, 0). The linearization of Eq. (3.34) is

x′(t) = −x(t), y′(t) = −y(t), (3.35)

hence the origin is a proper node for the linear system. Now, for Eq. (3.34),
the polar system is

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= −r,

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
=

1

ln r
.
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Hence r(t) = r0e
−t and, plugging it into the equation about θ, we solve

θ(t) = θ0 + ln | ln r0| − ln | ln r0 − t|. Therefore, r(t) → 0 and θ(t) → −∞ as
t→ ∞. Accordingly, the origin is a spiral point for Eq. (3.34). ♠

Next, let’s look at the Distribution Diagram in Figure 4.16 again. We
see that a proper or improper node for a point on the graph of q = 1

4p
2 may

change after a perturbation, but the stability will preserve. However, if a
center for a point on the positive q-axis is changed after a perturbation to
become a spiral point, then the stability will also change. Thus, a change
due to perturbation to a center is more significant than a change due to
perturbation to a proper or improper node. Accordingly, there is a great
deal of research in determining when a center will be preserved after some
perturbations. The results in this area are generally complicated. However,
for the second-degree polynomial systems{

x′ = −y + a20x
2 + a11xy + a02y

2,
y′ = x+ b20x

2 + b11xy + b02y
2,

(3.36)

Li [1982] obtained the following useful and easy-to-use criterion.

Theorem 4.3.8 Consider Eq. (3.36), where the origin of the linearization
is a center. Define

W1 = Aα−Bβ,
W2 = [β(5A− β) + α(5B − α)]γ,
W3 = (Aβ +Bα)γδ,

(3.37)

where
A = a20 + a02, B = b20 + b02,
α = a11 + 2b02, β = b11 + 2a20,
γ = b20A

3 − (a20 − b11)A
2B + (b02 − a11)AB

2 − a02B
3,

δ = a202 + b220 + a02A+ b20B.

(3.38)

Then the origin of Eq. (3.36) is a center if and only if W1 =W2 =W3 = 0.

♠

Let’s see how to apply Theorem 4.3.8 to the second-degree polynomial
systems.
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Example 4.3.9 (A center is preserved) Consider the system

x′ = −y − xy, y′ = x+ x2. (3.39)

The origin is a center for the linearized linear system. Now, we have
a20 = a02 = 0, a11 = −1, b20 = 1, b11 = b02 = 0. Thus A = 0, B = 1, α =
−1, β = 0, γ = 0, and then W1 = W2 = W3 = 0. According to Theorem
4.3.8, the origin of Eq. (3.39) is a center, or a center is preserved.

Next, let’s check this result by using the derivatives of r2(t) = x2(t)+y2(t)

and tan θ(t) = y(t)
x(t) . Then

r′(t) =
xx′ + yy′

r
=

−xy − x2y + xy + x2y

r
= 0,

θ′(t) =
xy′ − yx′

r2
=
x2 + x3 + y2 + xy2

r2
= 1 + x > 0

for x > −1. Thus the trajectories of Eq. (3.39) on the right-hand side of
x = −1 are circles enclosing the origin, and hence the origin is a center for
Eq. (3.39). ♠

Example 4.3.10 (A center is not preserved) Consider the system

x′ = −y + xy + y2, y′ = x. (3.40)

The origin is a center for the linearized linear system. Now, we have
a20 = 0, a11 = 1, a02 = 1, b20 = b11 = b02 = 0. Thus A = 1, B = 0, α =
1, β = 0, and then W1 = 1. According to Theorem 4.3.8, the origin of Eq.
(3.40) is not a center, or a center is not preserved. In an exercise, you are
asked to use a computer-generated curve to verify this. ♠

Exercises 4.3

1. Show that condition (3.4) and detA = ad− bc ̸= 0 guarantee that the
origin is an isolated critical point for Eq. (3.3) (that is, there exists a
circle around the origin in which the origin is the only critical point).

2. If limt→∞ θ′(t) exists and is nonzero and finite, then prove that
limt→∞ θ(t) = ∞ or limt→∞ θ(t) = −∞.

3. Show the following differential inequality for x ∈ ℜ: If x′(t) ≤
ax(t), t ≥ t0, for a constant a, then x(t) ≤ x(t0)e

a(t−t0), t ≥ t0.
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4. Let b be a constant and let a(t), c(t) be continuous functions on ℜ+

such that a(t) ≤ d, c(t) ≤ d for some negative constant d. Use V (t) =
1
2 [x

2
1(t) + x22(t)] to prove that all solutions of{

x′1(t) = a(t)x1(t)− bx2(t),
x′2(t) = bx1(t) + c(t)x2(t),

go to zero exponentially.

5. Let a(t), b, c(t) be the same as above and let fi(t, x1, x2) be such that
fi(t,x1,x2)√

x2
1+x2

2

→ 0 as x21 + x22 → 0, i = 1, 2. Use V (t) = 1
2 [x

2
1(t) + x22(t)] to

prove that all solutions of{
x′1(t) = a(t)x1(t)− bx2(t) + f1(t, x1, x2),
x′2(t) = bx1(t) + c(t)x2(t) + f2(t, x1, x2),

go to zero exponentially.

6. Find the solutions of{
x′(t) = −y − x(x2 + y2 − 1),
y′(t) = x− y(x2 + y2 − 1),

using polar coordinates. Show that the circle x2+y2 = 1 is a trajectory
of the equation. Next, if (x(t), y(t)) is a solution of the equation, find
limt→∞[x2(t) + y2(t)].

7. Rewrite using polar coordinates and determine the origin.

(a)

{
x′ = ax− by,
y′ = bx+ ay.

(b)

{
x′ = −y + xy,
y′ = x− x2.

(c)

{
x′ = −y − x3 − xy2,
y′ = x− y3 − x2y.

(d)

{
x′ = −y + x3 + xy2,
y′ = x+ y3 + x2y.

8. Determine if the origin is a center for

(a)

{
x′ = −y − xy,
y′ = x− y2.

(b)

{
x′ = −y − 2x2 + xy − y2,
y′ = x+ x2 − 3xy.

9. In Example 4.3.10, use a computer-generated curve to verify that the
origin is not a center for

x′ = −y + xy + y2, y′ = x. (3.41)



206 Chapter 4. Autonomous Differential Equations in ℜ2

4.4 An Application: A Simple Pendulum

Here, we apply Theorem 4.3.1 to analyze a simple pendulum. The motion
of a simple pendulum is given by the following differential equation (see
Chapter 1):

θ′′(t) + kθ′(t) + q sin θ(t) = 0, (4.1)

where k ≥ 0, q > 0 are constants with k related to a damping or friction
term, and θ(t) measures the angle formed by the pendulum and the vertical
downward direction.

To change the second-order equation (4.1) into a first-order system, we
let x1 = θ, x2 = θ′. Then we obtain the system{

x′1(t) = x2(t),
x′2(t) = −kx2(t)− q sinx1(t).

(4.2)

The critical points are (nπ, 0), n = 0,±1,±2, · · ·, and we will examine
each of them. For the critical point (0, 0), note that the Hypothesis (H)
in (3.4) is not satisfied if sinx1 is regarded as ε2(x1, x2), since

sinx1
x1

→ 1
as x1 → 0. However, from the Taylor expansion of sinx1, we know that
x1 − sinx1 satisfies (3.4). Thus we replace x′2(t) = −kx2(t) − q sinx1(t) by
x′2(t) = −qx1(t)− kx2(t) + q[x1(t)− sinx1(t)], and consider[

x1(t)
x2(t)

]′
=

[
0 1
−q −k

] [
x1(t)
x2(t)

]
+

[
0

q[x1(t)− sinx1(t)]

]
. (4.3)

The matrix from the linearization,

[
0 1
−q −k

]
, is nonsingular since q >

0, and its eigenvalues are given by

−k ±
√
k2 − 4q

2
,

thus the phase portraits near (0, 0) are determined by k2 − 4q. We first
assume k > 0. If k2− 4q < 0 (when the damping is weak), then the origin is
a stable spiral point for the linearization. Hence, according to Theorem 4.3.1,
the origin is also a stable spiral point for the nonlinear system (4.3), or Eq.
(4.1). Now, the physical and geometric interpretation is that (θ, θ′) = (0, 0)
corresponds to the pendulum hanging vertically downward (θ = 0) with zero
velocity (θ′ = 0), thus, when the damping is weak, a perturbation will cause



4.4. An Application: A Simple Pendulum 207

<
>

Figure 4.19: The motion of a pendulum with a weak damping

<

Figure 4.20: The motion of a pendulum with a strong damping

the pendulum to spiral and approach the vertically downward position. See
Figure 4.19.

If k2 − 4q ≥ 0 (when the damping is strong), then the origin for Eq.
(4.3) is a stable node (see an exercise). The explanation now is that since
the damping or friction is very strong, the pendulum will go to the vertically
downward position without spirals. See Figure 4.20. This case is similar to
the simplified linear differential equation θ′ = − q

kθ from Eq. (4.1) discussed
in Section 3 of Chapter 1.

To determine phase portraits for other critical points, let’s change vari-
ables so as to shift them to the origin (0, 0) in order to apply Theorem
4.3.1. For example, for the critical point (π, 0) for (θ, θ′), we can change the
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variable θ = η + π, such that Eq. (4.1) is transformed to

η′′(t) + kη′(t)− q sin η(t) = 0. (4.4)

Now, (0, 0) is a critical point for (η, η′) that corresponds to (π, 0) for
(θ, θ′). A similar analysis as above (treat −q in Eq. (4.4) as q in Eq. (4.1))
shows that the eigenvalues for the linearization of Eq. (4.4) are

−k ±
√
k2 + 4q

2
.

Thus, the origin is a saddle point for the equation in η, and hence (π, 0) is
a saddle point for the original equation (4.1) in θ. Now, the physical and
geometric explanation is that (θ, θ′) = (π, 0) corresponds to the pendulum
in a vertically upward position (θ = π) with zero velocity (θ′ = 0), hence a
perturbation will cause the pendulum to move away from that position.

Other critical points can be treated similarly to conclude that (2nπ, 0),
n = ±1,±2, · · · , is stable, and ((2n+1)π, 0), n = ±1,±2, · · · , is unstable. A
phase portrait in terms of x1 = θ, x2 = θ′ with a weak damping is given in
Figure 4.21.

>

>

>

x
2

>

>

>

>

π
x
1

Figure 4.21: A phase portrait of a simple pendulum with a weak damping

When there is no damping or friction, that is, when k = 0 in Eq. (4.1),
the same analysis given above shows that (2nπ, 0), n = ±1,±2, · · · , is a
center, and ((2n + 1)π, 0), n = ±1,±2, · · · , is a saddle point. A phase
portrait in terms of x1 = θ, x2 = θ′ without damping is given in Figure
4.22.
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Figure 4.22: A phase portrait of a simple pendulum without damping

Exercises 4.4

1. Give more details why at (0, 0), sinx1 cannot be regarded as ε2(x1, x2)
in the Hypothesis (H).

2. For Eq. (4.3), verify that if k2 − 4q < 0, then the origin is a stable
spiral point for the linearization.

3. For Eq. (4.3), verify that if k2 − 4q ≥ 0, then the origin is a stable
node for the linearization. (Provide the details, such as k2 − 4q = 0 or
k2 − 4q > 0, and the cases for proper or improper node.)

4. For the pendulum given by equation (4.1), provide some details for the
cases θ = 2π, θ = 3π, θ = −2π, θ = −3π.

5. Determine the phase portraits for θ′′(t) + kθ′(t) + q cos θ(t) = 0.

6. Determine the phase portraits for θ′′(t) + kθ′(t) + qθ(t) = 0.

7. Carry out the analysis for Eq. (4.1) with k > 0 to the case with k = 0.

8. Use separation of variables to solve Eq. (4.1) when q = 0.

4.5 Hamiltonian and Gradient Systems

From the analysis of a simple pendulum in the previous section, we know that
when there is no damping the critical points are either saddles or centers,
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and when there is a damping, the critical points are either saddles or nodes
(or spiral points).

Next, let’s find some relationship between these results and something
we did in Chapter 1 concerning the law of conservation of energy in
physics. For Eq. (4.2) with k = 0, which is a special case of Eq. (3.14) in
Chapter 1 with g(u) = q sinu and x1 = u, x2 = u′, the total energy of the
system is

H(x1, x2) =
1

2
x22 +

∫ x1

0
q sin sds. (5.1)

This is related to a Liapunov function to be discussed in Chapter 5. Now,
for a solution (x1(t), x2(t)) of Eq. (4.2) with k = 0, we have

d

dt
H(x1(t), x2(t)) = x2x

′
2 + q(sinx1)x

′
1

= x2(−q sinx1) + q(sinx1)x2 = 0. (5.2)

Thus the energy is conserved, and in geometry, this solution lies on a
level curve

H(x1, x2) = constant (5.3)

of the function H(x1, x2) with the variables x1 and x2. See Figure 4.23 for
a demonstration of a level curve.

x
2

V

x
1

a level curve

<

Figure 4.23: A level curve of a function V (x1, x2)

For H(x1, x2) given in (5.1) from Eq. (4.2) with k = 0, the projection
onto the (x1, x2) plane of typical level curves, and the corresponding trajec-
tories are shown in Figure 4.24, which explains in geometry that saddles
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and centers are possible while nodes and spiral points are impossible for Eq.
(4.2) with k = 0 (without damping).

>
>

>

>

<<
< >

>

x
2

x
1

Figure 4.24: Level curves of H in (5.1) and the trajectories

On the other hand, for a solution (x1(t), x2(t)) of Eq. (4.2) with k > 0,
we have, for the total energy of the system given in (5.1),

d

dt
H(x1(t), x2(t)) = x2x

′
2 + q(sinx1)x

′
1

= x2(−kx2 − q sinx1) + q(sinx1)x2

= −kx22 < 0 if x2 ̸= 0. (5.4)

Thus the energy is dissipated, and in geometry, this solution will not
stay on a level curve. Therefore, centers are impossible for Eq. (4.2) with
k > 0 (with damping).

Based on these analyses, we point out that a simple pendulum, together
with its issue of conservativeness, is actually a typical example related to
the well-known Hamiltonian systems (also called conservative systems) and
gradient systems (also called dissipative systems) that have wide applica-
tions in physics and celestial mechanics. Before we define these systems, we
observe that for H(x1, x2) in (5.1), Eq. (4.2) with k = 0 can be written as

{
x′1(t) = x2 =

∂H
∂x2

,

x′2(t) = −q sinx1 = − ∂H
∂x1

.
(5.5)
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Definition 4.5.1 A planar system is called a Hamiltonian system if
there is a differentiable function H(x1, x2) : ℜ2 → ℜ such that{

x′1(t) = ∂H
∂x2

,

x′2(t) = − ∂H
∂x1

.
(5.6)

The function H(x1, x2) is called the Hamiltonian function (or the first
integral) of Eq. (5.6) (can be varied up to a constant).

Hamiltonian systems can be defined for higher dimensional spaces, but
we only treat planar systems here. Now, we see that Eq. (4.2) with k = 0 is
a Hamiltonian system with the Hamiltonian function given in (5.1).

For the Hamiltonian system (5.6), the total energy is always conserved.
That is, let (x1(t), x2(t)) be any solution of Eq. (5.6), we have

d

dt
H(x1(t), x2(t)) =

∂H

∂x1
x′1 +

∂H

∂x2
x′2

=
∂H

∂x1

∂H

∂x2
+
∂H

∂x2

(
− ∂H

∂x1

)
= 0. (5.7)

In this sense, a Hamiltonian function is sometimes called an energy func-
tion.

Next, we analyze the critical points of Eq. (5.6), which are the same as
the critical points of the function H(x1, x2) (defined in calculus as solutions
(x1, x2) of ∂H

∂x1
= ∂H

∂x2
= 0). Due to the special structure of Hamiltonian

systems, we expect to obtain some specific results. Let (xc1, x
c
2) be a critical

point of Eq. (5.6), using the change of variables x = x1 − xc1, y = x2 − xc1 if
necessary, we can assume that the origin is a critical point of Eq. (5.6), and
we only need to state results for the origin.

Lemma 4.5.2 Let the origin be a critical point of the Hamiltonian system
(5.6). If the function H(x1, x2) has a strict local maximum or minimum
at the origin, then there is a constant r > 0 such that there is no such
a point (x01, x

0
2) ∈ Br(0, 0) (the ball centered at the origin with radius r)

with (x01, x
0
2) ̸= (0, 0) and (x1(t, x

0
1, x

0
2), x2(t, x

0
1, x

0
2)) → (0, 0), |t| → ∞. In

particular, in this case, the origin is neither a node nor a spiral point for
Eq. (5.6).

Proof. If a point (x01, x
0
2) ̸= (0, 0) is such that (x1(t, x

0
1, x

0
2), x2(t, x

0
1, x

0
2)) →

(0, 0), t→ ∞ (the case t→ −∞ is similar), then from the continuity of the
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function H and the fact that H(x1(t, x
0
1, x

0
2), x2(t, x

0
1, x

0
2)) is a constant as

the energy is conserved for a Hamiltonian system, we have

H(x01, x
0
2) = lim

t→∞
H(x01, x

0
2)

= lim
t→∞

H(x1(t, x
0
1, x

0
2), x2(t, x

0
1, x

0
2)) = H(0, 0), (5.8)

that is, H has the same function value at (x01, x
0
2) and at the origin. If such

a point (x01, x
0
2) can get arbitrarily close to the origin, then the function

H(x1, x2) cannot have a strict local maximum or minimum at the origin.
Therefore, the conclusion in the lemma is true. ♠

Definition 4.5.3 A critical point of a system is called nondegenerate if
the matrix of the linearization of the system at that point has no zero eigen-
values.

Theorem 4.5.4 Let the function H in the Hamiltonian system (5.6) have
continuous second partial derivatives. Then any nondegenerate critical point
of Eq. (5.6) is either a center or a saddle. More specifically, if the function
H has a strict local maximum or minimum at this point, then it is a center
for Eq. (5.6); if the function H has a saddle at this point, then it is a saddle
for Eq. (5.6).

Proof. We assume that this nondegenerate critical point is at the origin.
Then

∂H

∂x1
(0, 0) =

∂H

∂x2
(0, 0) = 0, (5.9)

and the matrix of the linearization of Eq. (5.6) at (0, 0) is given by

A =

 ∂2H
∂x2∂x1

(0, 0) ∂2H
∂x2

2
(0, 0)

−∂2H
∂x2

1
(0, 0) − ∂2H

∂x1∂x2
(0, 0)

 . (5.10)

For this matrix A, we have trA = 0 and

detA =
∂2H

∂x21
(0, 0)

∂2H

∂x22
(0, 0)−

[ ∂2H

∂x1∂x2
(0, 0)

]2
, (5.11)

and, since the matrix A has no zero eigenvalues, detA ̸= 0.
Now, recall from calculus that (5.9) and (5.11) are used in the second

derivative test to determine the nature of the critical point (0, 0) of the
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function H. If detA > 0, which is the same as saying that the function H
has a strict local maximum or minimum at (0, 0), then from the Distribution
Diagram of Corollary 4.2.3, the origin is a center for the linearization with
the matrix A. From Theorem 4.3.1, the origin is either a center or a spiral
point of Eq. (5.6). However, using Lemma 4.5.2, a spiral point is impossible
and the origin is now a center for Eq. (5.6).

If detA < 0, which is the same as saying that the function H has a saddle
at (0, 0), then from Corollary 4.2.3, the origin is a saddle for the linearization
with the matrix A. Applying Theorem 4.3.1, the origin is also a saddle for
Eq. (5.6). This completes the proof. ♠

One special Hamiltonian system is the Newtonian system

x′′ = f(x), (5.12)

where f is continuously differentiable on ℜ. Eq. (5.12) includes a simple
pendulum without damping, and can be written as a Hamiltonian system

x′ = y, y′ = f(x), (5.13)

with the Hamiltonian function given by

H(x, y) =
1

2
y2 +

(
−

∫ x

0
f(s)ds

)
, (5.14)

where 1
2y

2 is the kinetic energy and P (x) = −
∫ x
0 f(s)ds is the potential en-

ergy. We have the following result, which gives the phase portrait analysis
based on the potential energy for the Newtonian system (5.12). The proof
is left as an exercise.

Theorem 4.5.5 The critical points of the Newtonian system (5.13) are
given by (xc, 0) where f(xc) = 0. If the potential function P (x) has a strict
local minimum at xc (or when f ′(xc) < 0), then (xc, 0) is a center for Eq.
(5.13); if the potential function P (x) has a strict local maximum at xc (or
when f ′(xc) > 0), then (xc, 0) is a saddle for Eq. (5.13). ♠

Now, we find that Figure 4.22 for a simple pendulum without damping
(Eq. (4.1) with k = 0) can also be constructed by using Theorem 4.5.5 and
the corresponding potential function

P (x) =

∫ x

0
q sin sds = q(1− cosx),
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- π π

P(x)

Figure 4.25: Potential function q(1− cosx) for Eq. (4.1) with k = 0

showing in Figure 4.25, which has a strict local minimum at xc = 0 and a
strict local maximum at xc = π.

Next, we determine the conditions for a given system

x′1 = f(x1, x2), x′2 = g(x1, x2), (5.15)

to be a Hamiltonian system. If Eq. (5.15) is a Hamiltonian system, then
there is a function H such that ∂H

∂x2
= f and − ∂H

∂x1
= g. Hence, assuming H

has continuous second partial derivatives, we obtain

∂f

∂x1
=

∂2H

∂x1∂x2
=

∂2H

∂x2∂x1
= − ∂g

∂x2
. (5.16)

In fact, (5.16) is also a sufficient condition for Eq. (5.15) to be a Hamil-
tonian system.

Lemma 4.5.6 A given differentiable system (5.15) is a Hamiltonian system
if and only if

∂f

∂x1
= − ∂g

∂x2
. (5.17)

Proof. We only need to show that if (5.17) is true, then we can construct a
Hamiltonian function for Eq. (5.15). Now, solving H(x1, x2) from

∂H

∂x2
= f(x1, x2),

we obtain

H(x1, x2) =

∫
f(x1, x2)dx2 + C(x1),



216 Chapter 4. Autonomous Differential Equations in ℜ2

where the “constant of integration” C(x1) may depend on x1 because H is a
function of (x1, x2). To determine the conditions on C(x1) so that H(x1, x2)
becomes a Hamiltonian function of Eq. (5.15), we need

∂H

∂x1
=

∂

∂x1

∫
f(x1, x2)dx2 + C ′(x1) = −g(x1, x2),

or

C ′(x1) = −g(x1, x2)−
∂

∂x1

∫
f(x1, x2)dx2,

which can be solved for C(x1) by taking an integration,

C(x1) = −
∫
g(x1, x2)dx1 −

∫ ( ∂

∂x1

∫
f(x1, x2)dx2

)
dx1. (5.18)

Finally, we verify that the right-hand side of (5.18) is really a function
of x1 alone, because under the condition (5.17), we have

∂

∂x2

[ ∫
g(x1, x2)dx1 +

∫ ( ∂

∂x1

∫
f(x1, x2)dx2

)
dx1

]
=

∫
∂g

∂x2
dx1 +

∫
∂

∂x2

( ∂

∂x1

∫
f(x1, x2)dx2

)
dx1

=

∫
∂g

∂x2
dx1 +

∫
∂

∂x1

( ∂

∂x2

∫
f(x1, x2)dx2

)
dx1

=

∫
∂g

∂x2
dx1 +

∫
∂f

∂x1
dx1

=

∫
∂g

∂x2
dx1 −

∫
∂g

∂x2
dx1 = 0.

This completes the proof. ♠

Example 4.5.7 Consider the system{
x′1(t) = x1 + x2 = f(x1, x2),
x′2(t) = x1 + x2 = g(x1, x2).

(5.19)

It is not a Hamiltonian system since ∂f
∂x1

= 1 ̸= −1 = − ∂g
∂x2

. Note also
that now the function C in the proof of Lemma 4.5.6 is given by

−
∫
g(x1, x2)dx1 −

∫ ( ∂

∂x1

∫
f(x1, x2)dx2

)
dx1

= −(
x21
2

+ x1x2)−
∫
x2dx1 = −(

x21
2

+ 2x1x2),

which is not a function of x1 alone. ♠
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Example 4.5.8 Consider the system{
x′1(t) = x2 = f(x1, x2),
x′2(t) = x1 = g(x1, x2).

(5.20)

It is a Hamiltonian system since ∂f
∂x1

= 0 = − ∂g
∂x2

. Now the function C
in the proof of Lemma 4.5.6 is given by

−
∫
g(x1, x2)dx1 −

∫ ( ∂

∂x1

∫
f(x1, x2)dx2

)
dx1 = −x

2
1

2
,

which is a function of x1 alone, and the corresponding Hamiltonian function
is given by

H(x1, x2) =

∫
f(x1, x2)dx2 + C(x1) =

x22
2

− x21
2
. ♠

The above are some basic results of Hamiltonian systems, or conservative
systems. Next, let’s look at a type of dissipative system.

Definition 4.5.9 A planar system is called a gradient system if there is
a differentiable function H(x1, x2) : ℜ2 → ℜ such that{

x′1(t) = − ∂H
∂x1

,

x′2(t) = − ∂H
∂x2

,
(5.21)

that is, [x′1, x
′
2]
T = −gradH, where gradH = [ ∂H∂x1

, ∂H∂x2
]T is the gradient of

the function H.

Now, if we still regard the function H as an energy function, then for a
solution (x1(t), x2(t)) of Eq. (5.21), we have

d

dt
H(x1(t), x2(t)) =

∂H

∂x1
x′1 +

∂H

∂x2
x′2

= −
[(∂H
∂x1

)2
+

(∂H
∂x2

)2]
< 0 (5.22)

if
(
∂H
∂x1

)2
+

(
∂H
∂x2

)2
̸= 0. In this sense, gradient systems are dissipative

systems. Similar to Hamiltonian systems, we have the following results for
gradient systems.
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Theorem 4.5.10 Let the function H in the gradient system (5.21) have
continuous second partial derivatives. Then any nondegenerate critical point
of Eq. (5.21) is either a node or a saddle. More specifically, if the function H
has a strict local maximum or minimum at this point, then it is respectively
an unstable or a stable node for Eq. (5.21); if the function H has a saddle
at this point, then it is a saddle for Eq. (5.21).

Proof. Similar to the proof of Theorem 4.5.4, we assume that this nonde-
generate critical point is at the origin, and obtain

∂H

∂x1
(0, 0) =

∂H

∂x2
(0, 0) = 0. (5.23)

Now, the matrix of the linearization of Eq. (5.21) at (0, 0) is given by

A =

 −∂2H
∂x2

1
(0, 0) − ∂2H

∂x1∂x2
(0, 0)

− ∂2H
∂x2∂x1

(0, 0) −∂2H
∂x2

2
(0, 0)

 , (5.24)

hence we have

trA = −
[∂2H
∂x21

(0, 0) +
∂2H

∂x22
(0, 0)

]
,

and

detA =
∂2H

∂x21
(0, 0)

∂2H

∂x22
(0, 0)−

[ ∂2H

∂x1∂x2
(0, 0)

]2
, (5.25)

and, since the matrix A has no zero eigenvalues, detA ̸= 0.

If detA > 0, then ∂2H
∂x2

1
(0, 0) and ∂2H

∂x2
2
(0, 0) must have the same sign. If

they are positive, which is the same as saying that the function H has a
strict local minimum at (0, 0), then trA < 0, and (see an exercise)

detA ≤ 1

4
(trA)2. (5.26)

Hence, from Corollary 4.2.3, the origin is a stable node for the linearization
with the matrix A. From Theorem 4.3.1(f), the origin is also a stable node
for Eq. (5.21) (the result concerning stability should be expected and can
be verified using Theorem 5.3.3 in Chapter 5). Other cases can be handled
similarly (see an exercise). This completes the proof. ♠
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Example 4.5.11 Consider the function H(x1, x2) = x21(x1 − 2)2 + x22 and
the corresponding gradient system{

x′1(t) = − ∂H
∂x1

= −4x1(x1 − 1)(x1 − 2),

x′2(t) = − ∂H
∂x2

= −2x2.
(5.27)

Since H has a strict minimum at (0, 0) and at (2, 0) and a saddle at (1, 0),
we know from Theorem 4.5.10 that (0, 0) and (2, 0) are stable nodes for Eq.
(5.27) and (1, 0) is a saddle for Eq. (5.27). See Figure 4.26. ♠

> <

>
<

x
2

x
1

>

>

> >

>

<
0 1 2

Figure 4.26: The phase portrait for the gradient system (5.27)

Finally, let’s look at the relationship between the Hamiltonian system
(5.6) and the gradient system (5.21). If they are using the same function
H, then they are orthogonal, that is, at every point, the trajectories of the
two systems are perpendicular. Moreover, centers of Eq. (5.6) correspond
to nodes of Eq. (5.21), and saddles of Eq. (5.6) correspond to saddles of Eq.
(5.21).

For the related studies of Hamiltonian and gradient systems in higher
dimensional spaces and their applications in physics and celestial mechanics,
see, for example, Guckenheimer and Holmes [1986] and Meyer and Hall
[1992].

Exercises 4.5

1. Verify that H(x, y) in (5.14) is a Hamiltonian function for Eq. (5.13).

2. Prove Theorem 4.5.5.
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3. Check if x′1 = 2x1 + sinx2, x
′
2 = 2x1x2 + cosx1x2 is a Hamiltonian

system.

4. Verify that x′1 = x2, x
′
2 = −x1 + x21 is a Newtonian system. Then use

the energy function to obtain the phase portrait.

5. Verify (5.26).

6. Complete the proof of Theorem 4.5.10 by analyzing the case when
∂2H
∂x2

1
(0, 0) and ∂2H

∂x2
2
(0, 0) are negative and the case when detA < 0.

7. Let H(x1, x2) = (x1−3)2+x22(x2−2)2. Use Theorem 4.5.10 to obtain
the phase portrait of the corresponding gradient system.



Chapter 5

Stability. Part I

5.1 Introduction

In Chapter 3, we analyzed structure of solutions of linear differential equa-
tions in ℜn and found that eigenvalues, when the coefficient matrix is con-
stant, can be used to determine long-term properties of solutions. Then
in Chapter 4, we studied phase portraits for some autonomous differential
equations in ℜ2. According to the properties revealed for a center, a node, or
a spiral point, we briefly discussed stability properties for autonomous dif-
ferential equations in ℜ2. In this chapter, we extend the study of stability to
some differential equations in ℜn. Although one could study stability after
Chapter 3 (Linear Differential Equations), we believe analyzing the centers
and spiral points in ℜ2 will provide some concrete models when we introduce
stability notions.

First, let’s examine what we mean by a statement that “a solution of a
differential equation is stable.” Note that a differential equation is typically
used to model the movement of a certain physical system or experiment. In
running a system or experiment, one needs to deal with some initial mea-
surements, such as putting one gallon of water initially for some experiment,
which inevitably involves some errors in measurements or approximations.
If the behavior of a system or experiment is stable, then a small change in
initial data will result in a small change in the behavior for future time.
Thus, by a statement that “a solution ϕ of a differential equation is stable”
we mean that other solutions with initial data close to the solution ϕ will

221
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remain close to ϕ for future time. For example, for a stable system, if ϕ is
the solution corresponding to one gallon of water initially, and x is a solu-
tion with its initial value close to one gallon of water, say for example, 1.005
gallons of water, then ϕ and x should be close for the future time, or |x−ϕ|
should be small for future time.

This is exactly what happened to the phase portraits of autonomous
differential equations in ℜ2 in Chapter 4. For example, when the origin is a
center, the constant vector ϕ = [0, 0]T is a solution, and any periodic orbit
x enclosing the origin with an initial point close to the origin ϕ = [0, 0]T

will stay close to the origin ϕ = [0, 0]T for future time, or |x − ϕ| = |x|
will be small for future time if it is small initially. Accordingly, the solution
ϕ = [0, 0]T is stable in this case. In some other cases, such as when the
origin is a stable spiral point, other solutions will not only stay close to, but
also approach the constant solution ϕ = [0, 0]T as t → ∞. In this case, the
solution ϕ = [0, 0]T is asymptotically stable.

The above remarks will help us extend the study of stability properties of
autonomous differential equations in ℜ2 to general differential equations in
ℜn. We assume that the time variable t of differential equations is in [0,∞),
so that t = 0 can be regarded as the initial time systems start running. In
order to consider “long-term” behavior of solutions for “future time,” we
make the following assumption throughout this chapter.

(A). Consider the differential equation

x′(t) = f(t, x(t)), (1.1)

in D = [0,∞) × Q, where Q ⊂ ℜn is a domain containing the zero
vector. For any (t0, x0) ∈ D = [0,∞) × Q, Eq. (1.1) has a unique
solution x(t, t0, x0) existing on [t0, ∞) with x(t0) = x0.

To begin the study of stability properties, let’s recall from Chapter 3 that
for linear differential equations with constant coefficients, when the real parts
of eigenvalues are negative, then solutions will go to zero. We can follow this
to derive stabilities for linear differential equations.

The study of stabilities for nonlinear differential equations is difficult
because formulas of solutions and eigenvalues are generally not available or
applicable. So far, we have successfully dealt with a nonlinear differential
equation in the proof of Theorem 4.3.1(a) in Chapter 4, where we verified
that the solutions approach the zero solution without solving the differential
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equation. Since this idea might provide a clue of how to pursue the stabilities
for nonlinear differential equations, we recall the main steps:

First, the existence and uniqueness of solutions is guaranteed. Then
define

V (t) =
1

2
[x21(t) + x22(t)]. (1.2)

The function V is related to the norm r(x) =
√
x21 + x22 of a solution

(x1(t), x2(t)), that is, the distance from (x1(t), x2(t)) to the origin (0, 0).
Then we take a derivative in t by plugging in the differential equation, and
obtain

V ′(t) ≤ αV (t) = −[−αV (t)], α < 0,

which enables us to verify that

V (t) → 0, t→ ∞.

Hence, we conclude that the solutions go to the origin (0, 0), or the origin
ϕ = (0, 0) is asymptotically stable.

The most important aspect of this approach is that it is done without
solving the differential equation explicitly. The idea of deriving qualitative
properties without solving differential equations explicitly was introduced
by the independent work of two famous mathematicians, Liapunov [1892]
and Poincaré [1892], at the turn of the 20th century when they pioneered
the modern qualitative theory of differential equations. Their ideas con-
tinue to inspire new research in the area of differential equations and other
related areas. In this chapter, we will study some of their most important
work concerning stability properties for some linear and nonlinear differential
equations in ℜn, n ≥ 1.

We point out that in [0,∞) × ℜ2, a center and a stable spiral point for
equations in ℜ2 are shown in Figures 5.1 and 5.2.

For a center in Figure 5.1, for all t ≥ 0, the distance from a point on
the circle to the origin (0, 0) in ℜ2 (not the origin in ℜ3), or the t-axis, is a
constant (radius of the circle). However, for a stable spiral point in Figure
5.2, the distance from a point on the curve to the origin (0, 0) in ℜ2 (or the
t-axis) goes to zero. Accordingly, if we draw these in a plane and use the
vertical direction, x, to denote the distance of a solution to the zero solution
(t-axis, when the zero is a solution), then a center and a stable spiral point
will be shown in Figures 5.3 and 5.4 in the (t, x) plane.
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t

x 1x 2

Figure 5.1: A center in [0, ∞)×ℜ2

t

x 1
x 2

Figure 5.2: A spiral point in [0, ∞)×ℜ2

Now we make the following definitions regarding stabilities in the
sense of Liapunov. This extends the related studies for autonomous
differential equations in ℜ2 in Chapter 4. Recall that for a vector x =
[x1, x2, · · · , xn]T in ℜn, |x| =

∑n
i=1 |xi|, and for an n × n matrix A =

[aij ], |A| =
∑n

i,j=1 |aij |.

Definition 5.1.1 Let ϕ(t) = ϕ(t, tϕ) be a solution of Eq. (1.1) on [tϕ,∞),
tϕ ≥ 0.

(a). ϕ(t, tϕ) is said to be stable if for any t0 ≥ tϕ and any ε > 0, there
exists a δ = δ(ε, t0) > 0, (typically δ(ε, t0) ≤ ε), such that |x0 −
ϕ(t0)| ≤ δ implies |x(t, t0, x0)− ϕ(t)| ≤ ε for t ≥ t0.

(b). ϕ(t, tϕ) is said to be uniformly stable if it is stable and δ in the
definition of “stable” can be chosen to be independent of t0 ≥ tϕ. That
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t

x

Figure 5.3: A center in the (t, x) plane

t

x

Figure 5.4: A spiral point in the (t, x) plane

is, for any ε > 0, there exists a δ = δ(ε) > 0, (δ(ε) ≤ ε, ) such that
t0 ≥ tϕ and |x0 − ϕ(t0)| ≤ δ imply |x(t, t0, x0)− ϕ(t)| ≤ ε for t ≥ t0.

(c). ϕ(t, tϕ) is said to be asymptotically stable if it is stable and in
addition, for any t0 ≥ tϕ, there exists an r(t0) > 0 such that |x0 −
ϕ(t0)| ≤ r(t0) implies limt→∞ |x(t, t0, x0)− ϕ(t)| = 0.

(d). ϕ(t, tϕ) is said to be uniformly asymptotically stable if it is uni-
formly stable and in addition, there exists an r > 0 independent of t0 ≥
tϕ, such that |x0 − ϕ(t0)| ≤ r implies limt→∞ |x(t, t0, x0) − ϕ(t)| = 0
uniformly for t0 ≥ tϕ in the following sense: For any ε > 0, there
exists a T = T (ε) > 0 such that {t0 ≥ tϕ, |x0 − ϕ(t0)| ≤ r, t ≥ t0 + T}
imply |x(t, t0, x0)− ϕ(t)| ≤ ε.

(e). ϕ(t, tϕ) is said to be unstable if it is not stable.
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(f). In particular, if ϕ(t) = 0, t ≥ 0, is a solution of Eq. (1.1), or equiv-
alently when f(t, 0) = 0, t ≥ 0, then the above give the corresponding
definitions concerning stability properties for the zero solution ϕ = 0.

Definitions concerning other stabilities can be found in reference books,
such as Yoshizawa [1966] and Burton [1985]. But here, we concentrate on
the above four types because they are the most important ones. Note the
distinction between the notions of stability and uniform stability. If ϕ is
uniformly stable, then δ = δ(ε) in the definition is such that if a solution
x differs from ϕ initially by at most δ(ε), then x will stay in the “ε-tube”
enclosing ϕ for the future time, no matter where the solution x initially
started. However, if ϕ is only stable, then δ = δ(ε, t0) in the definition is
good only for the solutions started initially at t0. That is, if a solution x
started at t0 differs from ϕ initially by at most δ(ε, t0), then x will stay
in the “ε-tube” enclosing ϕ for future time; but, another solution y started
from a different time than t0 may initially differ from ϕ by at most δ(ε, t0)
and then leaves the “ε-tube” enclosing ϕ at some later times. See Figures
5.5 and 5.6. Examples can be found in reference books, such as Yoshizawa
[1966] and Burton [1985] that indicate the notions in Definition 5.1.1 are not
equivalent. Examples are also given in this book.

φ

t

x

t
0

tφ

ε ε-tube

Figure 5.5: Differences among stabilities

However, an inspection of a center or a stable spiral point in Chapter 4 for
planar autonomous differential equations reveals that the constant solution
ϕ = [0, 0]T is not only stable or asymptotically stable, but also “uniformly”
stable or “uniformly” asymptotically stable. The following result says that
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Figure 5.6: Differences among stabilities

the same conclusion is also true for general autonomous or periodic differ-
ential equations. Its proof will be given in Chapter 9.

Theorem 5.1.2 Assume that f in Eq. (1.1) is autonomous or periodic in
t (that is, there is a constant T > 0 such that f(t, x) = f(t + T, x)), and
satisfies a Lipschitz condition (or weak or local Lipschitz) with respect to x
on D. Assume further that ϕ(t) = 0, t ≥ 0, is a solution of Eq. (1.1). If
ϕ = 0 is stable, then it is uniformly stable. If ϕ = 0 is asymptotically stable,
then it is uniformly asymptotically stable. ♠

From Definition 5.1.1, it seems that it is a little easier to work with the
zero solution when studying stability properties. We verify next that this
can be accomplished: If ϕ(t) is a solution of Eq. (1.1), then, to talk about
the stability properties of ϕ(t) is to talk about the smallness of |y(t)− ϕ(t)|
with y being another solution of Eq. (1.1). If we define x(t) = y(t) − ϕ(t),
then it is the same as the smallness of |x(t)| = |x(t)− 0|, or how close x(t) is
to the zero. Now, let ϕ(t) and y(t) be solutions of Eq. (1.1), then we have,
for x(t) = y(t)− ϕ(t),

x′(t) = y′(t)− ϕ′(t) = f(t, y(t))− f(t, ϕ(t))

= f(t, x(t) + ϕ(t))− f(t, ϕ(t)). (1.3)

Thus, for the solution ϕ of Eq. (1.1), if we define

f(t, x) = f(t, x+ ϕ(t))− f(t, ϕ(t)),
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then, with y a solution of Eq. (1.1), we find that x(t) = y(t) − ϕ(t) is a
solution of

x′(t) = f(t, x(t)). (1.4)

Moreover, since f(t, 0) = f(t, ϕ(t)) − f(t, ϕ(t)) = 0, the zero is indeed a
solution of (1.4), and this zero solution corresponds to the solution ϕ(t) of Eq.
(1.1), and the stabilities for ϕ(t) of Eq. (1.1) is equivalent to the stabilities for
the zero solution of Eq. (1.4). Therefore, in most cases, we can simply study
stability properties of the zero solution for Eq. (1.1). Consequently, we need
to assume f(t, 0) = 0 when we do so. This is why in the assumption (A) for
Eq. (1.1) we ask the domain Q ⊂ ℜn to contain the zero vector, because we
will state results for the zero solution. Note that the above transformation in
(1.3) may change an autonomous differential equation into a nonautonomous
differential equation, unless ϕ(t) is a constant.

This chapter is organized as follows: In Section 2, we study stabilities for
linear differential equations with constant coefficients and show that eigen-
values of the coefficient matrices determine stability properties. In Section
3, stabilities of linear equations with linear or nonlinear perturbations are
studied using the variation of parameters formula and Gronwall’s inequality.
The results include some planar autonomous nonlinear differential equations
studied in Chapter 4 as special cases. Therefore, some unproven results in
Chapter 4 can now get a partial proof. In Section 4, linear periodic differ-
ential equations are treated. The Floquet theory from Chapter 3 is used
to transform linear periodic equations into linear equations with constant
coefficients and the results from Section 2 can then be applied. In Section
5, we introduce Liapunov’s method for autonomous nonlinear differential
equations and prove their stability properties under the assumption that
there exist appropriate Liapunov functions. Thus, we can obtain stabilities
without explicitly solving differential equations. In Section 6, we provide ex-
amples to demonstrate how the Liapunov theory is applied by constructing
Liapunov functions in specific applications. Liapunov’s method for general
(nonautonomous) differential equations will be given in Chapter 9.

Exercises 5.1

1. Determine the stabilities of ϕ = (0, 0) for x′(t) = Ax(t), where

(a) A =

[
1 3
3 1

]
; (b) A =

[
1 3
0 −2

]
; (c) A =

[
1 −3
1 1

]
;
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(d) A =

[
1 −3
0 1

]
.

2. Verify directly (using the definition) that if constant a > 0, then the
zero solution of the scalar equation x′ = −ax is uniformly asymptoti-
cally stable. Discuss the case when a = 0.

3. Discuss the stabilities of the given solutions of the following scalar
equations.

(a). x′ = 0, ϕ(t) = 2. (b). x′ = x, ϕ(t) = 0; ϕ(t) = et.

(c). x′ = −x, ϕ(t) = 0; ϕ(t) = e−t.

4. Denote by x(t, t0, x0) the solutions of some system for which ϕ = 0 is
a solution. Let f(t) be a positive function. Show that |x(t, t0, x0)| ≤
f(t0)|x0|, t ≥ t0 ≥ 0, implies that ϕ = 0 is stable.

5. Denote by x(t, t0, x0) the solutions of some system for which ϕ = 0 is a
solution. Let C > 0 be a constant. Show that |x(t, t0, x0)| ≤ C|x0|, t ≥
t0 ≥ 0, implies that ϕ = 0 is uniformly stable.

6. Denote by x(t, t0, x0) the solutions of some system for which ϕ = 0 is
a solution. Let f(t, s) be a positive function such that for any fixed
t0, f(t, t0) is bounded for t ≥ t0 and f(t, t0) → 0 as t → ∞. Show
that |x(t, t0, x0)| ≤ f(t, t0)|x0|, t ≥ t0 ≥ 0, implies that ϕ = 0 is
asymptotically stable.

7. Denote by x(t, t0, x0) the solutions of some system for which ϕ = 0
is a solution. Let α > 0 and C > 0 be constants. Show that
|x(t, t0, x0)| ≤ C|x0|e−α(t−t0), t ≥ t0 ≥ 0, implies that ϕ = 0 is uni-
formly asymptotically stable.

8. Rewrite x(n) = f(t, x, x′, x′′, · · · , x(n−1)) as a system of first-order dif-
ferential equations and then define the corresponding stabilities.

5.2 Linear Equations with Constant Coefficients

In this section, we study stabilities for the linear differential equation with
constant coefficients,

x′(t) = Ax(t) + f(t), x(t0) = x0, t ≥ t0 ≥ 0, x ∈ ℜn, (2.1)

where f(t) is continuous on ℜ+ = [0,∞).
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Using the results of Chapter 3, we know that the unique solution of Eq.
(2.1) passing through (t0, x0) is given by the variation of parameters formula

x(t) = e(t−t0)A
[
x0 +

∫ t

t0
{e(s−t0)A}−1f(s)ds

]
= e(t−t0)Ax0 +

∫ t

t0
e(t−s)Af(s)ds, t ≥ t0, (2.2)

where the fundamental matrix solution of Eq. (2.1) (when f = 0) is given
by U(t, t0) = e(t−t0)A.

We first study the linear homogeneous differential equation

x′(t) = Ax(t), (2.3)

where the unique solution is given by x(t) = e(t−t0)Ax0 for the initial data
(t0, x0). Note that now ϕ = 0 is a solution of Eq. (2.3).

Recall from the Jordan canonical form theorem in Chapter 3, there exists
a nonsingular constant matrix P (may be complex valued) such that

e(t−t0)A=Pe(t−t0)JP−1, e(t−t0)J = diag(e(t−t0)J1 , e(t−t0)J2 , · · · , e(t−t0)Js), (2.4)

with each square matrix e(t−t0)Ji given by

(eλi(t−t0))



1 t− t0
(t−t0)2

2!
(t−t0)3

3! . . . . (t−t0)mi−1

(mi−1)!

0 1 t− t0
(t−t0)2

2! . . . . .
0 0 1 . . . . . .
. . . . . . . . .
. . . . . . . . .

. . . . . . . (t−t0)2

2!
(t−t0)3

3!

. . . . . . . t− t0
(t−t0)2

2!
0 0 0 . . . . 1 t− t0
0 0 0 . . . . 0 1


. (2.5)

Now, Eq. (2.3) is autonomous, so based on Theorem 5.1.2, stability
is equivalent to uniform stability, and asymptotic stability is equivalent to
uniform asymptotic stability. Also, using Theorem 3.3.11 in Chapter 3, we
find that eigenvalues can be used to determine stability properties. For
example, for the scalar linear differential equation

x′(t) = ax(t),
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the constant a is the eigenvalue and solutions are given by x(t) = x(0)eat.
Then ϕ = 0 of the equation is stable if a = 0; asymptotically stable if a < 0;
and unstable if a > 0. Similar results for equations in ℜn are given in the
following theorem. We provide some details in its proof in order to assist
you understand different types of stabilities and become familiar with the
proofs using ε− δ format.

Theorem 5.2.1 Let λ be a complex number and denote by R(λ) the real
part of λ, and let ϕ = 0 be the zero solution of Eq. (2.3).

(A). The following statements are equivalent:

(1). ϕ = 0 is stable or uniformly stable;

(2). For each eigenvalue λ of the matrix A, either R(λ) < 0, or R(λ) =
0 but in this case λ appears only in matrices Ji (in the Jordan
canonical form for A) such that Ji is a 1× 1 matrix;

(3). There is an (independent or generic) constant C > 1 such that

|etA| ≤ C, 0 ≤ t <∞. (2.6)

(B). The following statements are equivalent:

(1). ϕ = 0 is asymptotically stable or uniformly asymptotically stable;

(2). Each eigenvalue of matrix A has a negative real part;

(3). There are (independent or generic) constants C > 1 and α > 0
such that

|etA| ≤ Ce−αt, 0 ≤ t <∞. (2.7)

(C). The following statements are equivalent:

(1). ϕ = 0 is unstable;

(2). There is an eigenvalue λ of matrix A with R(λ) = 0 and λ appears
in a matrix Ji that is at least 2× 2;

(3). There is an eigenvalue of matrix A with a positive real part.

Proof. (A): The equivalency between (2) and (3) is from Theorem 3.3.11
in Chapter 3.

(3) ⇒ (1): Suppose that (3) is true, then any solution of Eq. (2.3)
satisfies |x(t, t0, x0)| = |e(t−t0)Ax0| ≤ C|x0|, t ≥ t0. For any t0 ≥ 0 and
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any ε > 0, we can choose δ = δ(ε, t0) = ε
C such that |x0| ≤ δ implies

|x(t, t0, x0)| ≤ C|x0| ≤ Cδ = ε, proving the stability of ϕ = 0.

(1) ⇒ (3): Suppose that ϕ = 0 is stable, then for t0 = 0 and ε = 1,
there exists a δ = δ(ε, t0) = δ(1, 0) > 0, (δ(1, 0) < 1, ) such that |x0| ≤ δ
implies |x(t, 0, x0)| = |etAx0| ≤ ε = 1 for t ≥ 0. Now take x0 = δei, where
ei, 1, 2, · · · , n, form the standard unit basis for ℜn. Then |x0| = |δei| = δ
and hence |etAδei| ≤ 1 or |etAei| ≤ 1

δ . But etAei is the ith column of etA,
therefore

|etA| ≤ n(
1

δ
)
def
= C, t ≥ 0,

where C > 1 is an independent constant.

(B): (1) ⇒ (2): Suppose that ϕ = 0 is asymptotically stable, then for
t0=0, there exists an r(0)>0 such that |x0|≤r(0) implies limt→∞|x(t, 0, x0)|
= limt→∞ |etAx0| = 0. Similar to the proof of part (A), we find that every
entry in etA goes to zero, thus limt→∞ |etA| = 0. Then from Theorem 3.3.11,
we know that (2) is true.

(2) ⇒ (3): Suppose that each eigenvalue of matrix A has a negative real
part, then using the structure of etA given in (2.4) and (2.5), if we let −2α be
the largest negative real part, then |eλt| ≤ e−2αt, t ≥ 0, for any eigenvalue
λ of the matrix A. Hence, |etA| ≤ P (t)e−2αt for a polynomial P (t) in t
of degree less than n. Now, l’Hôpital’s rule can be applied to verify that
P (t)e−αt is bounded for t ≥ 0. Thus there is an independent constant C > 1
such that |etA| ≤ Ce−αt, t ≥ 0.

(3) ⇒ (1): Suppose that (3) is true, then |etA| is bounded and hence
from part (A) we have just proved, ϕ = 0 is stable. Next, |x(t, t0, x0)| =
|e(t−t0)Ax0| ≤ Ce−α(t−t0)|x0|. Thus for any t0 ≥ 0, we can choose r(t0) = 1
such that |x0| ≤ r(t0) implies |x(t, t0, x0)| ≤ Ce−α(t−t0) → 0 as t→ ∞. This
proves the asymptotic stability of ϕ = 0.

(C): See an exercise.

This completes the proof of the theorem. ♠

Therefore, for linear differential equations with constant coefficients, sta-
bilities are completely determined by eigenvalues of the coefficient matrices.
Let’s look at some examples.

Example 5.2.2 Consider the following matrices

A1 =

[
0 0
0 0

]
, A2 =

[
0 1
0 0

]
, A3 =

[
−1 1
0 −1

]
, A4 =

[
−1 0
0 −1

]
.
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The matrix A1 has a repeated eigenvalue 0, and the corresponding J0 in

the Jordan canonical form are two 1×1 matrices, or

[
0 0
0 0

]
=

[
J0 0
0 J0

]
,

thus the zero solution of the linear equation with the coefficient matrix A1

is uniformly stable. (In fact, the solutions now are constants, hence the
zero solution is uniformly stable.) The matrix A2 has a repeated eigenvalue
0, and the corresponding J0 in the Jordan canonical form is A2 itself, a
2 × 2 matrix, thus the zero solution is unstable. (Now, the solutions are
{x(t) = x0 + y0t, y(t) = y0}, hence the zero solution is unstable.) For
the matrix A3 or A4, the zero solution is uniformly asymptotically stable
because the eigenvalues are all negative. For example, for the matrix A3,
the solutions are {x(t) = x0e

−t + y0te
−t, y(t) = y0e

−t}, so that y(t) → 0 as
t → ∞, and l’Hôpital’s rule implies that x(t) → 0 as t → ∞. Note that for
the matrix A3 or A4, the origin is a stable node studied in Chapter 4. ♠

Theorem 5.2.1 says that stability properties of Eq. (2.3) can be reduced
to the signs of the real parts of eigenvalues of the matrix A. To determine
these signs, we present an important and commonly used criterion. Its proof
can be found in reference books such as Marden [1966].

Theorem 5.2.3 (Routh-Hurwitz criterion) Let P (λ) = λn + a1λ
n−1 +

· · ·+ an−1λ+ an be a polynomial with real coefficients, and define

D1 = a1, D2 =

∣∣∣∣∣ a1 a3
1 a2

∣∣∣∣∣ , Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 a7 . . . . a2k−1

1 a2 a4 a6 . . . . a2k−2

0 a1 a3 a5 . . . . a2k−3

0 1 a2 a4 . . . . a2k−4

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . ak+1

0 . . . . . . . ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

for k = 3, 4, · · · , n, where aj = 0 if j > n. If Dk > 0 for k = 1, 2, · · · , n,
then each solution of P (λ) = 0 has a negative real part. ♠

The following matrices demonstrate how the Routh-Hurwitz criterion is
applied.
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Example 5.2.4 Consider

A =

 −2 0 0
0 −1 1
0 0 −1

 , λE −A =

 λ+ 2 0 0
0 λ+ 1 −1
0 0 λ+ 1

 . (2.8)

The eigenvalues for matrix A are −2,−1,−1, which are negative. To check
it out with the Routh-Hurwitz criterion, we look at

det(λE −A) = λ3 + 4λ2 + 5λ+ 2

(since the coefficient of λn in P (λ) is 1, we use det(λE − A) instead of
det(A− λE)). Hence, D1 = a1 = 4,

D2 =

∣∣∣∣∣ a1 a3
1 a2

∣∣∣∣∣ =
∣∣∣∣∣ 4 2
1 5

∣∣∣∣∣ = 18, D3 =

∣∣∣∣∣∣∣
a1 a3 a5
1 a2 a4
0 a1 a3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
4 2 0
1 5 0
0 4 2

∣∣∣∣∣∣∣ = 36,

thus, we have Di > 0, i = 1, 2, 3; therefore, the Routh-Hurwitz criterion
applies. ♠

Example 5.2.5 Consider

A =

 2 0 0
0 −1 1
0 0 −1

 , λE −A =

 λ− 2 0 0
0 λ+ 1 −1
0 0 λ+ 1

 . (2.9)

Now, det(λE−A) = λ3−3λ−2, then D1 = a1 = 0, thus the Routh-Hurwitz
criterion does not apply. In fact, 2 is a positive eigenvalue. ♠

For the linear nonhomogeneous differential equation (2.1) with f ̸= 0,
the zero is not a solution of Eq. (2.1). Now we look at stabilities of nonzero
solutions of Eq. (2.1), which can be reduced to those of the zero solution of
Eq. (2.3) because of the affine structure of Eq. (2.1). In other words, the
solution set of Eq. (2.1) is some particular solution of Eq. (2.1) plus any
solution of Eq. (2.3), or equivalently, the difference of any two solutions of
Eq. (2.1) is a solution of Eq. (2.3).

Theorem 5.2.6 Assume that f(t) is continuous on ℜ+. The zero solution
of Eq. (2.3) is stable if and only if every solution of Eq. (2.1) is stable.
The same statement is true for uniform stability, asymptotic stability, and
uniform asymptotic stability.
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Proof. First, assume that the zero solution of Eq. (2.3) is stable. Let
ϕ(t, tϕ) be a solution of Eq. (2.1) on [tϕ, ∞), tϕ ≥ 0, and let x(t, t0, x0)
be another solution of Eq. (2.1) on [t0, ∞), t0 ≥ tϕ. Then on [t0, ∞),
y(t) = x(t)−ϕ(t) is a solution of Eq. (2.3). As the zero solution of Eq. (2.3)
is stable, for any t0 ≥ tϕ and any ε > 0, there exists a δ = δ(ε, t0) > 0, such
that |y(t0)| = |x0 − ϕ(t0)| ≤ δ(ε, t0) implies |y(t)| = |x(t, t0, x0)− ϕ(t)| ≤ ε
for t ≥ t0, proving that ϕ(t, tϕ) is stable for Eq. (2.1).

Next, assume that every solution of Eq. (2.1) is stable, and let ϕ(t) be
a stable solution of Eq. (2.1) on [0, ∞). If y(t, t0) is a solution of Eq. (2.3)
on [t0,∞), then x(t) = y(t) + ϕ(t) is a solution of Eq. (2.1) on [t0,∞),
and y(t) = x(t) − ϕ(t). Similar to the above, the description concerning
the stability of the solution ϕ(t) of Eq. (2.1) gives exactly the description
concerning the stability of the zero solution of Eq. (2.3). Other cases can
also be treated this way. ♠

Exercises 5.2

1. Prove Part (C) of Theorem 5.2.1.

2. Assume that all eigenvalues of the matrices A and B have negative real
parts. Show that the integral

∫∞
0 etACetBdt exists, and is a solution

of the matrix equation AX +XB = −C.

3. Use the Routh-Hurwitz criterion to determine the asymptotic stability

of the zero solution for X ′ =

 1 2 3
4 5 6
7 8 9

X.

4. Rewrite the following equations as systems and then use the Routh-
Hurwitz criterion to determine the asymptotic stability of the zero
solution.

(a) x′′ + 3x′ + 4x = 0.

(b) x′′ − 3x′ − 4x = 0.

(c) x(3) + 3x′′ + 4x = 0.

(d) x(4) + 5x′′ − 2x = 0.

5. Verify that the solution ϕ = 0 of X ′ =

[
−2 e4t

0 −2

]
X is unstable.



236 Chapter 5. Stability. Part I

Note that for any t ∈ ℜ, the eigenvalues of the coefficient matrix are
−2, which indicates that Theorem 5.2.1 does not apply when A(t) is
not a constant matrix.

6. Complete the proof of Theorem 5.2.6.

5.3 Perturbations on Linear Equations

In this section, we use the variation of parameters formula and Gronwall’s
inequality to derive stability properties for some perturbations on linear dif-
ferential equations. The idea is to use Gronwall’s inequality to estimate
solutions of the perturbed equations and then show, under certain condi-
tions, that small perturbations will not change the stability properties of the
original linear differential equations.

Theorem 5.3.1 If the zero solution of Eq. (2.3) is stable, and if the n× n
continuous matrix function B(t) satisfies

∫∞
0 |B(t)|dt < ∞, then the zero

solution of

x′(t) = Ax(t) +B(t)x(t) = [A+B(t)]x(t) (3.1)

is uniformly stable.

Proof. First, since B(t) is continuous, the existence and uniqueness for Eq.
(3.1) is guaranteed. Let x(t) be a solution of Eq. (3.1) and treat B(t)x(t) as
f(t) in Eq. (2.1), then x(t) is given by the variation of parameters formula

x(t) = e(t−t0)Ax(t0) +

∫ t

t0
e(t−s)AB(s)x(s)ds, t ≥ t0 ≥ 0. (3.2)

From Theorem 5.2.1, the uniform stability of the zero solution of Eq.
(2.3) implies that there is an (independent) constant C > 1 such that
|e(t−t0)A| ≤ C, 0 ≤ t0 ≤ t <∞. Therefore, we have

|x(t)| ≤ C|x(t0)|+
∫ t

t0
C|B(s)||x(s)|ds, t ≥ t0 ≥ 0. (3.3)

Now, Gronwall’s inequality implies that

|x(t)| ≤ C|x(t0)| exp
( ∫ t

t0
C|B(s)|ds

)
≤

{
C exp

( ∫ ∞

0
C|B(s)|ds

)}
|x(t0)|

def
= C1|x(t0)|, t ≥ t0 ≥ 0, (3.4)
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where C1 is an independent constant. This implies the uniform stability of
the zero solution for Eq. (3.1) because the proof of Theorem 5.2.1(A) can
be used. ♠

Theorem 5.3.1.a If the zero solution of Eq. (2.3) is stable, and if the
continuous function f(t, x) satisfies a weak Lipschitz condition with respect
to x and f(t, 0) = 0, which implies |f(t, x)| ≤ k(t)|x|, where k(t) is from the
weak Lipschitz condition. If

∫∞
0 k(t)dt <∞, then the zero solution of

x′(t) = Ax(t) + f(t, x(t)) (3.5)

is uniformly stable. ♠

When the zero solution of Eq. (2.3) is asymptotically stable, the condi-
tion on B(t) can be relaxed.

Theorem 5.3.2 If the zero solution of Eq. (2.3) is asymptotically stable,
and if the n× n continuous matrix function B(t) satisfies∫ t

t0
|B(s)|ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0, (3.6)

for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the zero solution of Eq. (3.1) is uniformly asymptotically
stable.

Proof. Similar to the beginning part in the proof of Theorem 5.3.1, any
solution of Eq. (3.1) is given by

x(t) = e(t−t0)Ax(t0) +

∫ t

t0
e(t−s)AB(s)x(s)ds, t ≥ t0 ≥ 0. (3.7)

From Theorem 5.2.1, the asymptotic stability of the zero solution of Eq.
(2.3) implies that there are (independent) constants C > 1 and α > 0 such
that |e(t−t0)A| ≤ Ce−α(t−t0). Therefore, we have

|x(t)| ≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)|B(s)||x(s)|ds, t ≥ t0 ≥ 0, (3.8)

or

|x(t)|eαt ≤ Ceαt0 |x(t0)|+
∫ t

t0
Ceαs|B(s)||x(s)|ds, t ≥ t0 ≥ 0. (3.9)
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Define u(t) = |x(t)|eαt, then u(t) satisfies

u(t) ≤ Cu(t0) +

∫ t

t0
C|B(s)|u(s)ds, t ≥ t0 ≥ 0, (3.10)

hence Gronwall’s inequality implies that

u(t) ≤ Cu(t0) exp
( ∫ t

t0
C|B(s)|ds

)
≤ Cu(t0) exp

(
C[m(t− t0) + r]

)
= Cu(t0)e

Cr exp
[
Cm(t− t0)

]
. (3.11)

This means

|x(t)| ≤ CeCr|x(t0)| exp
[
− (α− Cm)(t− t0)

]
. (3.12)

If we let m0 =
α
2C , then m ≤ m0 implies that

|x(t)| ≤ CeCr|x(t0)| exp
[
− 1

2
α(t− t0)

]
. (3.13)

This guarantees the uniform asymptotic stability of the zero solution for Eq.
(3.1) because the proof of Theorem 5.2.1(B) can be used. ♠

Theorem 5.3.2.a If the zero solution of Eq. (2.3) is asymptotically stable,
and if the continuous function f(t, x) satisfies a weak Lipschitz condition
with respect to x and f(t, 0) = 0, which implies |f(t, x)| ≤ k(t)|x|, where
k(t) is from the weak Lipschitz condition. If∫ t

t0
k(s)ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0, (3.14)

for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the zero solution of Eq. (3.5) is uniformly asymptotically
stable. ♠

The following result concerning uniform asymptotic stability with non-
linear perturbations can be used to explain certain results of Theorem 4.3.1
in Chapter 4.

Theorem 5.3.3 If the zero solution of Eq. (2.3) is asymptotically stable,
and if the continuous function f(t, x) satisfies a Lipschitz condition (or weak
or local Lipschitz) with respect to x on D, and

lim
x→0

|f(t, x)|
|x|

= 0, uniformly for t ∈ [0,∞), (3.15)
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then the zero solution of

x′(t) = Ax(t) + f(t, x(t)) (3.16)

is uniformly asymptotically stable.

Proof. Now, the conditions guarantee the existence and uniqueness for Eq.
(3.16), and they also imply that the zero is a solution of Eq. (3.16). By the
variation of parameters formula, any solution of Eq. (3.16) is given by

x(t) = e(t−t0)Ax(t0) +

∫ t

t0
e(t−s)Af(s, x(s))ds, t ≥ t0 ≥ 0. (3.17)

From Theorem 5.2.1, the asymptotic stability of the zero solution of Eq.
(2.3) implies that there are (independent) constants C > 1 and α > 0 such
that |e(t−t0)A| ≤ Ce−α(t−t0). From (3.15), for any η with 0 < η < α

C , there
is a ∆ = ∆(η) > 0 such that if |x| ≤ ∆, then |f(t, x)| ≤ η|x| uniformly for
t ≥ 0.

We first verify that if |x(t0)| ≤ ∆
C , then |x(t)| < ∆ for t ≥ t0. If this is

not true, then as C > 1 and |x(t0)| ≤ ∆
C < ∆, there is a t1 > t0 such that

|x(t)| < ∆ for t ∈ [t0, t1) and |x(t1)| = ∆. Then |f(t, x(t))| ≤ η|x(t)| for
t ∈ [t0, t1]. Thus, for t ∈ [t0, t1], we have, from (3.17),

|x(t)| ≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)|f(s, x(s))|ds

≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)η|x(s)|ds. (3.18)

The following is similar to the final part in the proof of Theorem 5.3.2,

|x(t)| ≤ C|x(t0)| exp
[
− (α− Cη)(t− t0)

]
, t ∈ [t0, t1]. (3.19)

However,

|x(t1)| ≤ C|x(t0)| exp
[
− (α− Cη)(t1 − t0)

]
≤ ∆exp

[
− (α− Cη)(t1 − t0)

]
< ∆, (3.20)

contradicting |x(t1)| = ∆. Thus |x(t0)| ≤ ∆
C implies |x(t)| < ∆ for t ≥ t0.

Consequently, if |x(t0)| ≤ ∆
C , then for t ≥ t0, one has |f(t, x(t))| ≤ η|x(t)|.

Now, similar to (3.18) and (3.19), we have, for t ≥ t0 ≥ 0,

|x(t)| ≤ C|x(t0)| exp
[
− (α− Cη)(t− t0)

]
, if |x(t0)| ≤

∆

C
. (3.21)
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To prove the uniform asymptotic stability of the zero solution for Eq.
(3.16), note that ∆ and C are independent constants, thus for any ε > 0,
we can choose δ = min{ ε

C ,
∆
C } = δ(ε) such that |x0| = |x(t0)| ≤ δ and t ≥ t0

imply

|x(t)| ≤ C|x(t0)| exp
[
− (α− Cη)(t− t0)

]
≤ C|x(t0)| ≤ Cδ ≤ ε,

proving the uniform stability of the zero solution.

Next, to prove the uniform asymptotic stability of the zero solution, let
r = ∆

C . (This is needed for (3.21) to be valid; otherwise, the rest of the proof
is not required because the proof of Theorem 5.2.1(B) can be used.) Now,

for any 0 < ε < ∆, solve T = T (ε) > 0 from ∆exp
[
− (α−Cη)T

]
= ε; then

from (3.21), we find that {|x0| ≤ r, t0 ≥ 0, t ≥ t0 + T} imply

|x(t, t0, x0)| ≤ C|x(t0)| exp
[
− (α− Cη)(t− t0)

]
≤ Cr exp

[
− (α− Cη)T

]
= ∆exp

[
− (α− Cη)T

]
= ε,

proving the uniform asymptotic stability of the zero solution for Eq. (3.16).

♠

Theorem 5.3.3.a In Theorem 5.3.3, the condition (3.15) can be relaxed to
|f(t, x)| ≤ η|x| with 0 < η < α

C , where α and C are from Theorem 5.2.1.

Remark 5.3.4 Note that from Chapter 2, |x| =
∑n

i=1 |xi| is equivalent to

r(x) =
√
x21 + x22 + · · ·+ x2n. Therefore, when f is autonomous, the con-

dition (3.4) in the Hypothesis (H) in Section 3 of Chapter 4 (concerning
perturbations given by εi(x1, x2) on linear equations in ℜ2) is equivalent
to the condition (3.15). Therefore, Theorem 5.3.3 explains why Theorem
4.3.1 in Chapter 4 is true, for example, why stable spiral points and sta-
ble nodes for linear differential equations in ℜ2 are preserved under small
perturbations. ♠

In the next example, we will analyze an equation with details and find
the parameters such as ε, δ, r, and T in the definitions of stabilities.

Example 5.3.5 Consider the scalar differential equation

x′(t) = −x+ x2,
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where f(t, x) = x2 satisfies the condition (3.15), thus Theorem 5.3.3 can
be applied to obtain the uniform asymptotic stability of the zero solution.
To see more details, let’s verify this result directly. Note that now x = 0
and x = 1 are constant solutions. For other solutions, since the equation is
autonomous, we only need to consider the solutions starting at 0. They are
given by

|1− 1

x(t)
| = et+c, t ≥ 0,

for some constant c. Now, for t ≥ 0, either x(t) > 1, or 0 < x(t) < 1, or
x(t) < 0. Analyzing the three cases, we obtain

x(t, 0, x0) =
[
1 +

1− x0
x0

et
]−1

, t ≥ 0, (x0 ̸= 0, x0 ̸= 1). (3.22)

If x0 > 1, then x(t) exists on a finite interval [0, ln x0
x0−1), and x(t) → ∞

as t ↗ ln x0
x0−1 . If 0 < x0 < 1, then x(t) exists on [0,∞) and x(t) ↘ 0 as

t → ∞. Finally, if x0 < 0, then x(t, 0, x0) exists on [0,∞) and x(t) ↗ 0 as
t→ ∞. See Figure 5.7.

ln[x
0
/(x

0
-1)] t

x =0

x =1
1

x

Figure 5.7: Solutions of x′(t) = −x+ x2

Next, let’s find the parameters such as δ(ε), r, and T (ε) in the definition
of uniform asymptotic stability. From Figure 5.7, we see that the solutions
are monotone, thus for 0 < ε < 1, we can choose δ(ε) = ε to get the uniform
stability of the zero solution. For the r in the uniform asymptotic stability
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of the zero solution, we take it to be a constant in (12 , 1). Then for 0 < ε < 1,
we need to find T = T (ε) > 0 such that {|x0| ≤ r, t ≥ T} imply

|x(t, 0, x0)| = |
[
1 +

1− x0
x0

et
]−1

| ≤ ε, t ≥ T. (3.23)

This can be done as follows: For 0 < x0 ≤ r < 1, (3.23) is true if(1
ε
− 1

) x0
1− x0

≤ et, t ≥ T. (3.24)

Now, since 0 < x0 ≤ r < 1, we have(1
ε
− 1

) x0
1− x0

≤
(1
ε
+ 1

) r

1− r
, (3.25)

where r
1−r > 1 since r ∈ (12 , 1). Thus, we can choose T = T (ε) > 0 from

(1ε + 1) r
1−r = eT , that is, we can define

T
def
= ln

{
(
1

ε
+ 1)

r

1− r

}
= T (ε) > 0 (3.26)

to guarantee (3.24). Hence (3.23) is true if 0 < x0 ≤ r < 1. When −r ≤
x0 < 0, the same can be done, and we leave it as an exercise. Therefore,
we have found the parameters δ(ε), r, and T (ε) for the zero solution to be
uniformly asymptotically stable. ♠

Remark 5.3.6 From the analysis of Example 5.3.5, we find that the stabil-
ity of the zero solution is a local property about the origin. That is, we only
look at the solutions with small initial values. The solutions with “large”
initial values could behave differently. For example, the solutions in Example
5.3.5 with x0 > 1 actually blow up (approaching ∞) at finite times. ♠

Exercises 5.3

1. Consider x′(t) = Ax(t)+ f(t) where all eigenvalues of A have negative
real parts, f is continuous, and f(t) → 0 as t→ ∞. Show that for any
solution x(t), x(t) → 0 as t→ ∞.

2. Consider x′(t) = Ax(t) + B(t)x(t) where all eigenvalues of A have
negative real parts, B is continuous and B(t) → 0 as t → ∞. Show
that the zero solution is asymptotically stable.
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3. Assume that all eigenvalues of A have negative real parts. Prove that
there exists a constant η > 0 such that if f(t, x) is continuous and
satisfies a Lipschitz condition and |f(t, x)| ≤ η|x| for all (t, x), then
the zero is a solution of x′(t) = Ax(t) + f(t, x(t)) and is uniformly
asymptotically stable.

4. Prove Theorem 5.3.1.a.

5. Prove Theorem 5.3.2.a.

6. Prove Theorem 5.3.3.a.

7. Verify (3.22).

8. Verify that solutions of x′(t) = −x+ x2 in Example 5.3.5 are given in
Figure 5.7.

9. Verify for 0 < x0 ≤ r < 1 that (3.23) is true if (3.24) is true.

10. Verify (3.25).

11. Complete Example 5.3.5 by finding T = T (ε) > 0 when −r ≤ x0 < 0.

5.4 Linear Equations with Periodic Coefficients

In this section, we study stabilities of the linear periodic differential equation

x′(t) = A(t)x(t) + f(t), x(t0) = x0, t ≥ t0 ≥ 0, x ∈ ℜn, (4.1)

where A(t), f(t) are continuous on ℜ+ = [0,∞), and

A(t+ T ) = A(t), t ∈ ℜ+,

for some constant T > 0.
First, we study the linear periodic homogeneous differential equation

x′(t) = A(t)x(t). (4.2)

From the Floquet theory in Chapter 3, we know that there exists a
constant matrix C and a nonsingular continuous T -periodic matrix function
P (t) such that x(t) = P (t)y(t) transforms Eq. (4.2) into

y′(t) = Cy(t). (4.3)
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Since P (t) is periodic and continuous, it is bounded. Thus the transfor-
mation x(t) = P (t)y(t) reduces the stability properties of Eq. (4.2) to those
of Eq. (4.3), for which the results from Section 5.2 can be applied. Therefore
we have the following result based on Theorems 5.1.2 and 5.2.1. The proof
is left as an exercise.

Theorem 5.4.1 Let λ be a complex number and denote by R(λ) the real
part of λ. Let ϕ = 0 be the zero solution of Eq. (4.2) where A(t) is T -
periodic and let ψ = 0 be the zero solution of Eq. (4.3) where C is from the
Floquet theory.

(A). The following statements are equivalent:

(1). ϕ = 0 of Eq. (4.2) is stable or uniformly stable;

(1a). ψ = 0 of Eq. (4.3) is stable or uniformly stable;

(2). For each characteristic exponent λ (eigenvalue of matrix C), ei-
ther R(λ) < 0, or R(λ) = 0 but in this case λ appears only in
matrices Ji (Jordan canonical form for C) such that Ji is a 1× 1
matrix;

(2a). For each characteristic multiplier η (eigenvalue of matrix eTC),
either |η| < 1, or |η| = 1 but in this case η appears only in
matrices Ji (Jordan canonical form for eTC) such that Ji is a
1× 1 matrix;

(3). There is an (independent or generic) constant M > 1 such that

|etC | ≤M, 0 ≤ t <∞. (4.4)

(B). The following statements are equivalent:

(1). ϕ = 0 of Eq. (4.2) is asymptotically stable or uniformly asymp-
totically stable;

(1a). ψ = 0 of Eq. (4.3) is asymptotically stable or uniformly asymp-
totically stable;

(2). Each characteristic exponent (eigenvalue of matrix C) has a neg-
ative real part;

(2a). Each characteristic multiplier η (eigenvalue of matrix eTC) satis-
fies |η| < 1;
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(3). There are (independent or generic) constants M > 1 and α > 0
such that

|etC | ≤Me−αt, 0 ≤ t <∞. (4.5)

(C). The following statements are equivalent:

(1). ϕ = 0 of Eq. (4.2) is unstable;

(1a). ψ = 0 of Eq. (4.3) is unstable;

(2). There is a characteristic exponent λ (eigenvalue of matrix C) with
R(λ) = 0 and λ appears in a matrix Ji that is at least 2× 2;

(2a). There is a characteristic multiplier η (eigenvalue of matrix eTC)
with |η| = 1 and η appears in a matrix Ji that is at least 2× 2;

(3). There is a characteristic exponent with a positive real part;

(3a). There is a characteristic multiplier η with |η| > 1. ♠

Next, based on Theorem 5.1.2 and the results in the previous section con-
cerning perturbations on linear differential equations, we obtain the follow-
ing similar results for perturbations on linear periodic differential equations.
The proofs are left as exercises.

Theorem 5.4.2 Assume that A(t) is continuous and periodic on ℜ+. If
the zero solution of Eq. (4.2) is stable, and if the n × n continuous matrix
function B(t) satisfies

∫∞
0 |B(t)|dt <∞, then the zero solution of

x′(t) = A(t)x(t) +B(t)x(t) = [A(t) +B(t)]x(t) (4.6)

is uniformly stable. ♠

Theorem 5.4.3 Assume that A(t) is continuous and periodic on ℜ+. If the
zero solution of Eq. (4.2) is asymptotically stable, and if the n×n continuous
matrix function B(t) satisfies∫ t

t0
|B(s)|ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0,

for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the zero solution of Eq. (4.6) is uniformly asymptotically
stable. ♠
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Again, a result concerning nonlinear perturbations is also possible under
some conditions.

Theorem 5.4.4 Assume that A(t) is continuous and periodic on ℜ+. If
the zero solution of Eq. (4.2) is asymptotically stable, and if the continuous
function f(t, x) satisfies a Lipschitz condition (or weak or local Lipschitz)
with respect to x on D, and

lim
x→0

|f(t, x)|
|x|

= 0, uniformly for t ∈ [0,∞), (4.7)

then the zero solution of

x′(t) = A(t)x(t) + f(t, x(t)) (4.8)

is uniformly asymptotically stable. ♠

Next, we apply these results to Hill’s equation introduced in Section 4 of
Chapter 3.

Example 5.4.5 (Hill’s equation) Let ϕ(t) be real, continuous, and pe-
riodic, and consider the scalar linear periodic differential equation, called
Hill’s equation,

y′′(t) + ϕ(t)y(t) = 0, ϕ(t+ T ) = ϕ(t), t ∈ ℜ. (4.9)

Following Chapter 3, we define x = [y, y′]T , then Eq. (4.9) becomes x′(t) =
A(t)x(t), where

A(t) =

[
0 1

−ϕ(t) 0

]
. (4.10)

Let U(t, 0) be the fundamental matrix solution, then U(T, 0) = eTC ,
where C is from the Floquet theory. And we know from Chapter 3 that

η1η2 = det eTC = exp
( ∫ T

0
trA(s)ds

)
= 1, (4.11)

where η1 and η2 are the two characteristic multipliers of A(t) (eigenvalues
of matrix eTC). Hence

det[eTC − ηE] = (η − η1)(η − η2) = η2 − (tr[eTC ])η + 1

= η2 − (tr[U(T, 0)])η + 1. (4.12)
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Due to (4.11), we cannot have |η1| < 1 and |η2| < 1, thus the conditions
in Theorem 5.4.1(B) are not satisfied. Therefore, the zero solution of Hill’s
equation (4.9) is not asymptotically stable.

To determine other stability properties, let η1 = eλ1 and η2 = eλ2 , where
λ1 and λ2 are the eigenvalues of the matrix C (see spectral mapping theorem
3.3.14 in Chapter 3). From (4.11), we must have

λ1 = a+ bi, λ2 = −a+ b1i, a, b, b1 ∈ ℜ, (4.13)

where b ∈ [0, 2π] and b+ b1 = 2πk for some integer k.
If a ̸= 0, then the real part of λ1 or λ2 is positive. Thus from Theorem

5.4.1(C), the zero solution of Hill’s equation (4.9) is unstable.
If a = 0 and b ̸= 0, b ̸= π, b ̸= 2π, then η1 = ebi is a complex number.

From (4.12), which is a polynomial in η with real coefficients, η2 must be
the complex conjugate of η1 = ebi, that is, η2 = e−bi and η2 ̸= η1. Thus the
Jordan canonical form for eTC is[

η1 0
0 η2

]
=

[
ebi 0
0 e−bi

]
=

[
J1 0
0 J2

]
,

where J1 and J2 are all 1× 1 matrices and |η1| = |η2| = 1. Therefore, from
Theorem 5.4.1(A), the zero solution of Hill’s equation (4.9) is stable.

If a = 0 and b = 0 or b = 2π, then η1 = eλ1 = 1, and hence η2 = 1. Now,
if the Jordan canonical form for eTC is the identity matrix, then eTC itself
is the identity matrix. Therefore, if

eTC =

[
1 0
0 1

]
=

[
J1 0
0 J2

]
,

then the zero solution of Hill’s equation (4.9) is stable. Otherwise, if the
Jordan canonical form for eTC is[

1 1
0 1

]
= J1,

which is a 2 × 2 matrix, then the zero solution of Hill’s equation (4.9) is
unstable.

If a = 0 and b = π, then η1 = −1, and hence η2 = −1. Now, if the
Jordan canonical form for eTC is the negative of the identity matrix, then
eTC itself is the negative of the identity matrix. Therefore, if

eTC =

[
−1 0
0 −1

]
=

[
J1 0
0 J2

]
,
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then the zero solution of Hill’s equation (4.9) is stable. Otherwise, if the
Jordan canonical form for eTC is[

−1 1
0 −1

]
= J1,

then the zero solution of Hill’s equation (4.9) is unstable.

To summarize, we have, for λ1 and λ2 given in (4.13)

(A). The zero solution of Hill’s equation (4.9) is not asymptotically stable.

(B). The zero solution of Hill’s equation (4.9) is stable if and only if one of
the following cases occurs.

(1). a = 0 and b ̸= 0, b ̸= π, b ̸= 2π.

(2). a = 0 and b = 0 or b = 2π, (or η1 = η2 = 1), and

eTC =

[
1 0
0 1

]
.

(3). a = 0 and b = π, (or η1 = η2 = −1), and

eTC =

[
−1 0
0 −1

]
. ♠ (4.14)

The above is an analysis of stabilities for Hill’s equation (4.9). We point
out that descriptions of stabilities for Hill’s equation (4.9) using other quan-
tities are also possible. For example, one could use tr[U(T, 0)] and obtain,
for λ1 and λ2 given in (4.13),

tr[U(T, 0)] = η1 + η2 = eλ1 + eλ2

= ea(cos b+ i sin b) + e−a(cos b1 + i sin b1)

= ea(cos b+ i sin b) + e−a(cos b− i sin b)

= [ea + e−a] cos b+ i[ea − e−a] sin b. (4.15)

Since tr[U(T, 0)] is real, we get{
[ea − e−a] sin b = 0,
tr[U(T, 0)] = [ea + e−a] cos b.

(4.16)
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Then, we can verify (see an exercise) that
a ̸= 0 if and only if |tr[U(T, 0)]| > 2.
a = 0 and b ̸= 0, b ̸= π, b ̸= 2π if and only if |tr[U(T, 0)]| < 2.
a = 0 and b = 0 or b = 2π if and only if tr[U(T, 0)] = 2.
a = 0 and b = π if and only if tr[U(T, 0)] = −2.

(4.17)

Therefore, the zero solution of Hill’s equation (4.9) is stable if and only
if one of the following cases occurs.

(1). |tr[U(T, 0)]| < 2.

(2). tr[U(T, 0)] = 2, (or η1 = η2 = 1), and

eTC =

[
1 0
0 1

]
.

(3). tr[U(T, 0)] = −2, (or η1 = η2 = −1), and

eTC =

[
−1 0
0 −1

]
.

Exercises 5.4

1. Prove Theorem 5.4.1.

2. Prove Theorem 5.4.2.

3. Prove Theorem 5.4.3.

4. Prove Theorem 5.4.4.

5. Assume that A(t + T ) = A(t) for some constant T > 0 and that all
solutions of x′(t) = A(t)x(t) go to zero as t → ∞. Prove that there
exists a constant η > 0 such that if B(t) is continuous and satisfies
|B(t)| ≤ η for t ≥ 0, then all solutions of x′(t) = A(t)x(t) + B(t)x(t)
go to zero as t→ ∞.

6. Prove (4.17) for Hill’s equation in Example 5.4.5.
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5.5 Liapunov’s Method for Autonomous Equations

In this section, we study stabilities for the autonomous nonlinear differential
equation

x′(t) = f(x(t)), or x′ = f(x), (5.1)

in D = [0,∞) × Q, where Q ⊂ ℜn is a domain containing the zero vector.
(Results for the zero solution will be stated again. Therefore we assume that
Q ⊂ ℜn contains the zero vector.) We also assume that for any (t0, x0) ∈ D,
Eq. (5.1) has a unique solution x(t, t0, x0) existing on [t0, ∞) with x(t0) =
x0.

Since solutions of Eq. (5.1) cannot generally be found or written out by
formulas, and the method using eigenvalues for linear differential equations
is not applicable either, we exploit some different approaches than those for
linear differential equations.

To begin the study of autonomous nonlinear differential equations, let’s
start with scalar cases, where the planar geometry can suggest and interpret
the results and assist us understand the subjects. The study of scalar differ-
ential equations may also provide a direction for us to pursue for differential
equations in ℜn, n ≥ 1. Therefore, we assume that f : ℜ → ℜ for now.
Based on the analysis of a logistic equation in Chapter 1, we find that the
signs of f can be used to determine the flows of solutions on the x-axis. For
example, when f is shown in Figure 5.8, we get x′ = f(x) < 0 for x > 0
and x′ = f(x) > 0 for x < 0. Hence a solution x decreases if x > 0 and
increases if x < 0. Therefore, the solutions flow to the zero on the x-axis, as
shown in the second picture of Figure 5.8. Accordingly, the zero solution is
asymptotically stable.

Another way to look at this situation is given in the following: Treat the
numbers x and x′ as vectors and let ϕ be the angle between them. Then,
from Figure 5.8,

|x||x′| cosϕ = xx′ = xf(x) < 0, x ̸= 0,

which indicates that ϕ = π, or the numbers x and x′ are on opposite sides
of the origin of the x-axis, thus the solutions will flow to the origin from two
sides on the x-axis. So far, these arguments are based on intuity. Next, we
prove that this intuity is true in this case. Note that in Figure 5.8, xf(x) < 0
for x ̸= 0.

Theorem 5.5.1 Let Eq. (5.1) be a scalar differential equation and let x be
a critical point (or a constant solution) of Eq. (5.1), that is, f(x) = 0.
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x

x

f(x)

<>

Figure 5.8: A function f with xf(x) < 0, x ̸= 0, and its flows

1. x is uniformly asymptotically stable if there is a δ > 0 such that (x−
x)f(x) < 0 for 0 < |x− x| < δ.

2. x is uniformly stable if there is a δ > 0 such that (x− x)f(x) ≤ 0 for
|x− x| < δ.

3. x is unstable if there is a δ > 0 such that (x − x)f(x) > 0 for either
x < x < x+ δ or x− δ < x < x.

Proof. (1): Assume that (x − x)f(x) < 0 for 0 < |x − x| < δ. First, we
let x < x0 < x + δ and prove that for the solution x(t) = x(t, t0, x0), one
has x(t) ↘ x as t → ∞. From uniqueness, we obtain x(t) > x, t ≥ t0.
Note that now, as long as |x(t) − x| < δ, we have (x(t) − x)f(x(t)) < 0,
hence x′(t) = f(x(t)) < 0. Thus we conclude that x(t) is decreasing from
x0 for t ≥ t0. If x(t) ̸→ x, t → ∞, then x(t) → x > x, t → ∞, or
x(t) ∈ [x, x0], t ≥ t0. Now, since [x, x0] ⊂ (x, x + δ), we obtain that f is
negative on [x, x0] since (x− x)f(x) < 0 for 0 < |x− x| < δ. Then, as f is
continuous, there is a constant k > 0 such that

f(τ) ≤ −k, τ ∈ [x, x0].

Now, from

x(t)− x(t0) =

∫ t

t0
f(x(s))ds ≤ −k(t− t0) → −∞, t→ ∞,

we get a contradiction because as t→ ∞, one has x(t)− x(t0) → x− x(t0),
which is a finite number. Therefore, x < x0 < x + δ implies x(t) ↘ x as



252 Chapter 5. Stability. Part I

t → ∞. Similarly, one can show that x − δ < x0 < x implies x(t) ↗ x as
t→ ∞, thus x is uniformly asymptotically stable.

The same idea can be used to prove parts (2) and (3), which are left as
an exercise. This completes the proof of the theorem. ♠

Another way to determine the signs of a function f is to use its deriva-
tives. For example, in Figure 5.8, if f ′(0) exists, then f ′(0) < 0, which
indicates in geometry that for x near 0, f(x) < 0 for x > 0 and f(x) > 0 for
x < 0; or xf(x) < 0 for x near 0 but x ̸= 0. Accordingly, we have

Corollary 5.5.2 Let Eq. (5.1) be a scalar differential equation and let x
be a critical point (or a constant solution) of Eq. (5.1), that is, f(x) = 0.
Suppose that f ′ is continuous at x.

1. x is uniformly asymptotically stable if f ′(x) < 0.

2. x is uniformly stable if there is a δ > 0 such that f ′(x) ≤ 0 for |x−x| <
δ.

3. x is unstable if f ′(x) > 0.

Proof. (1): Since f ′ is continuous at x and f ′(x) < 0, there is a δ > 0 such
that f ′(x) < 0 for |x − x| < δ. Using the mean value theorem, for any x
with |x− x| < δ,

f(x) = f(x) + f ′(c)(x− x) = f ′(c)(x− x), |c− x| < δ,

thus,

(x− x)f(x) = f ′(c)(x− x)2 < 0, 0 < |x− x| < δ,

therefore, results in Theorem 5.5.1 can be used. The proofs of (2) and (3)
are left as an exercise. This completes the proof of the theorem. ♠

Theorem 5.5.1 is more useful than Corollary 5.5.2 in applications. For
example, Theorem 5.5.1 can be used to verify the uniform asymptotic sta-
bility of the zero solution x = 0 of x′ = −x3, which is not obtainable using
Corollary 5.5.2 since f(x) = −x3 and f ′(0) = 0.

Therefore, we find that phase portraits in ℜ (on the x-axis) for scalar au-
tonomous differential equations are very simple: Solutions are either critical
points (constant solutions), or they flow to critical points or ±∞ and cannot
stop at the middle. A typical function and the corresponding flows on the
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x-axis are shown in Figure 5.9. Later, we will see that for autonomous
differential equations in ℜn, n ≥ 2, more complicated things can occur. For
example, in ℜ2, some solutions could flow to finite nonconstant solutions;
in ℜ3, some solutions may be bounded but never settle down or pile up at
some places in a predictable fashion.

x

f(x)

> >< <

Figure 5.9: A function f and the corresponding flows on the x-axis

The above is a brief account of the situations for scalar autonomous
differential equations, where the signs of x′ = f(x) can be used to determine
stability properties. For autonomous differential equations in ℜn, n ≥ 2,
x′ = f(x) is a vector, hence f(x) cannot tell anything directly. One method
to study stability now is to extend the idea used in the proof of Theorem
4.3.1(a) in Chapter 4. Let’s review the idea in that proof: We first define a
function

V (t) = V (x1(t), x2(t)) =
1

2
[x21(t) + x22(t)], (5.2)

where (x1(t), x2(t)) is a solution whose existence and uniqueness is guar-

anteed. V (t) is related to the distance r(x) =
√
x21 + x22 from the solution

(x1(t), x2(t)) to the origin (0, 0). Then, without solving the differential equa-
tion explicitly, we can take a derivative of V (t) in t along the solution, that
is, we plug in the differential equation when taking the derivative. The
derivative then satisfies

V ′(t) ≤ αV (t) = −[−αV (t)],

for a constant α < 0. Accordingly, we conclude that

V (t) −→ 0, t→ ∞.
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Hence,

x21(t) + x22(t) −→ 0, t→ ∞,

therefore, the solution will go to the origin, or the zero solution ϕ = (0, 0) is
asymptotically stable.

This demonstrates the key idea of the so-called “Liapunov’s method,”
which allows us to derive qualitative properties, especially stability and
boundedness, without solving differential equations explicitly.

Next, let’s see why this idea works in geometry. First, let Eq. (5.1)
be a scalar equation, and assume that ϕ = 0 is a solution of Eq. (5.1), or
f(0) = 0. To study the stability of ϕ = 0, if we let

V (t) = V (x(t)) =
x2(t)

2
,

then, taking a derivative in t and plugging in Eq. (5.1), we get

V ′(t) = x(t)x′(t) = x(t)f(x(t)) = xf(x).

Now, if V ′(t) < 0, then xf(x) < 0 for x ̸= 0 (or the angle between x(t)
and x′(t) is π). This matches exactly with Figure 5.8 which we have just
analyzed. Therefore, V ′(t) < 0 implies that x(t) → 0 as t→ ∞. This is why
in geometry we use such a V function to derive stabilities.

For the geometry in ℜ2, we assume again that the zero is a solution of
Eq. (5.1), or f(0) = 0, and assume that (x1(t), x2(t)) is a solution of Eq.
(5.1). Consider V (t) = V (x1(t), x2(t)) =

1
2 [x

2
1(t) + x22(t)], or

V (x1, x2) =
1

2
[x21 + x22],

then, taking a derivative in t, we obtain

d

dt
V (t) = x1x

′
1 + x2x

′
2 = [x1, x2]

T · [x′1, x′2]T

=
√
x21 + x22

√
(x′1)

2 + (x′2)
2 cosϕ, (5.3)

where “·” denotes the inner product and ϕ is the angle between the vectors
[x1, x2]

T and [x′1, x
′
2]
T (T means the transpose).

For any c > 0 fixed,

V (x1, x2) = c

or 1
2 [x

2
1+x

2
2] = c is a circle in the (x1, x2) plane centered at (0, 0) with radius
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Figure 5.10: Circles of V (x1, x2) = c

√
2c, as shown in Figure 5.10.
Now, for V (x1, x2) =

1
2 [x

2
1+x

2
2], the vector ∇V = [Vx1 , Vx2 ]

T = [x1, x2]
T

(known as a gradient in multivariable calculus) is outward normal (perpen-
dicular) to the circle at point (x1, x2). Also, from multivariable calculus, we
know that the vector [x′1(t), x

′
2(t)]

T is tangent to the trajectory (x1(t), x2(t))
at each point on the trajectory, or vector [x′1(t), x

′
2(t)]

T is the direction of
the trajectory. If V ′(t) < 0, then from (5.3), cosϕ < 0, hence

ϕ ∈ (
π

2
,
3π

2
). (5.4)

In geometry, (5.4) indicates that if a trajectory intersects the circle
V (x1, x2) = c, then the direction of motion of the trajectory is inward
with respect to V (x1, x2) = c, or the trajectory will enter the interior of the
circle V (x1, x2) = c, as shown in Figure 5.11.

Consequently, the trajectory will intersect another circle V (x1, x2) =
c1 with c1 < c, and when it does so, it enters the interior of the circle
V (x1, x2) = c1. This procedure will continue so that eventually the trajec-
tory approaches the origin and the zero solution is asymptotically stable.

The above gives the geometry in ℜ2 why V ′(t) < 0 can drive the trajec-
tories to the origin. Next, we provide a three-dimensional view of why the
idea works. In doing so, we let V (x1, x2) =

1
2 [x

2
1 + x22] be a function defined

on the (x1, x2) plane, shown as a paraboloid in Figure 5.12.
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Figure 5.11: A trajectory moves inward of V = c when V ′(t) < 0

Now, for every c > 0, V (x1, x2) = c is a “level curve,” or a circle in
the (x1, x2) plane in Figure 5.10. When V ′(t) < 0, we know in ℜ2 that “a
trajectory moves inward of a circle,” which is now translated in ℜ3 to “a
trajectory slides down the paraboloid to a lower level.” This procedure will
continue so that eventually the trajectory slides down the paraboloid and
approaches the origin. Therefore, the zero solution is asymptotically stable.
See the second picture in Figure 5.12.

The above is a geometric interpretation of the usefulness of V = 1
2 [x

2
1+x

2
2]

for autonomous differential equations in ℜ2, showing why V ′(t) < 0 implies
that solutions approach the origin.

If V ′ ≤ 0, then a trajectory will either move inward of a circle V (x1, x2) =
c or, at worst, tangent to it. Thus, trajectories started inside a circle
V (x1, x2) = c cannot escape from it. Therefore, the origin is stable. Asymp-
totic stability is not expected now because trajectories could be circles
around the origin, hence the origin is a center and is stable but not asymp-
totically stable.

If V ′ > 0, then a trajectory inside a circle V (x1, x2) = c will move outside
of it (no matter how small the value c is). This indicates that the origin is
unstable.

Next, we use some examples to demonstrate how this V function is used,
this will help you understand the general theory we will present later.
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Figure 5.12: A trajectory slides down the paraboloid of V =
x2
1+x2

2
2

Example 5.5.3 Consider{
x′1 = −x1 + x22
x′2 = −x2 − x1x2,

(5.5)

and V (t) = V (x1(t), x2(t)) =
1
2 [x

2
1(t) + x22(t)]. Now,

dV

dt
= x1(t)x

′
1(t) + x2(t)x

′
2(t)

= x1(−x1 + x22) + x2(−x2 − x1x2)

= −(x21 + x22) = −2V (t). (5.6)

Hence,

V (t) = V (t0)e
−2(t−t0) −→ 0, t→ ∞, (5.7)

therefore,
x21(t) + x22(t) −→ 0, t→ ∞.

Since this limit applies to every solution, we conclude that every solution
approaches the origin as t → ∞. This implies that the zero solution is
asymptotically stable. ♠
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Example 5.5.4 Consider{
x′1 = −x1

2 + x22
x′2 = −x2 − x1x2,

(5.8)

and V (t) = V (x1(t), x2(t)) =
1
2 [x

2
1(t) + x22(t)]. Now,

dV

dt
= x1x

′
1 + x2x

′
2

= x1(−
x1
2

+ x22) + x2(−x2 − x1x2)

= −(
x21
2

+ x22)

≤ −(
x21
2

+
x22
2
) = −V (t). (5.9)

Using a differential inequality (see an exercise in Chapter 4), one has

V (t) ≤ V (t0)e
−(t−t0) −→ 0, t→ ∞, (5.10)

therefore, the zero solution is asymptotically stable. ♠

Example 5.5.5 Consider{
x′1 = x2 − x1x

2
2

x′2 = −x1 + x21x2,
(5.11)

and V (t) = V (x1(t), x2(t)) =
1
2 [x

2
1(t) + x22(t)]. Now,

dV

dt
= x1x

′
1 + x2x

′
2

= x1(x2 − x1x
2
2) + x2(−x1 + x21x2) = 0, (5.12)

which means that the distance of a solution and the origin will not increase.
Therefore, the zero solution is stable. In this case, asymptotic stability is
not obtainable. In fact, this example was analyzed in Section 3 of Chapter
4, where it was found that the origin was a center. ♠

Example 5.5.6 Consider{
x′1 = x1 − x1x

2
2

x′2 = x2 + x21x2,
(5.13)
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and V (t) = V (x1(t), x2(t)) =
1
2 [x

2
1(t) + x22(t)]. Now,

dV

dt
= x1x

′
1 + x2x

′
2

= x1(x1 − x1x
2
2) + x2(x2 + x21x2) = x21 + x22 = 2V (t), (5.14)

hence,

V (t) = V (t0)e
2(t−t0) −→ ∞, t→ ∞, (5.15)

therefore, the zero solution is unstable. In fact, the origin of the linearization
is an unstable proper node and using the results of Section 3 in Chapter 4,
the origin of Eq. (5.13) is also unstable. ♠

Some applications in physics are discussed in Example 1.3.11 in Chapter
1, where a V function is defined to be the total energy of a system and then
used to verify the law of conservation of energy. This example will be
analyzed again in the next section and the related stability properties will
be derived.

Now, we are ready to present a general theory of Liapunov’s method
concerning stability properties for autonomous differential equations in ℜn.
The study of nonautonomous differential equations will be given in Chapter
9. Additional results, remarks, and examples can be found in reference
books, such as Yoshizawa [1966] and Burton [1985].

Definition 5.5.7 Let Q ⊂ ℜn be a domain containing the zero vector and
consider Eq. (5.1). For a continuous function V : Q → [0,∞) that is
Lipschitz (or weak or local Lipschitz) with respect to x, define

V ′
(5.1)(x)

def
= lim sup

h→0+

V (x+ hf(x))− V (x)

h
, x ∈ Q. (5.16)

Next, for a solution x(t) of Eq. (5.1), define

V ′(x(t))
def
= lim sup

h→0+

V (x(t+ h))− V (x(t))

h
. (5.17)

For V ′
(5.1)(x) and V

′(x(t)) in Definition 5.5.7, we have the following result.

Lemma 5.5.8 Let Q ⊂ ℜn be a domain containing the zero vector. Let
V : Q → [0,∞) have continuous first partial derivatives and let x = x(t) be
a solution of Eq. (5.1), then

V ′
(5.1)(x) = V ′(x(t)). (5.18)
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Moreover, if V ′(x(t)) ≤ 0, then

V (x(b))− V (x(a)) ≤
∫ b

a
V ′(x(t))dt, 0 ≤ a ≤ b. (5.19)

Proof. See the proof of Theorem 9.1.1 in Chapter 9 for general cases,
including autonomous or nonautonomous differential equations. ♠

Lemma 5.5.8 says that the derivative of V with respect to Eq. (5.1)
defined by (5.16) is actually the derivative of V along a solution of Eq. (5.1)
defined by (5.17). That is, to find V ′

(5.1)(x), we can take a derivative of

V (x(t)) in t by plugging in the differential equation (5.1).
The following terminology will be used in Liapunov’s method.

Definition 5.5.9 (Positive definite) Let Q ⊂ ℜn be a domain containing
the zero vector. A continuous function V : Q → [0,∞) is called positive
definite if V (x) > 0 for x ̸= 0.

Definition 5.5.10 (Liapunov function) Let Q ⊂ ℜn be a domain con-
taining the zero vector. A function V : Q → [0,∞) is called a Liapunov
function if V (0) = 0, V is positive definite and has continuous first partial
derivatives.

Example 5.5.11 Based on V (t) = 1
2 [x

2
1(t)+x22(t)] in the proof of Theorem

4.3.1(a) in Chapter 4, if we define

V (x) =
1

2
[x21 + x22], x = [x1, x2]

T ∈ ℜ2,

then V (x) is positive definite. Moreover, in that proof,

V ′(x(t)) ≤ −−α
2

[
x21(t) + x22(t)

]
, (5.20)

or,

−V ′(x(t)) ≥ −α
2

[
x21(t) + x22(t)

]
, −α > 0, (5.21)

thus −V ′(x) is also positive definite. ♠

Note, a general Liapunov function has essentially the same properties

that
x2
1+x2

2
2 has, at least locally. Thus a geometric interpretation similar to
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Figure 5.13: Level curves V = c for a general Liapunov function

what we did for
x2
1+x2

2
2 can be given for a general Liapunov function. For

example, for a general Liapunov function V (x1, x2) in ℜ2, V (x1, x2) = c is
still a “level curve,” or a simple closed curve due to the continuity of V . See
Figure 5.13.

Now, for V (t) = V (x1(t), x2(t)), one has

V ′(t) = Vx1x
′
1 + Vx2x

′
2 = [Vx1 , Vx2 ]

T · [x′1, x′2]T

=
√
V 2
x1

+ V 2
x2

√
(x′1)

2 + (x′2)
2 cosϕ, (5.22)

where ϕ is the angle between the vectors [Vx1 , Vx2 ]
T and [x′1, x

′
2]
T . From mul-

tivariable calculus, the gradient vector ∇V = [Vx1 , Vx2 ]
T (which is [x1, x2]

T

when V =
x2
1+x2

2
2 ) is outward normal (perpendicular) to a level curve V (x1, x2)

= c. Thus the angle between ∇V and the direction [x′1, x
′
2]
T of a trajectory

can still be used to examine the direction a trajectory will follow, hence the
stability properties can be determined accordingly.

The following theorem utilizes Liapunov’s method to derive stability
properties for autonomous differential equations.

Theorem 5.5.12 Let Q ⊂ ℜn be a domain containing the zero vector. Con-
sider Eq. (5.1) on [0,∞) × Q with f(0) = 0 so that ϕ = 0 is a solution of
Eq. (5.1). Assume that V is a Liapunov function.

(A). If V ′
(5.1)(x) ≤ 0, then ϕ = 0 is uniformly stable.

(B). If V ′
(5.1)(x) < 0, x ̸= 0, (or −V ′

(5.1)(x) is positive definite), then ϕ = 0

is uniformly asymptotically stable.
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(C). If V ′
(5.1)(x) > 0, x ̸= 0, then ϕ = 0 is unstable.

Proof. Because the stability of ϕ = 0 is a local property about the origin,
so without loss of generality, we assume that {x ∈ ℜn : |x| ≤ 1} ⊂ Q. Also,
the parameters used in the proof, such as ε and δ, are assumed to be less
than or equal to 1.

(A): For any t0 ≥ 0 and any ε > 0, let x(t) = x(t, t0, x0) be a solution
of Eq. (5.1), and we need to find a δ = δ(ε) > 0 such that {|x0| ≤ δ, t ≥ t0}
imply |x(t, t0, x0)| ≤ ε. Now, we have V ′(x(t)) ≤ 0, hence V (x(t)) ≤
V (x0), t ≥ t0. Since V (x) is continuous and positive definite, it is continuous
and positive on the closed and bounded set |x| = ε. Then,

V0 = min
|x|=ε

V (x) > 0,

(or in geometry, V (x) has a positive minimum on the surface of a ball cen-
tered at the origin with radius ε). Next, since V (x) is continuous and
V (0) = 0, there is a δ = δ(ε) > 0 and δ < ε, such that |x| ≤ δ implies
V (x) < V0. Therefore, if {|x0| ≤ δ, t ≥ t0}, then

V (x(t)) ≤ V (x0) < V0 = min
|x|=ε

V (x), (5.23)

which implies that |x(t)| < ε for t ≥ t0 (otherwise, since x(t) started with
|x(t0)| = |x0| ≤ δ < ε, there is a t1 > t0 with |x(t1)| = ε; but then V (x(t1)) ≥
min|x|=ε V (x) = V0, a contradiction to (5.23)). This proves the uniform
stability of ϕ = 0.

(B): From part (A) we just proved, ϕ = 0 is uniformly stable. The
uniform asymptotic stability of ϕ = 0 can be proved directly (see an exer-
cise); however, we apply Theorem 5.1.2 here and only prove the asymptotic
stability of ϕ = 0. That is, we will prove that there is an r > 0 such that
|x0| ≤ r implies limt→∞ |x(t, t0, x0)| = 0. Let ε = 1, then from the uniform
stability of ϕ = 0, there is a δ > 0 such that |x0| ≤ δ implies |x(t, t0, x0)| ≤ 1
for t0 ≥ 0 and t ≥ t0. Let r = δ and let |x0| ≤ r, then |x(t, t0, x0)| ≤ 1 for
t0 ≥ 0 and t ≥ t0.

Now, for x(t) = x(t, t0, x0) with x0 ̸= 0, we have x(t) ̸= 0 by uniqueness.
Thus, d

dtV (x(t)) < 0 and hence V (x(t)) is monotone decreasing. We first
prove that limt→∞ V (x(t)) = 0. If this is not true, then V (x(t)) ≥ L, t ≥ t0,
for some constant L > 0. Since V (x) is continuous and V (0) = 0, one
concludes that no sequence of x(t) could go to zero. Therefore, there is a
k ∈ (0, 1) such that k ≤ |x(t)| ≤ 1, t ≥ t0. Since V ′

(5.1)(x) < 0, x ̸= 0, and
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V ′
(5.1)(x) is continuous on the bounded and closed set k ≤ |x| ≤ 1, one has

p = maxk≤|x|≤1 V
′
(5.1)(x) < 0. Hence d

dtV (x(t)) ≤ p < 0, t ≥ t0. Then

V (x(t))−V (x(t0)) =

∫ t

t0

d

ds
V (x(s))ds ≤

∫ t

t0
pds = p(t−t0) −→ −∞, t→ ∞,

which contradicts the fact that V (x(t)) ≥ 0. Thus, limt→∞ V (x(t)) = 0.

Next, we prove that limt→∞ x(t) = 0. If this is not true, then there is a
constant d > 0 and a sequence tm → ∞ such that d ≤ |x(tm)| ≤ 1. Then
q = mind≤|x|≤1 V (x) > 0 since V is positive definite, hence V (x(tm)) ≥ q > 0,
which contradicts limt→∞ V (x(t)) = 0. This proves the asymptotic stability
of ϕ = 0, and hence the uniform asymptotic stability of ϕ = 0 using Theorem
5.1.2.

(C): If ϕ = 0 is stable, then for ε = 1 and t0 = 0, there is a δ > 0 such
that |x0| ≤ δ implies |x(t, 0, x0)| ≤ 1, t ≥ 0. Hence for x(t) = x(t, 0, x0),
V (x(t)) is bounded for t ≥ 0 when |x0| ≤ δ. Fix an x0 with |x0| = δ

2 , then
V (x0) > 0. Now, V (x(t)) is increasing, thus V (x(t)) ≥ V (x0) > 0, t ≥ 0.
As V (x) is continuous and V (0) = 0, there is a k ∈ (0, 1) such that k ≤
|x(t)| ≤ 1, t ≥ 0. Next, V ′

(5.1)(x) is continuous and positive on the closed

and bounded set k ≤ |x| ≤ 1, one has h = mink≤|x|≤1 V
′
(5.1)(x) > 0, thus

V (x(t))− V (x0) =

∫ t

0

d

ds
V (x(s))ds ≥

∫ t

0
hds = h(t− t0) −→ ∞, t→ ∞,

which contradicts to the fact that V (x(t)) is bounded for t ≥ 0 when |x0| ≤ δ.
Therefore, ϕ = 0 is unstable.

This completes the proof of the theorem. ♠

Some conditions in Theorem 5.5.12 are also necessary conditions. For
example, if ϕ = 0 is uniformly asymptotically stable, then there exists a
Liapunov function such that its derivative along the solutions is negative
definite. Refer to “converse of stabilities” in Chapter 9.

The above presents a brief coverage of the Liapunov theory concerning
stability properties for autonomous differential equations. Roughly speaking,
it reduces the study of stability properties to the problem of constructing
appropriate Liapunov functions. However, constructing these functions is
not an easy task; it requires a great deal of experience and skill. In the
next section, we demonstrate basic techniques used in the construction of
Liapunov functions for some applications.
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Exercises 5.5

1. In the proof of Theorem 5.5.1(1), complete the case when x−δ < x0 <
x. Then prove parts (2) and (3) of Theorem 5.5.1.

2. Prove parts (2) and (3) of Corollary 5.5.2.

3. Determine if V : Q→ [0,∞) is positive definite on some domain Q.

(a) V (x) = x2 + cosx.

(b) V (x) = x2 + cos2 x.

(c) V (x) = x2 + sinx.

(d) V (x) = x2 + sin2 x.

(e) V (x) = −x2 + x4.

(f) V (x) = −x2 + x3.

(g) V (x1, x2) = x21 + x42.

(h) V (x1, x2, x3) = x21 + x22 + x43.

(i) V (x1, x2, x3) = x21 + x22 − x43.

(j) V (x1, x2, x3) = x21 + x22 + x23 + x1x2.

4. Examine the stabilities of the zero solution for the logistic equation
x′ = ax[C − x].

5. Give a geometric interpretation for a general Liapunov function in
ℜ2. That is, discuss the relationship between V ′ and a level curve
V (x1, x2) = c.

6. Let Q ⊂ ℜn be a domain containing the zero vector and let P be a
function defined on Q. Prove that P (x) < 0, x ̸= 0, if and only if −P
is positive definite.

7. Prove the uniform asymptotic stability of the zero solution in Theorem
5.5.12(B) directly.

8. Use Liapunov’s method to study the stabilities of the zero solution for

(a)

{
x′1 = −x1 + x22 − x31,
x′2 = −x2 − x1x2 − x32.

(b)

{
x′1 = −x1

2 + x22 − x31,
x′2 = −x2 − x1x2 − x32.

(c)

{
x′1 = x2 − x1x

2
2 + x41x2,

x′2 = −x1 + x21x2 − x51.
(d)

{
x′1 = x1 − x1x

2
2 + x41x2,

x′2 = x2 + x21x2 − x51.
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5.6 Some Applications

In this section, we apply Liapunov’s method by constructing Liapunov func-
tions for the following differential equations. Note that 1

2 [x
2
1 + x22 + · · ·+ x2n]

works for most cases, such as in Examples 5.5.3–5.5.6. At times, some vari-
ations of this are needed. Also, when considering applications in physics,
certain laws are useful in the construction of Liapunov functions.

Example 5.6.1 Revisit Example 5.3.5 and consider the scalar differential
equation x′(t) = −x(t) + x2(t). Theorem 5.3.3 can be applied to obtain
the uniform asymptotic stability of ϕ = 0. Here, we will apply Liapunov’s
method. Try V (x) = 1

2x
2. Then V is positive definite. Next,

V ′(x(t)) = x(t)x′(t) = x(t)[−x(t) + x2(t)]

= −x2(t)[1− x(t)]. (6.1)

Accordingly, we can take the domain Q = {x ∈ ℜ : |x| < 1
2}, and on Q, one

has

V ′(x(t)) = −x2(t)[1− x(t)] ≤ −1

2
x2(t), (6.2)

hence −V ′(x) is positive definite. From Theorem 5.5.12(B), ϕ = 0 is uni-
formly asymptotically stable. ♠

Example 5.6.2 Consider the scalar differential equation

x′(t) = −x(t) + xk(t).

For xk to satisfy a local Lipschitz condition in an open interval containing
0, we must have k ≥ 1. Try V (x) = 1

2x
2, then

V ′(x(t)) = x(t)x′(t) = x(t)[−x(t) + xk(t)]

= −x2(t)[1− xk−1(t)]. (6.3)

If k = 1, then Theorem 5.5.12(A) implies that ϕ = 0 is uniformly stable.
(In fact, in this case we have x′(t) = 0, then the solutions are constants,
hence ϕ = 0 is uniformly stable.) If k > 1, then let’s assume that k is an
integer (to guarantee that xk is a real number). Now, define Q = {x ∈ ℜ :
|x| < (12)

1/(k−1)}, and on Q,

V ′(x(t)) ≤ −x2(t)[1− xk−1(t)] ≤ −1

2
x2(t). (6.4)

Thus, similar to Example 5.6.1, ϕ = 0 is uniformly asymptotically stable. ♠
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Example 5.6.3 Consider[
x1(t)
x2(t)

]′
=

[
−2 0
0 −1

] [
x1(t)
x2(t)

]
+

[
2x21(t)− x1(t)x2(t)
4x1(t)x2(t) + x22(t)

]
. (6.5)

Try V (x) = 1
2 [x

2
1 + x22] where x = [x1, x2]

T ∈ ℜ2. Then V is positive
definite. Next,

V ′(x(t)) = x1(t)x
′
1(t) + x2(t)x

′
2(t)

= x1[−2x1 + 2x21 − x1x2] + x2[−x2 + 4x1x2 + x22]

= −x21[2− 2x1 + x2]− x22[1− 4x1 − x2]. (6.6)

Now, when x1 and x2 are small, say for example 2|x1|+ |x2| < 3
2 and 4|x1|+

|x2| < 1
2 , then

V ′(x(t)) ≤ −1

2
[x21 + x22]. (6.7)

Thus, we can let Q = {x ∈ ℜ2 : |x1|+|x2| < 1
8} and apply Theorem 5.5.12(B)

to conclude that ϕ = 0 is uniformly asymptotically stable. ♠

Example 5.6.4 Consider[
x1(t)
x2(t)

]′
=

[
0 −1
1 0

] [
x1(t)
x2(t)

]
+

[
−x31(t)
−x32(t)

]
. (6.8)

Try V (x) = 1
2 [x

2
1 + x22]. Then V is positive definite. Next,

V ′(x(t)) = x1(t)x
′
1(t) + x2(t)x

′
2(t)

= x1(t)[−x2(t)− x31(t)] + x2(t)[x1(t)− x32(t)]

= −[x41(t) + x42(t)], (6.9)

thus, from Theorem 5.5.12(B), ϕ = 0 is uniformly asymptotically stable. ♠

Note that in Example 5.6.4, the origin for the linearization is a center and
hence is uniformly stable but not uniformly asymptotically stable; however,
the nonlinear perturbation makes it uniformly asymptotically stable.

Example 5.6.5 Consider x1(t)
x2(t)
x3(t)


′

=

 0 −1 0
2 0 0
0 0 0


 x1(t)
x2(t)
x3(t)

+

 x2(t)x3(t)− x31(t)
−x32(t)

−x1(t)x2(t)− x33(t)

 . (6.10)
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Try V (x) = 1
2 [c1x

2
1 + c2x

2
2 + c3x

2
3] where x = [x1, x2, x3]

T ∈ ℜ3, with
positive constants ci, i = 1, 2, 3. Then V is positive definite. Next,

V ′(x(t)) = c1x1(t)x
′
1(t) + c2x2(t)x

′
2(t) + c3x3(t)x

′
3(t)

= c1x1(t)[−x2(t) + x2(t)x3(t)− x31(t)] + c2x2(t)[2x1(t)− x32(t)]

+c3x3(t)[−x1(t)x2(t)− x33(t)]

= (2c2 − c1)x1x2 + (c1 − c3)x1x2x3

−c1x41 − c2x
4
2 − c3x

4
3. (6.11)

Now, we choose 2c2 = c1 = c3, then

V ′(x(t)) = −c1[x41 +
1

2
x42 + x43], c1 > 0. (6.12)

From Theorem 5.5.12(B), ϕ = 0 is uniformly asymptotically stable. Again, in
this case, the origin for the linearization is uniformly stable but not uniformly
asymptotically stable, and the nonlinear perturbation makes it uniformly
asymptotically stable. ♠

In other applications, Liapunov functions may take different forms, such
as V (x) = x21 + x42, V (x) = x41 + x22, V (x) = x41 + x42 + · · ·+ x4n, and so on.

Next, we look at how to apply the Liapunov theory to some second-
order Lienard-type differential equations with applications in physics (see
the introduction of the Lienard-type differential equations in Chapter 1).
Refer to additional related results in Brauer and Nohel [1969] and Burton
[1985].

Example 5.6.6 Consider the second-order scalar differential equation

u′′ + g(u) = 0, u = u(t) ∈ ℜ. (6.13)

Here, g is continuously differentiable for |u| < k where k > 0 is a constant,
and ug(u) > 0 if u ̸= 0, (this means g(u) > 0 for u > 0 and g(u) < 0 for
u < 0). These conditions are satisfied, for example, if g(u) = sinu, |u| < π,
in the case of an undamped simple pendulum discussed in Chapter 4. We
let x1 = u, x2 = u′, and change the second-order differential equation (6.13)
into the following differential equation in ℜ2,{

x′1 = x2,
x′2 = −g(x1).

(6.14)
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Now, the conditions on g guarantee the existence and uniqueness of so-
lutions for Eq. (6.13) or Eq. (6.14), and imply g(0) = 0. Therefore, u = 0
is a solution of Eq. (6.13), or (x1, x2) = (0, 0) is a solution of Eq. (6.14). In
physics applications, we can think of g(u) as the restoring force acting on a
particle at a displacement u from the equilibrium (u = 0), and of u′ as the
velocity of the particle. Then the potential energy at a displacement u from
the equilibrium (u = 0) is

∫ u
0 g(s)ds, and the kinetic energy is 1

2(u
′)2. Thus,

the total energy is

V (t) =
1

2
[u′(t)]2 +

∫ u(t)

0
g(s)ds. (6.15)

Now, the law of conservation of energy indicates that d
dtV (t) = 0.

Indeed,

d

dt
V (t) = u′u′′ + g(u)u′ = u′[u′′ + g(u)] = 0. (6.16)

Therefore, for Eq. (6.14), if we try a Liapunov function

V (x) = V (x1, x2) =
1

2
x22 +

∫ x1

0
g(s)ds, |x1| < k, |x2| <∞ (6.17)

for x = [x1, x2]
T , then we obtain

V ′
(6.14)(x) = x2x

′
2 + g(x1)x

′
1 = x2[−g(x1)] + g(x1)x2 = 0.

Next, from the assumption that ug(u) > 0 for u ̸= 0, we find that∫ x1

0
g(s)ds > 0 for x1 ̸= 0,

thus, V (x1, x2) is positive definite. Hence ϕ = 0 is uniformly stable from
Theorem 5.5.12(A). ♠

Compare Eq. (6.13) in Example 5.6.6 with the general second-order
differential equation (2.8) in Chapter 1 derived using Newton’s second law
of motion. Then we find for Eq. (6.13) that the externally applied force
is zero. Thus, the interpretation in physics for the result in Example 5.6.6
is that when the externally applied force is zero, certain conditions can be
given to the restoring force, in terms of the function g, so as to make the
zero solution become uniformly stable.
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Note that in Example 5.6.6, the asymptotic stability of ϕ = 0 is not
expected because in the case of an undamped simple pendulum, for example,
the pendulum will “keep oscillating indefinitely” about the equilibrium ϕ =
0. Therefore the origin is a center and hence is not asymptotically stable.
However, adding a damping term may change the situation, see the following
example.

Example 5.6.7 Add u′ to the equation in Example 5.6.6 and consider

u′′ + u′ + g(u) = 0, u = u(t) ∈ ℜ. (6.18)

In the case of a simple pendulum, Eq. (6.18) means that a damping term
is added, thus the pendulum will encounter air resistance or friction, so we
expect ϕ = 0 to be uniformly asymptotically stable. However, if we try the
same Liapunov function V (x1, x2) = 1

2x
2
2 +

∫ x1
0 g(s)ds from Example 5.6.6

for {
x′1 = x2,
x′2 = −x2 − g(x1),

(6.19)

then we get

V ′
(6.19)(x) = x2x

′
2 + g(x1)x

′
1 = x2[−x2 − g(x1)] + g(x1)x2 = −x22, (6.20)

which does not imply that −V ′
(6.19)(x) = x22 is positive definite because it

doesn’t have x1 terms (for example, it is zero at (x1, x2) = (1, 0)). Therefore,
Theorem 5.5.12(B) cannot be applied to this V function to derive the uniform
asymptotic stability of ϕ = 0.

This example indicates that some skills are needed to construct “good”
Liapunov functions. Next, we modify the above V by considering

V (x1, x2) =
1

2
x22 +

1

2
[x1 + x2]

2 + q

∫ x1

0
g(s)ds, (6.21)

where the constant q > 0 will be determined in order to cancel some
terms, and [x1 + x2]

2 is used so that V is still positive definite and that x1
terms may appear in the derivative. Now,

V ′
(6.19)(x) = x2x

′
2 + [x1 + x2][x

′
1 + x′2] + qg(x1)x

′
1

= x2[−x2 − g(x1)] + [x1 + x2][x2 − x2 − g(x1)] + qg(x1)x2

= −x22 + (q − 2)g(x1)x2 − x1g(x1). (6.22)
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Accordingly, we choose q = 2, so that −V ′
(6.19)(x) = x22 + x1g(x1) is

positive definite. Therefore, Theorem 5.5.12(B) can be applied to derive the
uniform asymptotic stability of ϕ = 0. ♠

From Examples 5.6.6 and 5.6.7, we see that for a simple pendulum with-
out a damping term, a Liapunov function can be constructed to obtain
stability but not asymptotic stability; and when a damping exists, another
Liapunov function can be constructed to obtain asymptotic stability. This
demonstrates that Liapunov’s method is a very useful tool in deriving qual-
itative properties in physics applications.

From the above examples, we see that 1
2 [x

2
1+x

2
2+ · · ·+x2n] can be used as

a Liapunov function in most cases, however, modifications are needed some-
times. In physics applications, knowledge of the subjects is very useful in
constructing the corresponding Liapunov functions, such as the total energy
for a simple pendulum.

Finally, note that Theorem 5.3.3 can be applied to Examples 5.6.1, 5.6.2,
and 5.6.3, but not Examples 5.6.4–5.6.7. Therefore, we find that if a stability
result is established by some other methods, then probably it also can be
established by Liapunov’s method. However, for a stability result established
by Liapunov’s method, it may not be establishable by other methods, such as
Examples 5.6.4–5.6.7. This makes Liapunov’s method very important since
it derives certain properties that are not obtainable using other methods.

Exercises 5.6

1. Discuss the stabilities of the zero solution for the Volterra equation{
x′(t) = ax(t)− bx2(t)− cx(t)y(t),
y′(t) = −dy(t) + ex(t)y(t),

where a, b, c, d, e are positive constants.

2. Discuss the stabilities of the zero solution for the Lotka-Volterra equa-
tion {

x′1 = β1x1(K1 − x1 − µ1x2),
x′2 = β2x2(K2 − x2 − µ2x1),

where βi, Ki, µi, i = 1, 2, are positive constants.
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3. Discuss the stabilities of the zero solution for{
x′ = −2y3,
y′ = 5x3,

with V = 1
4 [c1x

4 + c2y
4].

4. Discuss the stabilities of the zero solution for
x′ = −x− xy2 − x3,
y′ = −7y + 3x2y − 2yz2 − y3,
z′ = −5z + y2z − z3,

with V = 1
2 [c1x

2 + c2y
2 + c3z

2].

5. In Example 5.6.6, use l’Hôpital’s rule to show that

lim
x1→0

g2(x1)∫ x1
0 g(s)ds

= lim
x1→0

2g(x1)g
′(x1)

g(x1)
= 2g′(0),

where the limit exists since g is continuously differentiable. Then show
that there exist constants C > 0 and 0 < k1 ≤ k such that∫ x1

0
g(s)ds ≥ Cg2(x1), |x1| ≤ k1.

6. In u′′ + u′ + g(u) = 0, u ∈ ℜ, if g(u) = au+ f(u) with the constant

a > 0 and f(u)
u → 0 as u → 0, then show that the zero solution is

uniformly asymptotically stable.

7. Discuss the stabilities of the zero solution for u′′+u′+au+bu2−cu3 =
0, u ∈ ℜ, where a, b, c are positive constants.

8. Discuss the stabilities of the zero solution for u′′ + f(u, u′)u′ + g(u) =
0, u ∈ ℜ, where f > 0 and g satisfies the conditions in Example 5.6.6.



Chapter 6

Bifurcation

6.1 Introduction

In this chapter, we look at the autonomous differential equations with pa-
rameters,

x′(t) = f(x(t), µ), or x′ = f(x, µ), (1.1)

where (t, x) ∈ ℜ × ℜn and the parameter µ is in a domain D0 ⊂ ℜk, k ≥ 1.
We have already seen this type of differential equations. For example, in
Chapter 1, the logistic equation x′ = rx[1 − x] (or x′ = ax[C − x]) is a
differential equation with parameter r (or a and C); the Lotka-Volterra
competition equation can be regarded as a differential equation with param-
eters β1, µ1, β2, µ2; and the motion of a simple pendulum can be regarded
as a differential equation with parameters k and q. In general, differential
equations are derived in physical problems using scientific principles, and
a parameter usually represents something that is fixed in each application
but that varies between applications. For example, the carrying capacity
of a population, or the length of a pendulum may be different in different
situations. One of the fundamental issues in using differential equations for
modeling the qualitative properties of a system is how the system changes
with parameters.

In Chapter 2 we have also seen that under some appropriate conditions,
for each fixed µ ∈ D0, Eq. (1.1) has a unique solution, and the dependence

272
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of the solution with respect to µ is smooth, that is, the solution is continuous
and differentiable with respect to the parameter µ ∈ D0.

Although solutions enjoy the continuous dependence with respect to
parameters, when some parameters are varied, a system may experience
abrupt qualitative changes after some smooth quantitative changes.
For example, if you squeeze a small piece of straight thin wood, after a while
the wood is nearly straight (this corresponds to the quantitative changes).
Then there will be a moment the wood will buckle. Here, “buckle” cor-
responds to the abrupt qualitative changes. A similar example of Euler’s
buckling beam is given in Chapter 1.

Although it is initially puzzling, we now expect that certain qualitative
properties of Eq. (1.1) may be changed abruptly when some parameters are
varied and pass some critical values. In fact, from the following examples, we
will see that the qualitative properties subject to change include the number
of critical points and their stability properties, and, in the case of planar
equations, the nature of the origin (in terms of a center, a spiral point, a
saddle point, or a node). Generally, the qualitative changes in a system are
called bifurcations, and the parameter values at which bifurcations occur
are called bifurcation points or bifurcation values.

The following examples indicate the different types of bifurcations that
could occur.

Example 6.1.1 Consider the linear differential equation with constant co-
efficients, [

x
y

]′
=

[
a b
c d

] [
x
y

]
. (1.2)

We could regard Eq. (1.2) as a differential equation with parameters
a, b, c, and d, but the analysis is complicated with that many parameters.
Recall that in Chapter 4 we used p = trA = a+d and q = detA = ad−bc to
characterize Eq. (1.2) by using the Distribution Diagram 4.16 in the (p, q)
plane, where the nature of the origin (in terms of a center, a spiral point,
a saddle point, or a node) can be determined easily. Therefore, we will use
p and q as the parameters of Eq. (1.2), and we copy Figure 4.16 here as
Figure 6.1 for easy reference.

Now, if we start with q > 0, p < 0 and move across the positive q-
axis (where p = 0) to become q > 0, p > 0, then the zero solution of the
system will change from asymptotically stable to unstable, and when the
parameters (p, q) cross the positive q-axis at p = 0, a stable center will be
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created. In this case, the stability property of the zero solution of Eq. (1.2)
is a qualitative property. Thus Eq. (1.2) undergoes a qualitative property
change, or a bifurcation, at the bifurcation value p = 0.

Next, if we start with q < 0 and move up and cross the p-axis (where
q = 0), then the origin will change from a saddle point to a node. Now,
the nature of the origin (in terms of a center, a spiral point, a saddle point,
or a node) is also a qualitative property of Eq. (1.2). Thus Eq. (1.2) also
undergoes a qualitative property change, or a bifurcation, at the bifurcation
value q = 0. ♠
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Figure 6.1: Distribution Diagram for the origin of Eq. (1.2)

From Example 6.1.1, we find that in the cases of having complex eigen-
values (such as when the origin is a spiral point or a center), when a pair of
conjugate complex eigenvalues cross the imaginary axis (where the real part



6.1. Introduction 275

is zero, or the origin is a center), there is an exchange of stability for the
origin (from asymptotically stable to stable and then to unstable, or vice
versa). Periodic orbits also will be created when the origin is a center. In
the cases of having real eigenvalues (for nodes and saddle points), when real
eigenvalues change signs or cross 0 on the real line, the origin will change
from a saddle point to a node, or vice versa.

These results are related to the findings of Poincaré [1885]. His pioneer
work in modern qualitative theory of differential equations has generated a
great deal of interest in the research of dynamical systems and other related
areas. Some of these results will be discussed in Section 5.

The following example shows a “branching effect” that explains why the
word “bifurcation” is used.

Example 6.1.2 Consider the scalar differential equation

x′ = f(x, µ) = µ+ x2, (1.3)

where µ ∈ ℜ is a parameter. If µ > 0, then Eq. (1.3) has no critical point
(that is, x′ = µ + x2 = 0 has no solution), or the curve y = µ + x2 will not
intersect the x-axis, see Figure 6.2.

x

µ <0µ =0µ >0

x x

y = µ+x2

µµ

y = µ+x2y = µ+x2

Figure 6.2: Graph of y = µ+ x2 and the critical points of x′ = µ+ x2

When µ decreases to 0 from above, the graph of y = µ+ x2 moves down
and then intersects the x-axis tangentially when µ = 0, in which case one
critical point appears at x = 0. If µ continues to decrease, then µ < 0 and
hence the graph of y = µ + x2 crosses the x-axis and two critical points
appear at

x = ±
√
−µ.
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From the stability analysis in Chapter 5, using

f ′x =
∂

∂x
f(x, µ) = 2x,

we find that x = −
√
−µ is asymptotically stable and x =

√
−µ is unstable.

Thus we have the arrows in Figure 6.2 that indicate the flows of the solutions
on the x-axis. We use a solid point at (−

√
−µ, 0) to denote that −

√
−µ is

a stable critical point, and use an open point at (
√
−µ, 0) to denote that√

−µ is an unstable critical point. Note that at x = 0 (or µ = 0) we have
a “half-stable” critical point, which is really delicate because it disappears
as soon as µ ̸= 0. The number of critical points and their stabilities in this
case are qualitative properties of Eq. (1.3), thus Eq. (1.3) undergoes some
qualitative property changes, or a bifurcation takes place at the bifurcation
value µ = 0.

Because we let the parameter µ to vary first, then µ is treated as an in-
dependent variable, and the corresponding critical point x (if any) is treated
as a function of µ. In Eq. (1.3), for µ > 0, there is no critical point; for
µ = 0, x = 0 is the only corresponding critical point; for µ < 0, the critical
points are given by two functions x =

√
−µ and x = −

√
−µ. It is customary

to draw all these functions in one (µ, x) plane. Now from Figure 6.3 we
find that for µ > 0, there is no critical point; however, when µ decreases
and passes 0, then suddenly, “two branches” of critical points appear ac-
cording to x =

√
−µ and x = −

√
−µ. This means that a “bi”-furcation

takes place, explaining why the word “bifurcation” is used to describe the
situation. Similar to Figure 6.2, we use a solid curve in Figure 6.3 to de-
note the stable critical points and a broken curve to denote the unstable
critical points. Figures with this kind of information are called bifurcation
diagrams. ♠

In summary, when some parameters of a system are varied, certain quali-
tative properties of the system may go through a period of smooth quantita-
tive changes, and then suddenly, at some critical bifurcation values, abrupt
qualitative changes, or bifurcations, take place. These qualitative properties
include the number of critical points and their stability properties, and, in
the case of a planar equation, the nature of the origin (in terms of a center,
a spiral point, a saddle point, or a node). We will discuss these subjects in
this chapter.

This chapter is organized as follows: In Section 2, we study saddle-node
bifurcations and use some examples to explain why saddle and node appear
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x

µ

stable

unstable

x = -µ

 x = - -µ

Figure 6.3: A bifurcation diagram determined by x′ = µ+ x2

for this type of bifurcations. We analyze the geometric aspects of some scalar
differential equations that undergo saddle-node bifurcations and use them to
formulate and prove a result concerning saddle-node bifurcations for scalar
differential equations. In Section 3, we study transcritical bifurcations and
apply them to a solid-state laser in physics. Again, the geometric aspects
of some examples are analyzed and used to formulate and prove a result
concerning transcritical bifurcations for scalar differential equations. In Sec-
tion 4, we study pitchfork bifurcations and apply them to Euler’s buckling
beam and calculate Euler’s first buckling load, which is the value the buck-
ling takes place. The hysteresis effect with applications in physics is also
discussed. A result concerning pitchfork bifurcations for scalar differential
equations is formulated using the geometric interpretation. In Section 5, we
analyze the situations where a pair of two conjugate complex eigenvalues
cross the pure imaginary axis when some parameters are varied. We intro-
duce the Poincaré-Andronov-Hopf bifurcation theorem and apply it to van
der Pol’s oscillator in physics.

Exercises 6.1

1. Find the critical points for the following equations, where µ ∈ ℜ is a
parameter.

(a)

{
x′ = 2 + µ+ x2,
y′ = 3− y.

(b)

{
x′ = y + 3,
y′ = −2µ+ 4y + x2.
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(c)

{
x′ = (µ− 4)x+ 2x3,
y′ = −4y + 5.

(d) x′ = (µ+ 3)x+ x2.

6.2 Saddle-Node Bifurcation

In order to understand why some bifurcations are called “saddle-node bifur-
cations,” let’s begin with some examples.

Example 6.2.1 Consider{
x′ = µ+ x2,
y′ = −y, (2.1)

where µ ∈ ℜ is a parameter. The first equation in x is the same as in
Example 6.1.2, the second equation in y means that y = 0 is asymptotically
stable. For µ > 0, Eq. (2.1) has no critical point. For µ < 0, two critical
points of Eq. (2.1) appear at

(−
√
−µ, 0), (

√
−µ, 0).

At (−
√
−µ, 0), it is asymptotically stable for both x and y, hence (−

√
−µ, 0)

is a stable node, (a linearization can be used to verify this, see an exercise).
At (

√
−µ, 0), y is asymptotically stable but x is unstable, thus (

√
−µ, 0) is

a saddle.
When µ = 0, the stable node and saddle will collide and create a half-

stable point, see Figure 6.4. ♠

The following example needs a little more analysis than Example 6.2.1.

Example 6.2.2 Consider{
x′ = y,
y′ = −µ− y + x2,

(2.2)

where µ ∈ ℜ is a parameter. For µ < 0, Eq. (2.2) has no critical point. For
µ > 0, Eq. (2.2) has two critical points (

√
µ, 0) and (−√

µ, 0). For (
√
µ, 0),

let’s use the change of variables x1 = x − √
µ and x2 = y to transform

(
√
µ, 0) to the origin. Then we obtain{

x′1 = x′ = x2,
x′2 = y′ = −µ− x2 + (x1 +

√
µ)2 = 2

√
µx1 − x2 + x21.

(2.3)
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Figure 6.4: A planar saddle-node bifurcation

From the linearization of Eq. (2.3), we get p = trA = −1 < 0 and
q = detA = −2

√
µ < 0. Thus the origin of Eq. (2.3), or the critical point

(
√
µ, 0) of Eq. (2.2), is a saddle point.
For (−√

µ, 0), let’s change the variables x1 = x +
√
µ and x2 = y, and

obtain{
x′1 = x′ = x2,
x′2 = y′ = −µ− x2 + (x1 −

√
µ)2 = −2

√
µx1 − x2 + x21.

(2.4)

From the linearization of Eq. (2.4), we get p = trA = −1 < 0 and

q = detA = 2
√
µ > 0. Assume µ is near 0 such that q = 2

√
µ < 1

4 = p2

4 ,
then the origin of Eq. (2.4), or the critical point (−√

µ, 0) of Eq. (2.2), is a
stable node.

When µ = 0, the stable node and saddle will collide and create a half-
stable point, see Figure 6.5. ♠

In Examples 6.2.1 and 6.2.2, when the parameter µ is varied, a saddle
and a node appear at the same time, and then they collide and finally dis-
appear altogether. Accordingly, this type of bifurcations are called saddle-
node bifurcations.

Next, let’s look at saddle-node bifurcations from a different point of view.
In Eq. (2.2) of Example 6.2.2, the critical points are from x′ = 0 and y′ = 0,
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µ <0

saddle

µ >0 µ =0

xx x

no critical 

  points

y y y

node

node and saddle 

    collide

Figure 6.5: A planar saddle-node bifurcation

which imply y = 0 and −µ − y + x2 = 0. They are two curves in the (x, y)
plane: the x-axis and the curve determined by the function y = −µ + x2.
See Figure 6.6.

xx

y = -µ+x2
y'=0

x'=0

y =0

x'=0

y =0

x'=0

y =0

x

y'=0 y'=0

y = -µ+x2y = -µ+x2

Figure 6.6: Curves determined by y = 0 and y = −µ+ x2

In Figure 6.6, the two intersections of the curves y = 0 and−µ−y+x2 = 0
correspond to the two critical points of the equation because they are from
x′ = 0 and y′ = 0. When the parameter µ is varied, the two curves pull
away from each other and the two critical points move toward each other
and then collide at µ = 0 when the two curves become tangent to each
other. After the two curves pull apart, critical points disappear since there
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are no intersections. This is typically what will happen locally for all saddle-
node bifurcations. See Figure 6.7, where a planar differential equation is
written as x′ = P (x, y, µ), y′ = Q(x, y, µ), and the two curves determined by
P (x, y, µ) = 0 and Q(x, y, µ) = 0 in the (x, y) plane intersect at two points
and then pull apart when the parameter µ is varied.

>

>

saddle node
x'=P(x,y)=0

y'=Q(x,y)=0

y

x

Figure 6.7: Curves determined by x′ = P (x, y, µ) = 0 and y′ = Q(x, y, µ) =
0

In Example 6.2.1, the situation is similar, but the difference is that for
µ > 0, µ + x2 = 0 will not determine a curve in the (x, y) plane; for µ <
0, µ+ x2 = 0 determines two vertical straight lines x = ±

√
−µ in the (x, y)

plane. These lines intersect the curve −y = 0 (the x-axis) to create two
critical points; and for µ = 0, µ + x2 = 0 is the y-axis and −y = 0 is the
x-axis, thus the intersection is the origin. See Figure 6.8.

Additional examples, remarks, and some general results concerning the
saddle-node bifurcations for equations in ℜn, n ≥ 2, can be found in Hale
and Kocak [1991], Hubbard and West [1995], and Chicone [1999].

In order to incorporate the geometric aspects of the qualitative changes
of a system, let’s look at saddle-node bifurcations for scalar differential equa-
tions. Recall that in Example 6.1.2 (and a similar equation x′ = µ − x2 in
Example 1.3.2 in Chapter 1), for some parameter values, there are two crit-
ical points for those scalar equations, one is stable and the other unstable.
When the parameter is varied, the two critical points move toward each
other and collide and then disappear altogether. That is, for scalar differen-
tial equations, if we think of a stable critical point as a “stable node” and
an unstable critical point as a “saddle,” then this situation is the same as
that described for the saddle-node bifurcations of differential equations in
ℜ2. In this sense, we say that the bifurcations in Examples 6.1.2 and 1.3.2
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µ <0µ >0 µ =0

xx x

y y y

x'= µ+x2=0

y'=0 y'=0y'=0

x'=0

x'=0

Figure 6.8: Curves determined by µ + x2 = 0 and −y = 0 in the (x, y)
plane

are “saddle-node bifurcations for scalar differential equations,” and Figure
6.3 is the saddle-node bifurcation diagram of x′ = µ+ x2 in Example 6.1.2.
We also provide the saddle-node bifurcation diagram for x′ = µ−x2 in Fig-
ure 6.9. It illustrates also the stability properties that were not done in
Example 1.3.2 in Chapter 1.

x

µ

stable

unstable

Figure 6.9: A bifurcation diagram determined by x′ = µ− x2

The next example may indicate when a bifurcation will not occur.
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Example 6.2.3 Consider the scalar differential equation

x′ = f(x, µ) = x− µ, (2.5)

where µ ∈ ℜ is a parameter. Now, for any µ ∈ ℜ fixed, f(x, µ) = x− µ = 0
has a unique solution x = µ, thus the number of critical points is one and
will never change. Next, ∂

∂xf(x, µ) = 1 > 0, thus

∂f

∂x
(µ, µ) =

∂

∂x
f(x, µ)|x=µ = 1 > 0,

which indicates, using the stability analysis in Chapter 5, that every critical
point x = µ is unstable, or the stability property of the critical point will
never change. Therefore, no bifurcation can occur. (Notice the different
notations for the partial derivatives, that is, ∂

∂xf(x, µ) means taking a par-

tial derivative with respect to x, and ∂f
∂x (µ, µ) means evaluating the partial

derivative with respect to x at (µ, µ).) ♠

Example 6.2.3 states that there is no bifurcation at (x, µ) = (0, 0). One
reason is that

∂f

∂x
(0, 0) =

∂

∂x
f(x, µ)|x=0,µ=0 =

∂

∂x
x|x=0 = 1 ̸= 0,

thus for (x, µ) near (0, 0), the relationship between x and µ from f(x, µ) = 0
(for solving the critical points) is one-to-one, or the critical point x = x(µ)
can be solved uniquely in terms of µ. (For Example 6.2.3, x(µ) = µ.) Hence
the number of critical points will not change. Moreover,

∂f

∂x
(x(µ), µ) ≈ ∂f

∂x
(0, 0) = 1 > 0 for (x(µ), µ) ≈ (0, 0),

thus for µ ≈ 0, the stability property of the critical point x = x(µ) will not
change either.

Next, review Example 6.1.2 and then compare it with Example 6.2.3.
Now, for Example 6.1.2, f(x, µ) = µ+ x2, hence,

∂f

∂x
(0, 0) =

∂

∂x
f(x, µ)|x=0,µ=0 =

∂

∂x
x2|x=0 = 2x|x=0 = 0,

which means that for (x, µ) near (0, 0), the relationship between x and µ
from f(x, µ) = 0 is not one-to-one. (In fact, for each µ < 0, x = ±

√
−µ are

two solutions of f(x, µ) = 0.)
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If we observe the phenomena carefully, we realize the situations are ex-
actly the ones governed by the “implicit function theorem,” where ∂f

∂x (0, 0)
can be used to check if x = x(µ) can be solved uniquely near the origin.
Therefore, we present the following implicit function theorem which can be
applied to scalar differential equations. See Figure 6.10 for a local picture
explaining this. A proof of the implicit function theorem can be found in
Chow and Hale [1982].

µη

x

γ

Figure 6.10: A picture explaining the implicit function theorem

Theorem 6.2.4 (Implicit function theorem) Assume that f : (x, µ) ∈
ℜ2 → ℜ have continuous first partial derivatives such that

f(0, 0) = 0,
∂f

∂x
(0, 0) ̸= 0. (2.6)

Then there exist constants γ > 0, η > 0, and f(x, µ) = 0 has a unique
solution x = x(µ) such that x(0) = 0, x(µ) is continuously differentiable in
µ, and |x(µ)| ≤ γ when |µ| ≤ η. ♠

For the scalar differential equation x′ = f(x, µ), the implicit function
theorem implies, under the condition (2.6), that x = x(µ) can be uniquely
solved near the origin from f(x, µ) = 0. Thus the number of critical points
will not change. Next, ∂f

∂x (x(µ), µ) ≈
∂f
∂x (0, 0) ̸= 0 when µ ≈ 0, hence (for µ

small) the stability property of the critical point x(µ) will not change either.
Thus, we have the same situation as in Example 6.2.3 and no bifurcation
can occur.

Therefore, we conclude that bifurcations may occur only when the im-
plicit function theorem fails to apply to solve x uniquely in terms of µ, which
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is the case for f(x, µ) = µ+ x2 in Example 6.1.2, where ∂f
∂x (0, 0) = 0. Next,

a further analysis of f(x, µ) = µ+ x2 in Example 6.1.2 shows that

∂2f

∂x2
(0, 0) = 2 ̸= 0.

Now, for a general function f(x) that satisfies

∂f

∂x
(0) = 0,

∂2f

∂x2
(0) ̸= 0,

it follows from the second derivative test in calculus that the graph of the
function f(x) for x near 0 is concave down or concave up with a horizontal
tangent line at x = 0. Thus the graph of the function f(x) looks like a
parabola near x = 0. Therefore, the graph of the function f(x, µ) = µ+x2

in Example 6.1.2 looks like a parabola near the origin. (This is obvious
when you look at the formula of f(x, µ) = µ + x2, but we can derive the
same conclusion using derivatives.)

Next, for f(x, µ) = µ+ x2,

∂f

∂µ
(0, 0) =

∂

∂µ
f(x, µ)|x=0,µ=0 = 1 ̸= 0,

thus f(x, µ) changes sign as µ passes zero, and the positive or negative values
of µ will move the parabola f(x, µ) = µ+x2 above or below the x-axis. Thus,
as the parameter µ is varied and passes µ = 0, the critical points are created
or destroyed. See Figure 6.2.

This is the main reason that caused the saddle-node bifurcation in Ex-
ample 6.1.2. Using the above remarks and geometric interpretation, we can
now prove the following result concerning saddle-node bifurcations for scalar
differential equations.

Theorem 6.2.5 (Saddle-node bifurcation) Let f(x, µ) in Eq. (1.1) be a
scalar function defined on ℜ2. If f has continuous second partial derivatives
such that

f(0, 0) = 0,
∂f

∂x
(0, 0) = 0,

∂2f

∂x2
(0, 0) ̸= 0,

∂f

∂µ
(0, 0) ̸= 0. (2.7)

Then Eq. (1.1) undergoes a saddle-node bifurcation at (x, µ) = (0, 0).

Proof. We verify that for small µ, the graph of the function f(x, µ) looks
like a parabola in x near x = 0, which can be achieved by showing the
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existence of a unique local maximum or minimum value for the function
f(x, µ) in x near x = 0. The local extreme points (where the maximum or
minimum values may occur) of f(x, µ) are the solutions x of

∂

∂x
f(x, µ) = 0. (2.8)

To Solve Eq. (2.8), let’s define F (x, µ) = ∂
∂xf(x, µ). Then condition

(2.7) implies

F (0, 0) = 0,
∂F

∂x
(0, 0) =

∂2f

∂x2
(0, 0) ̸= 0. (2.9)

Thus the implicit function theorem 6.2.4 can be applied to F (not to f)
so that there exist constants γ > 0, η > 0, and F (x, µ) = 0 has a unique
solution x = x(µ), that is,

∂f

∂x
(x(µ), µ) = 0, (2.10)

such that x(0) = 0, x(µ) is continuously differentiable in µ, and |x(µ)| ≤ γ
when |µ| ≤ η. Next, the concavity at (x(µ), µ) for the function f(x, µ)

in x is determined by ∂2f
∂x2 (x(µ), µ), which is, by the continuity, close to

∂2f
∂x2 (0, 0) ̸= 0. Therefore, for µ small,

∂2f

∂x2
(x(µ), µ) ̸= 0. (2.11)

Thus, based on (2.10) and (2.11), the second derivative test in calculus
can be used to argue that for (x, µ) near (0, 0), the local extreme for the
function f(x, µ) in x is uniquely determined at x = x(µ) and the graph of
the function f(x, µ) in x looks like a parabola that opens up or down. More

specifically, f(x, µ) has a local minimum (concave up) if ∂2f
∂x2 (0, 0) > 0; or a

local maximum (concave down) if ∂2f
∂x2 (0, 0) < 0.

Next, let’s examine the function values of f(x, µ) at the local extreme
points x(µ), given by h(µ) = f(x(µ), µ). From (2.7) and (2.10), we have

h(0) = f(0, 0) = 0,

and

dh

dµ
(0) =

(∂f
∂x

(x(µ), µ)
d

dµ
x(µ) +

∂f

∂µ
(x(µ), µ)

)
|µ=0

=
∂f

∂µ
(x(µ), µ)|µ=0 =

∂f

∂µ
(0, 0) ̸= 0, (2.12)
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therefore, h(µ) = f(x(µ), µ) changes sign as µ passes zero. Next, we look

at the different cases for h(µ)∂
2f

∂x2 (0, 0). When h(µ)∂
2f

∂x2 (0, 0) = 0, we have
µ = 0 and h(0) = 0. Thus the local extreme function value of f(x, µ) is
zero, or the parabola is tangent to the x-axis, therefore there is only one

critical point for µ = 0. When h(µ)∂
2f

∂x2 (0, 0) < 0, or when h(µ) and ∂2f
∂x2 (0, 0)

have the opposite signs, the function f(x, µ) in x is either concave up with
the local minimum function value below the x-axis, or concave down with
the local maximum function value above the x-axis. Hence there are two
nonzero critical points such that one is stable and the other unstable. Note
that the condition ∂f

∂µ(0, 0) ̸= 0 implies that x = 0 is not a critical point for

µ ̸= 0 and small. Finally, when h(r)∂
2f

∂x2 (0, 0) > 0, the function f(x, µ) in x
is either concave up with the local minimum function value above the x-axis,
or concave down with the local maximum function value below the x-axis,
in which cases there are no critical points. See Figure 6.11 for the local
pictures for the positions of the parabolas. Therefore, Eq. (1.1) undergoes
a saddle-node bifurcation at (x, µ) = (0, 0). This completes the proof. ♠

f

x

f

x

Figure 6.11: Local pictures showing the positions of the parabolas

Example 6.2.6 Let’s show that the scalar differential equation

x′ = f(x, µ) = µ+ x− ex + 1, (2.13)

undergoes a saddle-node bifurcation at (x, µ) = (0, 0). Now, f(0, 0) =

0, ∂f
∂x (0, 0) = (1−ex)|x=0 = 0, ∂2f

∂x2 (0, 0) = −ex|x=0 = −1 ̸= 0, ∂f
∂µ(0, 0) = 1 ̸=

0, therefore Theorem 6.2.5 can be applied. In this case, the geometry con-
cerning the locations of the functions y = x+ µ and y = ex − 1 in the (x, y)
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plane can be used to obtain the saddle-node bifurcation at (x, µ) = (0, 0),
see an exercise. ♠

Finally, for scalar differential equations, we point out that if a saddle-
node bifurcation occurs at (x, µ) = (0, 0), then f(0, 0) = 0 since x = 0
is a critical point, and ∂f

∂x (0, 0) = 0 because of the tangency condition of
a saddle-node bifurcation. Thus, if in the Taylor expansion of f(x, µ) we
neglect quadratic terms in µ and cubic terms in x, then near (x, µ) = (0, 0),
we obtain

f(x, µ) = µ
∂f

∂µ
(0, 0) + x

∂f

∂x
(0, 0) +

x2

2

∂2f

∂x2
(0, 0) + · · ·

= aµ+ bx2 + · · · (2.14)

where a = ∂f
∂µ(0, 0) and b = 1

2
∂2f
∂x2 (0, 0). The form aµ + bx2 in (2.14) is

called a normal form or representative for scalar saddle-node bifurca-
tions. Therefore, we know now that f(x, µ) = µ+ x2 in Example 6.1.2 and
f(x, µ) = µ− x2 in Example 1.3.2 in Chapter 1 are actually representatives
of all saddle-node bifurcations for scalar equations. In other words, all scalar
saddle-node bifurcations behave in essentially the same fashion as those for
f(x, µ) = µ±x2. More results on the normal forms and the related subjects
can be found in Birkhoff [1927], Chow and Hale [1982], Guckenheimer and
Holmes [1986], and Wiggins [1990].

Exercises 6.2

1. Use linearizations to examine each critical point for Example 6.2.1
when µ < 0.

2. Obtain the saddle-node bifurcation at (x, µ) = (0, 0) for Example 6.2.6
using the geometry concerning the locations of the functions y = x+µ
and y = ex − 1 in the (x, y) plane.

3. Use a Taylor expansion to find the normal form for the equation in
Example 6.2.6.

6.3 Transcritical Bifurcation

We have discussed saddle-node bifurcations in the previous section, where a
key feature is that critical points can be created and destroyed when some
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parameters are varied. However, for some systems in applications, a critical
point may exist for all values of parameters, or will never disappear. For
example, for the logistic equation x′ = rx(1−x) studied in Chapter 1, x = 0
is a critical point for all values of r.

Example 6.3.1 Consider the scalar differential equation

x′ = f(x, µ) = µx− x2, (3.1)

which looks like the logistic equation x′ = rx(1 − x), but here x and µ
are allowed to be positive or negative, (recall that in applications using the
logistic equations in biology, x ≥ 0 is assumed to denote a population). Now,
x = 0 is a critical point for all µ values and x = µ gives a different critical
point if µ ̸= 0. See Figure 6.12 which shows the positions of the function
y = µx− x2 for different µ values, and hence the stability properties.

xx x

µ >0 µ <0µ =0

y = µx-x2 y = µx-x2y = µx-x2

Figure 6.12: Pictures of the function y = µx − x2 showing the stability
properties

Using the stability analysis from Chapter 5, we find that when µ > 0,
x = µ is a stable critical point; when µ < 0, x = µ is an unstable critical
point; and finally, when µ = 0, the two critical points collide such that the
critical point x = 0 is half-stable.

Some of the above descriptions are similar to those of saddle-node bifur-
cations. However, the difference is that here, the two critical points do not
disappear when µ > 0 (or µ < 0), instead they switch their stabilities. That
is, x = 0 changes its stability by transferring its stability property to an-
other critical point. Accordingly, these bifurcations are called transcritical
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bifurcations. See Figure 6.13 for a transcritical bifurcation diagram of
x′ = µx− x2, where the bifurcation value is µ = 0. ♠

x

stable

stable

unstable

unstable µ

Figure 6.13: A transcritical bifurcation diagram of x′ = µx− x2

Next, we look at an application of transcritical bifurcations in physics.

Example 6.3.2 (A solid-state laser) The following is a brief account of
the situation following Haken [1983] and Strogatz [1994]. A collection of
laser-active atoms are embedded in a solid-state matrix, and an external
energy source is applied to pump or excite the atoms out of their ground
states to produce a laser.

When the strength of the pumping is increased, the system goes through
a period of quantitative changes during which the excited atoms oscillate
independently of each other and emit randomly phased light waves. This
effect is just like an ordinary lamp. Then, suddenly, when the strength of
the pumping exceeds a critical level, called a laser threshold, a beam of
radiation that is much more coherent and intense will appear, or a laser is
produced.

Let n(t) be the number of photons and N(t) the number of excited atoms
of the system. The time rate of n(t) is given as

n′ = Gain− Loss.

The “Gain” comes from the stimulated emission, in which photons stim-
ulate excited atoms to emit more photons. This activity happens when
photons encounter excited atoms whose process is random, thus “Gain”
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= Gn(t)N(t), where G > 0 is a “gain coefficient.” Similarly, “Loss” = Ln(t),
giving the escape of photons with a “loss coefficient” L > 0. Therefore,

n′ = Gain− Loss = GnN − Ln.

Next, let’s find the relationship between n and N . After an excited atom
emits a photon, it drops back to its ground state and is no longer excited.
Thus, if we assume that the pump keeps the number of excited atoms fixed
at N0 before a laser is produced, then during the laser process, the actual
number of excited atoms will be determined according to

N(t) = N0 − αn(t),

where α > 0 is the rate at which atoms drop back to their ground states.
Therefore, we obtain

n′ = Gain− Loss = GnN − Ln = (GN0 − L)n− (αG)n2,

which is similar to Eq. (3.1), and hence indicates that a transcritical bifur-
cation takes place when GN0 − L = 0, or at the laser threshold N0 = L

G ,
which is the loss coefficient divided by the gain coefficient.

In physics, this means that when the pump strength is weak, that is,
N0 <

L
G , the critical point n = 0 is stable and no laser is produced. When

the pump strength is increased and passes the laser threshold L
G , or when

N0 >
L
G , the origin n = 0 loses its stability and a stable critical point appears

at n = GN0−L
αG > 0 : spontaneous laser action is taking place, or a laser is

produced. See Figure 6.14 for the function y = (GN0 − L)n − (αG)n2,
showing the stability properties (where n ≥ 0 is assumed to denote the
number of photons); see also Figure 6.15 for a transcritical bifurcation
diagram of the laser. ♠

Transcritical bifurcations, where an origin transfers its stability to an-
other critical point, can also occur for differential equations in higher dimen-
sions.

Example 6.3.3 Consider{
x′ = µx+ x2,
y′ = −y. (3.2)

Similar to Example 6.2.1, all actions are taken in the first equation,
because y = 0 in the second equation is asymptotically stable. Now, (0, 0)
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< L/G N
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Figure 6.14: Pictures of the function y = (GN0 − L)n− (αG)n2, showing
the stability properties

is a critical point and will never disappear. Next, for µ < 0, the origin (0, 0)
is asymptotically stable (a stable node) and the other critical point (−µ, 0)
is unstable (a saddle). For µ > 0, the origin (0, 0) becomes unstable and
the other critical point (−µ, 0) becomes asymptotically stable. Therefore,
the origin transfers its stability to another critical point (−µ, 0), and the
system undergoes a transcritical bifurcation at the bifurcation value µ = 0,
see Figure 6.16. ♠

Note in Example 6.3.3 that even though saddles and nodes appear, how-
ever, since the critical point (0, 0) will never disappear, the bifurcation is
transcritical.

Next, let’s look at the similarity and difference between the saddle-node
and transcritical bifurcations given in Examples 6.1.2 and 6.3.1. Locally,
both of the graphs of f(x, µ) in x′ = f(x, µ) look like parabolas. But the
difference is that for the saddle-node bifurcation, the change of the parameter
µ near the bifurcation value causes the corresponding parabola to move above
or below the x-axis, while the change of µ near the bifurcation value for the
transcritical bifurcation causes the corresponding parabola to move to the
left or the right of the y-axis and keeps x = 0 as a critical point. See Figures
6.2 and 6.12. Consequently, we find that the maximum value of the function
f(x, µ) = µx−x2 for the transcritical bifurcation, when treated as a function
of µ, looks also like a parabola that is tangent to the µ-axis at µ = 0. In fact,
for f(x, µ) = µx− x2, the maximum value occurs when ∂f

∂x = µ− 2x = 0, or
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n

laser

n = (N
0
/a)-(L/aG)

L/G N
0

Figure 6.15: A transcritical bifurcation diagram for a laser

when x = µ
2 , and the maximum function value at x = µ

2 is

f(x, µ) = f(
µ

2
, µ) = µ

µ

2
− (

µ

2
)2 =

µ2

4
,

which is a parabola in µ. The general case is shown in Figure 6.17.
According to this geometric interpretation, we can now prove the follow-

ing result concerning transcritical bifurcations for scalar differential equa-
tions.

Theorem 6.3.4 (Transcritical bifurcation) Let f(x, µ) in Eq. (1.1) be
a scalar function defined on ℜ2. If f has continuous second partial deriva-
tives such that

f(0, µ) = 0, µ ∈ ℜ, ∂f

∂x
(0, 0) = 0,

∂2f

∂x2
(0, 0) ̸= 0,

∂f

∂µ
(0, 0) = 0,

∂2f

∂µ2
(0, 0) = 0,

∂2f

∂x∂µ
(0, 0) ̸= 0. (3.3)

Then Eq. (1.1) undergoes a transcritical bifurcation at (x, µ) = (0, 0).

Proof. Because the conditions in (3.3) imply the first three conditions in
(2.7), then the first part of the proof of Theorem 6.2.5 shows that for µ
small, the local maximum or minimum value for the function f(x, µ) in x
near x = 0 exists uniquely, and the graph of f(x, µ) looks like a parabola in
x that opens up or down.
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Figure 6.16: A planar transcritical bifurcation

Assume that the parabola opens down, or f has a unique local maximum
value. (The case for a unique local minimum value is similar and is left as an
exercise.) Now, f(0, µ) = 0 for µ ∈ ℜ in (3.3) means that x = 0 is a critical
point for any µ, or, as a function in x, f(x, µ) will cross (x, y) = (0, 0) for
any µ. Thus the graph of f(x, µ) in x crosses (x, y) = (0, 0) and goes above
the x-axis and reaches the maximum function value and then goes down and
crosses the x-axis, creating another critical point. See Figure 6.18.

Next, we verify that as the parameter µ is varied and passes µ = 0, the
maximum value of f(x, µ) will appear on both sides of the y-axis. From the
proof of Theorem 6.2.5, the maximum value of f(x, µ) occurs at x = x(µ)
(where x(0) = 0). We will examine the function value at x(µ), given by
h(µ) = f(x(µ), µ), and verify that h(µ) is a parabola as a function in µ.
From (2.10) in the proof of Theorem 6.2.5, we take a derivative in µ and
obtain

∂f2

∂x2
(x(µ), µ)

d

dµ
x(µ) +

∂f2

∂x∂µ
(x(µ), µ) = 0, (3.4)

which implies, from (3.3),

d

dµ
x(µ)|µ=0 ̸= 0. (3.5)
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h(µ)= max. value of f(x,µ)

µ µ

Figure 6.17: The maximum value of f(x, µ) as a function in µ looks like a
parabola

<>

x x

Figure 6.18: The function f(x, µ) goes up and down, creating another
critical point

Now, for h(µ) = f(x(µ), µ), we have h(0) = f(0, 0) = 0 and, from (2.10),

d

dµ
h(µ) =

∂f

∂x
(x(µ), µ)

d

dµ
x(µ) +

∂f

∂µ
(x(µ), µ)

=
∂f

∂µ
(x(µ), µ), (3.6)

then from (3.3) and (3.6),

dh

dµ
(0) =

∂f

∂µ
(x(µ), µ)|µ=0 =

∂f

∂µ
(0, 0) = 0. (3.7)

Next, from (3.3), (3.5), and (3.6),

d2h

dµ2
(0) =

( ∂

∂µ

[∂f
∂µ

(x(µ), µ)
])
|µ=0
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=
∂f2

∂µ∂x
(x(µ), µ)

d

dµ
x(µ)|µ=0 +

∂f2

∂µ2
(x(µ), µ)|µ=0

=
∂f2

∂µ∂x
(x(µ), µ)

d

dµ
x(µ)|µ=0 ̸= 0. (3.8)

Thus, using the second derivative test, we find that as a function in
µ, the graph of the maximum value of f(x, µ) at x(µ), which is given by
h(µ) = f(x(µ), µ), looks locally like a parabola that is tangent to the µ-axis
when µ = 0. See Figure 6.17. Therefore, as the parameter µ is varied and
passes µ = 0, the maximum value of f will occur on both sides of the y-axis
creating stable and unstable critical points, see Figure 6.18. Therefore, a
transcritical bifurcation takes place. This completes the proof. ♠

Exercises 6.3

1. Show that x′ = µx+3x2 undergoes a transcritical bifurcation and find
the bifurcation value.

2. Show that x′ = (2 + µ)x − 5x2 undergoes a transcritical bifurcation
and find the bifurcation value.

3. Make up some examples that undergo transcritical bifurcations in
higher dimensions and verify your claims.

4. Complete the case when f(x, µ) has a unique local minimum value in
the proof of Theorem 6.3.4.

6.4 Pitchfork Bifurcation

In some applications, an object may move in the directions that are sym-
metric with respect to a certain position. For example, the buckling beam
introduced in Chapter 1 could buckle to any direction from its vertical po-
sition. In those cases, the critical points tend to appear and disappear sym-
metrically, creating a type of bifurcations that are different from saddle-node
and transcritical bifurcations. Let’s begin with some examples.

Example 6.4.1 Consider the scalar differential equation

x′ = f(x, µ) = µx− x3, (4.1)
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where µ ∈ ℜ is a parameter. Note that for any fixed µ, function y = µx−x3
is an odd function in x, which indicates that critical point will appear and
disappear symmetrically with respect to the origin x = 0, or the system has
the left-right symmetry. See Figure 6.19 for the function y = µx − x3,
showing the stability properties.

Now, x = 0 is a critical point that will never disappear. For µ ≤ 0,
x = 0 is the only critical point and is asymptotically stable; for µ > 0, two
new asymptotically stable critical points appear at x = ±√

µ, symmetrically
about the origin, and x = 0 loses its stability. Therefore, a bifurcation takes
place at the bifurcation value µ = 0. ♠

y = µx-x3

µ <0 µ =0 µ >0

x x x

y = µx-x3y = µx-x3

Figure 6.19: Pictures of the function y = µx − x3, showing the stability
properties

If we draw the bifurcation diagram for f(x, µ) = µx − x3 in Example
6.4.1, we get Figure 6.20, which looks like a “pitchfork.” Therefore, due to
their appearance, these bifurcations are called pitchfork bifurcations.

In an exercise, you are asked to verify that

x′ = f(x, µ) = µx+ x3, (4.2)

also undergoes a pitchfork bifurcation at µ = 0, and that the bifurcation
diagram is given in Figure 6.21.

Next, let’s look at the difference between equations (4.1) and (4.2). In
Eq. (4.1), x = 0 of x′ = µx is unstable for µ > 0, and −x3 is used as a
stabilizing term that changes the direction field and pulls the solutions
back to the origin. In Eq. (4.2), however, things are so different, because
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x

µ

stable

unstablestable

stable

Figure 6.20: A bifurcation diagram determined by x′ = µx− x3

x = 0 of x′ = µx is already unstable for µ > 0, in addition, x3 is added as
a destabilizing term that makes it even “more unstable,” which in fact
may cause “blow-up.” That is, the solutions may approach ∞ at finite times,
similar to what happened for x′ = x2 discussed in Chapter 2.

The above discussions have applications in engineering, where the pitch-
fork bifurcations caused by “stabilizing terms,” such as −x3, are referred
to as “safe” or “soft,” or the bifurcating critical points x = ±√

µ are sta-
ble, and are called supercritical pitchfork bifurcations. On the other
hand, the pitchfork bifurcations caused by “destabilizing terms,” such as x3,
are referred to as “dangerous” or “hard,” or the bifurcating critical points
x = ±

√
−µ are unstable, and are called subcritical pitchfork bifurca-

tions. “Supercritical” and “subcritical” are used in different texts with
different reasons. For example, in Golubitsky and Schaeffer [1979] they de-
note the directions in which bifurcations take place. That is, a pitchfork
bifurcation at µ = µ0 is said to be supercritical if there is locally only one
critical point for r < r0, or, “supercritical” bifurcates to the right. Accord-
ingly, “subcritical” bifurcates to the left. (Here, the µ-axis points to the
right.)

Sometimes, notations and terminology in Bifurcation Theory are quite
confusing and different texts use different words for the same phenomena.
For example, “saddle-node” bifurcations here are called “turning point” bi-
furcations or “fold” bifurcations in other texts. They are called “blue sky”
bifurcations in Abraham and Shaw [1988] to mean that two branches of
critical points appear “out of the clear blue sky” as a parameter is varied.
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x

µ

unstable

unstablestable

unstable

Figure 6.21: A bifurcation diagram determined by x′ = µx+ x3

The following is an equation in ℜ2 that undergoes a pitchfork bifurcation.
The analysis is left as an exercise.

Example 6.4.2 Consider{
x′ = µx− x3,
y′ = −y. (4.3)

Similar to Example 6.2.1, one only needs to analyze the first equation.
It is left as an exercise to verify that Eq. (4.3) undergoes a pitchfork bifur-
cation, see Figure 6.22. ♠

Next, let’s analyze the Euler’s buckling beam introduced in Chapter 1.

Example 6.4.3 (Euler’s buckling beam) Revisit Euler’s buckling beam
introduced in Chapter 1. To analyze the beam better, we place the beam on
the interval [0, 1] on the horizontal w-axis, shown in Figure 6.23, where a
compressive force Γ ≥ 0 is applied along its axis.

The viscous damping is denoted by δ > 0 and the membrane stiffness by
K > 0. Then, from Huang and Nachbar [1968], Holmes [1979], and Seydel
[1988], the small deflections v(w, t) of the beam satisfy the following partial
differential equation

vwwww +
[
Γ−K

∫ 1

0
v2w(h, t)dh

]
vww + δvt + vtt = 0. (4.4)
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Figure 6.22: A planar pitchfork bifurcation

<
w

V

beam

1

Γ

Figure 6.23: Euler’s buckling beam

To simplify Eq. (4.4), we assume that v(w, t) is perfectly symmetric
in the spatial variable w about w = 0.5 and v(w, t) has only one extreme
(maximum or minimum) in w at w = 0.5. Thus we may take v(w, t) to be

v(w, t) = u(t) sinπw, w ∈ [0, 1], t ≥ 0,

where u(t) denotes the amplitude in time t. (This is a very common practice
in physics where the spatial variable w and the time variable t are separated
in this way.) Plugging this into Eq. (4.4), one obtains an ordinary differential
equation of the amplitude u in the time variable t, given by

u′′(t) + δu′(t)− π2(Γ− π2)u(t) +
1

2
Kπ4u3(t) = 0. (4.5)
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To analyze Eq. (4.5), we change the variables x = u and y = u′, then we
get {

x′ = y,
y′ = π2(Γ− π2)x− δy − 1

2Kπ
4x3,

(4.6)

where δ > 0 and K > 0 are regarded as constants and Γ ≥ 0 as the only
parameter. Now, (0, 0) is a critical point of Eq. (4.6) for all δ,K, and Γ,
and other candidates for critical points are given by

(±

√
2(Γ− π2)

Kπ2
, 0).

Therefore, for Γ ≤ π2, Eq. (4.6) has only one critical point (0, 0) and for
Γ > π2, Eq. (4.6) has three critical points. Accordingly, a bifurcation takes
place at Γ = π2, which is called Euler’s first buckling load.

Next, let’s determine the stabilities of the critical points. For (0, 0), the
matrix of the linearization is given by

A =

[
0 1,

π2(Γ− π2) −δ

]
, (4.7)

thus, p = trA = −δ < 0 and q = detA = −π2(Γ− π2) = π2(π2 −Γ). There-
fore, from the Distribution Diagram 6.1 in Section 1 for planar equations,
we find that (0, 0) is stable for Γ < π2 and unstable (saddle) for Γ > π2.
In practice, this means that the beam will buckle if the compressive force
Γ > π2.

For the critical point (
√

2(Γ−π2)
Kπ2 , 0) under the condition Γ > π2, we

change the variables x1 = x−
√

2(Γ−π2)
Kπ2 and y1 = y, then (left as an exercise)

the matrix of the linearization is given by

A =

[
0 1,

−2π2(Γ− π2) −δ

]
, (4.8)

thus, p = trA = −δ < 0 and q = detA = 2π2(Γ− π2) > 0. Therefore, from

the Distribution Diagram 6.1, we find that (
√

2(Γ−π2)
Kπ2 , 0) is stable. It is also

left as an exercise to verify that (−
√

2(Γ−π2)
Kπ2 , 0) is also stable. Accordingly,

the bifurcation is a pitchfork bifurcation, (in fact, it is supercritical).



302 Chapter 6. Bifurcation

In Eq. (4.6), which is an equation in ℜ2, we are only interested in the
quantity x = u (amplitude). Therefore, we have the bifurcation diagram
in the (Γ, u) plane in Figure 6.24. The diagram in Figure 6.24 shows the
symmetry of the two branches around the Γ-axis, which reveals our basic
assumption of perfect symmetry. This means that the beam could buckle in
any direction in space. When we treat the beam only in the (w, v) plane,
then the beam may buckle “up” (when u is positive) or “down” (when u is
negative), as shown in Figure 6.25. ♠

µ

stable

unstablestable

stable

stable

π2 Γ

Figure 6.24: A bifurcation diagram of Euler’s buckling beam in the (Γ, u)

plane using u = ±
√

2(Γ−π2)
Kπ2

<

buckles up

V = u sin(πw)

w

V

<

buckles down 

V = u sin(πw)

w

V

Γ Γ

Figure 6.25: The beam may buckle “up” or “down”
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Next, let’s examine a phenomenon that frequently occurs in physics ap-
plications.

Example 6.4.4 (Hysteresis) We have indicated earlier that the term x3

in the subcritical pitchfork bifurcation of x′ = µx + x3 will destabilize the
system and cause some danger. In physics applications, a higher order term
is then added to stabilize the system. For simplicity, we assume −x5 is added
such that f(x, µ) = µx + x3 − x5 is still an odd function in x. Now, x = 0
is a critical point for any µ. To get other nonzero (real) critical points, we
solve

µ+ x2 − x4 = 0, or x2 =
1±

√
1 + 4µ

2
,

from which we find none such critical points for µ < −1
4 , two such critical

points if µ = −1
4 , four such critical points if µ ∈ (−1

4 , 0), and two such
critical points if µ ≥ 0. Next, since limx→∞ f(x, µ) = −∞ and f is odd in
x, we must have Figure 6.26, which also shows the stabilities.

f = µx+x3-x5

µ >0

x

µ in(-1/4,0) µ = -1/4 µ <-1/4

xx x

Figure 6.26: Pictures of f(x, µ) = µx+x3−x5, showing the critical points
and stabilities

Accordingly, we derive the bifurcation diagram in Figure 6.27.
Now, let’s start the system in the state x = 0 and increase the parameter

µ; see the arrows in Figure 6.27. The state remains at the origin until
µ = 0. Then, as µ is increased, the origin loses its stability and the state will
jump to one of the two large-amplitude branches. If µ is decreased now,
the state will not jump back to x = 0 at µ = 0, instead it will remain on the
large-amplitude branch until µ = −1

4 , at which the state jumps back to the
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Figure 6.27: The bifurcation diagram of x′ = µx + x3 − x5, showing the
hysteresis effect

origin. This phenomenon, involving the jumps and nonreversible behavior, is
referred to as the hysteresis in physics applications. It is also one expression
stating that the choice of the stable critical point by a system depends on
the past history of the system. The arrows in Figure 6.27 are said to form
a hysteresis loop. Applications in physics, such as magnetic hysteresis of
a magnetic field, can be found in Erber, Guralnik, and Latal [1972]. ♠

Finally, if we analyze the forms of equations in (4.1) and (4.2), we find
that

µx± x3 = x(µ± x2), (4.9)

and µ ± x2 are the typical cases, or normal forms, for saddle-node bifurca-
tions. Thus, we consider

f(x, µ) = xg(x, µ) (4.10)

for pitchfork bifurcations. Now, if we can argue that g(x, µ) undergoes a
saddle-node bifurcation near (0, 0), or the graph of g(x, µ) is a parabola
around the origin x = 0 for x and µ small, and the parabola moves above or
below the x-axis as µ is varied and passes µ = 0, then xg(x, µ) will cause the
two critical points to have the same stability property. That is, a pitchfork
bifurcation will take place, see Figure 6.28.
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xx x

g(x,µ)

x

xg(x,µ) g(x,µ) xg(x,µ)

Figure 6.28: Local pictures for g(x, µ) and xg(x, µ)

According to this remark and geometric interpretation, we have the fol-
lowing result concerning pitchfork bifurcations for scalar differential equa-
tions. The proof is left as an exercise.

Theorem 6.4.5 (Pitchfork bifurcation) Let f(x, µ) in Eq. (1.1) be a
scalar function defined on ℜ2. If f(x, µ) = xg(x, µ) and g has continuous
second partial derivatives such that

g(0, 0) = 0,
∂g

∂x
(0, 0) = 0,

∂2g

∂x2
(0, 0) ̸= 0,

∂g

∂µ
(0, 0) ̸= 0. (4.11)

Then Eq. (1.1) undergoes a pitchfork bifurcation at (x, µ) = (0, 0). ♠

Exercises 6.4

1. Verify that

x′ = f(x, µ) = µx+ x3 (4.12)

undergoes a pitchfork bifurcation at µ = 0, and that the bifurcation
diagram is given in Figure 6.21.

2. Verify that the equation{
x′ = µx− x3,
y′ = −y, (4.13)
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undergoes a pitchfork bifurcation, and that the phase portraits are
given in Figure 6.22.

3. In Example 6.4.3 of Euler’s buckling beam, for the critical point

(
√

2(Γ−π2)
Kπ2 , 0) when Γ > π2 and the change of variables x1 = x−√

2(Γ−π2)
Kπ2 and y1 = y, verify that the matrix of linearization is given

by

A =

[
0 1

−2π2(Γ− π2) −δ

]
. (4.14)

4. In Example 6.4.3 of Euler’s buckling beam, verify that (−
√

2(Γ−π2)
Kπ2 , 0)

is also stable.

5. In Example 6.4.4 concerning hysteresis, verify for f(x, µ) = µx+x3−x5
that we must have Figure 6.26.

6. In Example 6.4.4 concerning hysteresis, verify that the bifurcation di-
agram is given in Figure 6.27.

7. Prove Theorem 6.4.5.

6.5 Poincaré-Andronov-Hopf Bifurcation

So far, we have seen saddle-node, transcritical, and pitchfork bifurcations,
where critical points can be created and destroyed, and their stability prop-
erties can be changed when some parameters are varied. If we analyze the
examples given above for those bifurcations, we find that the eigenvalues of
the linearizations for those equations are all real numbers. Next, we use the
following example to introduce some other possibilities.

Example 6.5.1 Consider the differential equation in ℜ2,{
x′ = µx+ y − x(x2 + y2),

y′ = −x+ µy − y(x2 + y2),
(5.1)

where µ ∈ ℜ is a parameter. When µ = 0, the matrix of the linearization
has a pair of pure imaginary eigenvalues. Following Chapter 4, we change
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Eq. (5.1) to polar coordinates in order to better analyze the system. That
is, let x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t), and obtain{

r′ = r(µ− r2) = µr − r3,
θ′ = −1.

(5.2)

Now, we find that for µ ≤ 0, the origin is an asymptotically stable spiral
point since r ↘ 0 and θ → −∞ as t → ∞. However, as soon as µ becomes
positive, r′ = r(µ − r2) = 0 has a positive constant solution r =

√
µ, hence

a circle appears with radius
√
µ. Moreover, when we regard the equation

r′ = r(µ − r2) as a scalar differential equation on the r-axis, we find that
for a solution r(t), 0 < r(0) <

√
µ implies r′(t) > 0, and r(0) >

√
µ implies

r′(t) < 0. Thus, r =
√
µ is asymptotically stable for the scalar differential

equation r′ = r(µ − r2). Translating this result back to Eq. (5.2) or Eq.
(5.1), we conclude that the circle r =

√
µ (when µ > 0) for Eq. (5.2), or Eq.

(5.1) is an asymptotically stable periodic solution and attracts all nonzero
solutions, and the origin (which is still a solution now) becomes unstable.
See Figure 6.29.

That is, as the parameter µ increases through µ = 0, the critical point
r = 0 (origin) of the system splits into the critical point r = 0 and the circle
r =

√
µ, and the stability of r = 0 is “transferred” to the circle r =

√
µ.

These changes are qualitative property changes, thus we say that Eq. (5.1)
undergoes a bifurcation at the bifurcation value µ = 0. ♠

Remark 6.5.2 The asymptotic stability of periodic solutions (orbits) re-
quires further explanation. For a general autonomous differential equation
x′ = f(x) in ℜn, if x(t) = x(t, 0, x0), t ≥ 0, is a periodic orbit, then
y(t) = x(t + t1, 0, x0), t ≥ 0, is also a periodic orbit for a constant t1 ∈ ℜ.
Now, t1 can be chosen so that y(0) = x(t1, 0, x0) is different from, but close
to x0, hence |x(t)−y(t)| will not approach zero as t→ ∞ (because the initial
difference will be carried after each period). Therefore, x(t) is not asymp-
totically stable using the definition given in Chapter 5. However, the circle
r =

√
µ in Example 6.5.1 should be asymptotically stable in some sense! In

fact, r =
√
µ is asymptotically stable using the definition given in Chapter

5 if other solutions used to compare the differences do not have the same
solution curve of r =

√
µ in ℜ2. Therefore, when we speak of “asymptotic

stability of a periodic orbit x(t)” in this book, we slightly modify the defi-
nition given in Chapter 5 by requiring that other solutions used to compare
the differences do not have the same solution curve of x(t) in ℜn, and we
call it L-asymptotically stable. ♠



308 Chapter 6. Bifurcation

y

x

>

>

>

>

>

>

>

>

y

x

µ >0µ <0

Figure 6.29: The stabilities for the circle r =
√
µ (when µ > 0) and the

origin

The bifurcation in Example 6.5.1 is different from all other bifurcations
we have seen so far, and it can only happen for equations in ℜn with n ≥ 2,
because a pair of conjugate complex eigenvalues for the linearization are
needed to cross the pure imaginary axis as the parameter is varied.

The geometric interpretation of the bifurcation in Example 6.5.1 is that
for µ ≤ 0, the origin is a stable spiral point that attracts local solutions;
as soon as µ > 0, then, all of a sudden, a balloon pops out, and x = 0
transfers its stability to the circles on the balloon and repels solutions to
those circles. See Figure 6.30.

>
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>

>

>

>

>

y x

Figure 6.30: A geometric interpretation of bifurcation in Eq. (5.1)
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The following Figure 6.31 is the bifurcation diagram for Eq. (5.1)
according to the radius r =

√
µ, where r = 0 corresponds to the origin

(x, y) = (0, 0).

r

µ

stable

unstablestable

Figure 6.31: A bifurcation diagram of Eq. (5.1) according to r =
√
µ

Another explanation of the bifurcation in Example 6.5.1 is that when µ
increases through µ = 0, the two conjugate complex eigenvalues cross the
pure imaginary axis (from the left to the right). Then, from the Distribution
Diagram 6.1, the origin will change from “spiral in” to “spiral out,” which
indicates that a circle or a periodic orbit surrounding the origin should be
created to “compromise” or “balance” the two different flows.

The above phenomenon was discovered by Poincaré [1892] and proved
by Andronov [1929] for equations in ℜ2 and then proved by Hopf [1942]
for equations in ℜn for any n ≥ 2 (where there is only one pair of pure
imaginary eigenvalues and no other eigenvalues with zero real parts). To give
all of them credit, we call this type of bifurcations thePoincaré-Andronov-
Hopf bifurcations. Since these bifurcations address the creation of periodic
orbits, it can be applied to physical problems where oscillations can be turned
on or off.

Next, we state the celebrated Poincaré-Andronov-Hopf bifurcation theo-
rem for equations in ℜ2 without proof, because the proof is beyond the scope
of this book since the complicated analysis involves higher order nonlinear
terms. See Marsden and McCracken [1976], Hassard, Kazarinoff, and Wan
[1980], Chow and Hale [1982], Guckenheimer and Holmes [1986], Wiggins
[1990], Arrowsmith and Place [1990], Hale and Kocak [1991], and Glendin-
ning [1994] for additional references.
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Theorem 6.5.3 (Poincaré-Andronov-Hopf bifurcation) Let f(x, µ) in
x′ = f(x, µ) be defined on ℜ2 ×ℜ with f(0, µ) = 0. Assume that f has con-
tinuous third partial derivatives such that the linearization of f in x at x = 0,
given by ∂f

∂x (0, µ), has the eigenvalues

α(µ)± iβ(µ),

with α(0) = 0, β(0) ̸= 0. Moreover, if the eigenvalues cross the pure imagi-
nary axis with nonzero speed, that is,

d

dµ
α(µ)|µ=0 ̸= 0,

then, for any domain D in ℜ2 containing the origin and any given µ0 > 0,
there is a µ∗ with |µ∗| < µ0 such that the differential equation x′ = f(x, µ∗)
has a (nontrivial) periodic orbit in domain D. ♠

Example 6.5.4 (van der Pol’s oscillator) Let’s apply Theorem 6.5.3 to
the equation of van der Pol’s oscillator, given by

y′′ − (2µ− y2)y′ + y = 0,

for a small scalar parameter µ, which is equivalent to{
x′1 = x2,
x′2 = −x1 + 2µx2 − x21x2.

(5.3)

The eigenvalues of the linearization at the origin are given by µ±i
√
1− µ2

for µ small. Now, the conditions of Theorem 6.5.3 are satisfied, thus there
exist periodic orbits of Eq. (5.3) near the origin for small values of µ. ♠

Although we are not going to prove the Poincaré-Andronov-Hopf bifur-
cation theorem, we will briefly outline the major steps of how this theorem is
derived. This will help determine the stability properties of the bifurcating
periodic orbits. According to the reference books Wiggins [1990], Hale and
Kocak [1991], and Glendinning [1994], we assume that a series of reductions
have been performed, such that x′ = f(x, µ) is transformed to its normal
form, given byx

′
1 = α(µ)x1 − β(µ)x2 +

[
a(µ)x1 − b(µ)x2

]
(x21 + x22) +O(|x|5, |x2|5),

x′2 = β(µ)x1 + α(µ)x2 +
[
b(µ)x1 + a(µ)x2

]
(x21 + x22) +O(|x|5, |x2|5),

(5.4)
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where O (called “big O”) denotes the terms of the same or higher orders
than the arguments. Similar to Example 6.5.1, Eq. (5.4) is changed to polar
coordinates, given by{

r′ = α(µ)r + a(µ)r3 +O(r5),

θ′ = β(µ) + b(µ)r2 +O(r4).
(5.5)

Next, since we are concerned with the system near µ = 0, we use Taylor
expansions for functions in µ about µ = 0 and obtain{

r′ = kµr + ar3 +O(µ2r, µr3, r5),

θ′ = β + cµ+ br2 +O(µ2, µr2, r4),
(5.6)

where α(0) = 0 is used in deriving Eq. (5.6) (since we assume that the
eigenvalues of the linearization cross the pure imaginary axis when µ = 0),
and

k = α′(0) ̸= 0, a = a(0), β = β(0) ̸= 0, c = β′(0), b = b(0),

(here α′ and β′ denote the differentiation with respect to µ). The truncated
normal form of Eq. (5.6) up to order three is given by{

r′ = kµr + ar3 = r(µk + ar2),
θ′ = β + cµ+ br2.

(5.7)

Eq. (5.7) is similar to Eq. (5.2) of Example 6.5.1, thus the results about
Eq. (5.2) indicate that for Eq. (5.7), if the first equation in r undergoes
a bifurcation and the θ in the second equation goes to ±∞, then circles
will appear, or a Poincaré-Andronov-Hopf bifurcation will take place for Eq.
(5.7). Finally, for Eq. (5.6) which contains higher order terms, the results in
the aforementioned reference books show that if a Poincaré-Andronov-Hopf
bifurcation happens to Eq. (5.7), then it also happens to Eq. (5.6). (This
part of dealing with higher order terms is the most difficult step in the proof
of the Poincaré-Andronov-Hopf bifurcation theorem.)

The above is an outline of how the Poincaré-Andronov-Hopf bifurcation
theorem is derived. Next, we analyze Eq. (5.7) in order to find more details
about Poincaré-Andronov-Hopf bifurcations and the stabilities of the bifur-
cating periodic orbits. First, we have the following result. The proof is left
as an exercise.
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Lemma 6.5.5 Consider Eq. (5.7) for sufficiently small µ.

1. Assume a = 0. Then the origin is a stable spiral point when µk < 0; a
center when µ = 0; and an unstable spiral point when µk > 0. And a
Poincaré-Andronov-Hopf bifurcation will not occur (that is, no periodic
orbits when µ ̸= 0).

2. If a ̸= 0 and µk
a < 0, then

(
r(t), θ(t)

)
=

(√−µk
a

, [β + cµ+
−bµk
a

]t+ θ0
)

(5.8)

is a periodic orbit of Eq. (5.7).

3. The periodic orbit given in (5.8) (when µk
a < 0) is L-asymptotically

stable if a < 0; unstable if a > 0.

4. The origin is a critical point of Eq. (5.7) for all µ. At µ = 0, the
origin is asymptotically stable if a < 0; unstable if a > 0. ♠

Accordingly, in order for a Poincaré-Andronov-Hopf bifurcation to take
place, we must have a ̸= 0. Also note that if a Poincaré-Andronov-Hopf
bifurcation does happen to Eq. (5.7), then, since we need the radius r > 0,
Eq. (5.7) has a unique periodic orbit having the amplitude O(

√
|µ|) for each

fixed µ ̸= 0 and small. Now, if the bifurcating periodic orbit is stable, then
the origin is unstable since it repels the solutions to the circle, and vice versa.

Based on these observations, and knowing that the properties concerning
bifurcations for Eq. (5.6) and Eq. (5.7) are the same, we can state the
Poincaré-Andronov-Hopf bifurcation theorem for Eq. (5.6) in the following
format, depending on the signs of the constants a ̸= 0 and k ̸= 0.

Theorem 6.5.6 (Poincaré-Andronov-Hopf bifurcation) Consider the
full normal form Eq. (5.6). For µ sufficiently small, one of the following
four cases holds.

1. a < 0 and k > 0. Now, for µ ≤ 0, the origin is an asymptotically
stable critical point; for µ > 0, the origin is an unstable critical point
and there exists a L-asymptotically stable periodic orbit. See Figure
6.32.

2. a < 0 and k < 0. Now, for µ ≥ 0, the origin is an asymptotically
stable critical point; for µ < 0, the origin is an unstable critical point
and there exists a L-asymptotically stable periodic orbit. See Figure
6.33.
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Figure 6.32: Case 1: a < 0 and k > 0. Supercritical

3. a > 0 and k > 0. Now, for µ ≥ 0, the origin is an unstable critical
point; for µ < 0, the origin is an asymptotically stable critical point
and there exists an unstable periodic orbit. See Figure 6.34.

4. a > 0 and k < 0. Now, for µ ≤ 0, the origin is an unstable critical
point; for µ > 0, the origin is an asymptotically stable critical point
and there exists an unstable periodic orbit. See Figure 6.35. ♠

The first two cases are called “supercritical” because the bifurcating pe-
riodic orbits are stable; the last two cases are called “subcritical” because
the bifurcating periodic orbits are unstable. The results for the above four
cases can be verified for Eq. (5.7), see an exercise.

Next, we point out that hysteresis could also happen to Poincaré-
Andronov-Hopf bifurcations, similar to what happened to subcritical pitch-
fork bifurcations.
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Figure 6.34: Case 3: a > 0 and k > 0. Subcritical
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Figure 6.35: Case 4: a > 0 and k < 0. Subcritical

Example 6.5.7 (Hysteresis) Consider the differential equation in polar
coordinates, {

r′ = µr + r3 − r5,
θ′ = 1,

(5.9)

where the first equation for r is the same as the equation in Example 6.4.4
for x. Hence the analysis and Figure 6.27 of Example 6.4.4 can be used here,
with the difference that now we must have r ≥ 0. Accordingly, the origin
is a stable critical point for µ < 0, and an unstable critical point for µ ≥ 0.
For µ ∈ (−1

4 , 0), two circles appear with one stable and the other unstable.
See Figure 6.36.

As µ increases toward zero, the unstable periodic orbit shrinks to become
the origin when µ = 0 and thus makes the origin unstable afterward for
µ > 0. At this point the stable periodic orbit is the only periodic orbit left
that now attracts all solutions (including even those that were attracted to
the origin when µ < 0).

In physics applications, hysteresis effect says that once large-amplitude
oscillations have turned on for µ ≥ 0, they cannot be turned off by bring-
ing µ back to zero. In fact, when µ is decreasing from positive to negative,
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the large-amplitude oscillations will be kept on until µ = −1
4 , where the

stable and unstable periodic orbits collide and then, when µ < −1
4 , the

large-amplitude oscillations are turned off and the system jumps to the ori-
gin, see Figure 6.27. Applications of Poincaré-Andronov-Hopf bifurcations
with hysteresis effects can be found in Drazin and Reid [1981], Dowell and
Ilgamova [1988], and Strogatz [1994]. ♠

>>

µ >0
>

>

>

>

µ in (-1/4,0)

>

>
Figure 6.36: A Poincaré-Andronov-Hopf bifurcation with hysteresis

Exercises 6.5

1. In Example 6.5.1, verify that for µ ≤ 0, the origin is an asymptotically
stable spiral point.

2. In Remark 6.5.2, prove that a periodic orbit x(t) is not asymptotically
stable using the definition given in Chapter 5. Then prove that it is
asymptotically stable using the definition given in Chapter 5 if other
solutions used to compare the differences do not have the same solution
curve of x(t). Give some details for the circle r =

√
µ in Example 6.5.1.

3. Prove Lemma 6.5.5.

4. Use the analysis in Example 6.5.1 to verify the four cases in Theorem
6.5.6 for Eq. (5.7).



Chapter 7

Chaos

7.1 Introduction

Consider the autonomous differential equation with parameter,

x′(t) = f(x(t), µ), or x′ = f(x, µ), (1.1)

where (t, x) ∈ ℜ × ℜn and the parameter µ is in a domain D0 ⊂ ℜk, k ≥ 1.
In Chapter 6, we obtained some results concerning bifurcations for one-
dimensional and two-dimensional differential equations. For example, we
know that when some parameters are varied, critical points and periodic
orbits can be created or destroyed, and their stabilities can be changed. In
this chapter, we will see that things that are even more “severe” or “worse”
than bifurcations can also occur.

First, based on our understanding of differential equations thus far, let’s
ask what do we “expect” of solutions of differential equations. We know
from Chapter 2 that, under some appropriate conditions, the dependence of
solutions with respect to initial data and parameters is smooth, so we expect
that for the initial values that are nearby, the corresponding solutions on any
finite interval should be “reasonably close,” or display “similar” qualitative
properties. Next, differential equations are used to model the movements of
certain systems in applications, thus we expect that the long term properties
of these systems can be predicted using the solutions. Briefly, we expect that
solutions of differential equations behave in an “orderly fashion.”

317
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However, we will see that even for some innocuous looking differential
equations, the solutions could behave very “badly,” or behave in some very
strange and complex fashion. In other words, the solutions that started with
the initial values nearby display radically different qualitative properties,
and for all practical purposes, prediction of the state of the system is limited
to relatively short time intervals since long term prediction is impossible.
This situation is nowadays generally described as chaos, a word that to the
ancient Greeks denoted the infinite formless space that existed before the
creation of the universe.

Let’s begin with some examples.

Example 7.1.1 Consider the scalar differential equation

x′ = 2x,

whose solutions are given by

x(t, 0, x0) = x0e
2t, t ≥ 0,

and ϕ(t) = 0, t ≥ 0, is also a solution. Now, for x0 ̸= 0 but small, solutions
x(t, 0, x0) and ϕ start with their corresponding initial values x0 and 0 that
are nearby, but their difference,

|x(t, 0, x0)− ϕ(t)| = |x0e2t − 0| = |x0|e2t,

grows to ∞ as t → ∞. Is there anything strange about this system? The
answer is no, because even though the small initial discrepancy grows large,
we understand the behavior of the solution x0e

2t. That is, the long term
behavior of the solution x0e

2t is predictable. (It goes to ±∞ depends on
the sign of x0.) Therefore, there is nothing strange about this system. ♠

Next, let’s look at some cases that are even “worse” than the bifurcations
in Chapter 6. For example, if you continue to squeeze a small piece of straight
thin wood, the wood will not only buckle, but will eventually break. Or if
you continue to inflate a tire, after a while the tire will burst. Here, “break”
or “burst” indicates that the system undergoes a drastic and irreversible
qualitative property change, which is more severe than bifurcations. If there
is a solution describing the wood or tire, then after it breaks or bursts, the
solution even ceases to exist. Another way to think about this is that when
the parameters are varied, a system goes from “having orders” to “without
orders.” The next example will pave a way toward some strange and complex
phenomena.



7.1. Introduction 319

Example 7.1.2 Let x0 be any fixed number in [0, 1] and consider a recursion
relation

x1 = µ sinπx0, x2 = µ sinπx1, · · · , xm+1 = µ sinπxm, m = 0, 1, 2, · · · ,

where µ ∈ [0, 1] is regarded as a parameter. We will demonstrate later that
recursion relations are related to differential equations. For x0 = 0.5 and
µ = 0.7, a calculation using the software called Maple with the code

x[0]:=0.5;
for i from 1 by 1 to 100 do
x[i]:=evalf(0.7*sin(Pi*x[i-1]));
od;

gives the following result (note that we use x[m] for xm because it is what
you will see in Maple),

x[1] = .7, x[2] = .566311, x[3] = .684865, x[4] = .585227, x[5] = .675057, x[6]
= .596781, x[7] = .667892, x[8] = .604865, x[9] = .662355, x[10] = .610902,
x[11] = .657941, x[12] = .615582, x[13] = .654356, x[14] = .619296, x[15] =
.651411, x[16] = .622289, x[17] = .648973, x[18] = .624726, x[19] = .646945,
x[20] = .626724, · · · · · ·
x[81] = .636603, x[82] = .636523, x[83] = .636596, x[84] = .636529, x[85] =
.636590, x[86] = .636534, x[87] = .636586, x[88] = .636539, x[89] = .636582,
x[90] = .636542, x[91] = .636578, x[92] = .636545, x[93] = .636575, x[94] =
.636548, x[95] = .636573, x[96] = .636550, x[97] = .636571, x[98] = .636552,
x[99] = .636569, x[100] = .636553.

Now, the sequence {xm} will approach x∗ = .6365, thus we call x∗ =
.6365 an attractor, or a period-1 cycle. See Figure 7.1, where a “corner
point” denotes a point (m,xm), and the straight line segments linking the
points are used to guide you see the trend; that is, only the corner points in
the figure are meaningful.

For x0 = 0.5 and µ = 0.8, we replace 0.7 in the above code by 0.8 and get

x[1] = .8, x[2] = .470228, x[3] = .796503, x[4] = .477309, x[5] = .797968, x[6]
= .474349, x[7] = .797403, x[8] = .475490, x[9] = .797629, x[10] = .475034,
x[11] = .797540, x[12] = .475214, x[13] = .797576, x[14] = .475143, x[15] =
.797562, x[16] = .475171, x[17] = .797567, x[18] = .475160, x[19] = .797565,
x[20] = .475164, · · · · · ·
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Figure 7.1: An attractor x∗ = .6365 of the recursion relation xm+1 =
0.7 sinπxm

x[81] = .797565, x[82] = .475163, x[83] = .797565, x[84] = .475163, x[85] =
.797565, x[86] = .475163, x[87] = .797565, x[88] = .475163, x[89] = .797565,
x[90] = .475163, x[91] = .797565, x[92] = .475163, x[93] = .797565, x[94] =
.475163, x[95] = .797565, x[96] = .475163, x[97] = .797565, x[98] = .475163,
x[99] = .797565, x[100] = .475163.

Now,

{x∗1 = .475163, x∗2 = .797565}

consists of two attractors, or it forms a period-2 cycle since {xm} oscillate
and approach each of the two numbers after every two iterations, see Figure
7.2.

So far, the sequences of iterations are still behaving in an orderly fashion
and the properties of the iterations can be predicted. Next, we will see that
for some other parameter µ values, there are no orders at all. We still take
x0 = 0.5 but use µ = 0.95, then we get

x[1] = .95, x[2] = .148612, x[3] = .427597, x[4] = .925530, x[5] = .220232, x[6]
= .606088, x[7] = .897723, x[8] = .300019, x[9] = .768599, x[10] = .631374,
x[11] = .870229, x[12] = .376661, x[13] = .879571, x[14] = .350907, x[15] =
.847681, · · · · · ·



7.1. Introduction 321

0.5

0.55

0.6

0.65

0.7

0.75

0.8

80 85 90 95 100

Figure 7.2: Attractors x∗1 = .475163 and x∗2 = .797565 of the recursion
relation xm+1 = 0.8 sinπxm

x[81] = .497496, x[82] = .949970, x[83] = .148699, x[84] = .427828, x[85] =
.925685, x[86] = .219782, x[87] = .605052, x[88] = .898730, x[89] = .297167,
x[90] = .763567, x[91] = .642518, x[92] = .856359, x[93] = .414295, x[94] =
.915772, x[95] = .248453, x[96] = .668480, x[97] = .820004, x[98] = .509025,
x[99] = .949618, x[100] = .149738.

Now, unlike the first two cases, the iterations {xm} never settle down
to a single attractor or a periodic cycle. Or, there are no orders and the
behavior of the iterations is unpredictable. In fact, if we plot more points
of (m,xm), then it seems that the xm values will nearly cover all numbers
of some x-interval in [0, 1], see Figure 7.3. In an exercise, you are asked
to start with some initial values that are nearby for xm+1 = 0.95 sinπxm
and then compare how different the sequences become after some iterations.
A good question to ponder is how could these strange and complex things
happen to simple and innocuous looking systems, such as xm+1 = µ sinπxm.

♠

To summarize, when some parameters are varied, such as µ in xm+1 =
µ sinπxm, certain qualitative properties of a system may undergo some dras-
tic (sometimes irreversible) changes that are more severe than bifurcations.
The changes will cause the system to go from “having orders” to “without
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Figure 7.3: Placements of xm+1 = 0.95 sinπxm showing no orders and
unpredictability

orders,” or to a situation that is unpredictable and does not fit any conven-
tional types. This situation is generally called chaos.

The above reveals some chaotic behavior for discrete systems (iterations).
For continuous systems (that is, differential equations), if they are in ℜ or
ℜ2, then based on what we have seen for scalar or planar equations, we do
expect that the trajectories in ℜ or ℜ2 behave orderly (this will be discussed
further in Chapter 8). However, for continuous systems in ℜn, n ≥ 3, the
trajectories will be in spaces of at least three dimensions. Therefore they
could get twisted and twisted and become complex beyond recognition.

A famous example in ℜ3, along with its important contributions, is given
by the Lorenz system,

dx
dt = 10(y − x),
dy
dt = 28x− y − xz,
dz
dt = xy − (8/3)z,

(1.2)

which is used to model the weather forecast (additional details will be given
later). Again, despite of its innocuous looks, the numerical experiments in
a milestone paper of Lorenz [1963] show that the (x, z) plane projection of
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a three-dimensional trajectory of Eq. (1.2) is given in Figure 7.4.
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x

Figure 7.4: The (x, z) plane projection of a three-dimensional trajectory
of the Lorenz system (1.2)

The trajectory in Figure 7.4 does not intersect itself in ℜ3, so the cross-
ings in Figure 7.4 are the result of projection in ℜ2. Moreover, the trajectory
will cruise a few circuits on one side, suddenly move to the other side, cruise
a few circuits, and then suddenly move back – this process will continue for-
ever, in a way that the trajectory will wind around the two sides infinitely
many times without ever settling down. In addition, the way the trajectory
moves around the two sides is unpredictable. Nowadays, the Lorenz system
has become an icon of nonlinear dynamical systems due to its rich source of
examples of various types of bifurcations and chaos that could occur in these
systems. Lorenz showed that the system (1.2) has an attractor whose prop-
erties are so strange and complex, hence it is called a strange attractor.
This is a very important subject in the study of chaos.

This chapter is organized as follows: In Section 2, we study recursion
relations, also called maps, and their bifurcation properties by finding the
similarities to the bifurcations of critical points of differential equations,
hence the results in Chapter 6 can be carried over. In Section 3, we look at
a phenomenon called period-doubling bifurcations cascade, which provides a



324 Chapter 7. Chaos

route to chaos. In Section 4, we introduce some universality results concern-
ing one-dimensional maps. In Section 5, we study some properties of the
Lorenz system and introduce the notion of strange attractors. In Section
6, we study the Smale horseshoe which provides an example of a strange
invariant set possessing chaotic dynamics.

Exercises 7.1

1. For xm+1 = 0.95 sinπxm in Example 7.1.2, start with some initial
values that are nearby and then compare how different the sequences
become after some iterations.

2. Use the Maple software to run the iterations for xm+1 = µ sinπxm
with x0 = 0.5 and µ = 0.5, 0.65, 0.75, 0.85, 0.93, 0.935, 0.94, 0.945.

3. Consider a recursion relation xm+1 = µxm(1−xm). Run the iterations
with x0 = 0.5 and µ = 2.9, 3, 3.05, 3.45, 3.5, 3.56, 3.7, 3.83, 4.

7.2 Maps and Their Bifurcations

Recall in Chapter 2 we utilized Euler’s method to prove the existence of
solutions of

x′ = f(x), x(t0) = x0, t ∈ [t0, b), b ≤ ∞, (2.1)

(where we did not assume a Lipschitz condition, thus uniqueness was not
guaranteed). To do so, we divide the interval [t0, b) into smaller intervals
[t0, t1], [t1, t2], · · · , [tm, tm+1], · · ·, with h = tm+1 − tm being a constant for
m ≥ 0, called the step size. Then the key idea of Euler’s method is that on
every small interval [tm, tm+1], m = 0, 1, 2, · · ·, the derivative

x′(t) is approximated by
x(tm+1)− x(tm)

h
. (2.2)

Hence, Eq. (2.1) is approximated by

x(tm+1)− x(tm)

h
= f(x(tm)), m = 0, 1, 2, · · · . (2.3)

Therefore, based on Euler’s method, if we define the approximate value
of x at tm to be

xm = x(tm), (2.4)
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then from (2.3), we obtain a recursion relation

xm+1 = xm + hf(xm), (2.5)

also called a difference equation, which is a discretized version of
the differential equation (2.1). Now, for a given value x0, the sequence
{x0, x1, x2, · · · , xm, · · ·} determined by Eq. (2.5) is called a solution of the
difference equation (2.5) with the initial value x0.

With this background, we can generalize the ideas mentioned above and,
in general, call a recursion relation (or a difference equation)

xm+1 =M(xm), m = 0, 1, 2, · · · (2.6)

as a map. If a map involves a parameter µ, then it is written as

xm+1 =M(xm, µ), m = 0, 1, 2, · · · (2.7)

and for a given value x0, the sequence {x0, x1(µ), x2(µ), · · · , xm(µ), · · ·} de-
termined by Eq. (2.7) is a solution of the map (2.7) with the initial
value x0. Since maps are originated from differential equations, the con-
cepts of critical points and their stabilities and bifurcations for differential
equations can be, and should be, extended to maps.

In this regard, we analyze (2.2) and find that the condition for a critical
point of a differential equation, that is,

x′(t) = 0, t ≥ t0, (2.8)

is now translated to

x(tm+1) = x(tm), m ≥ 0. (2.9)

Using the map in (2.6), we see that (2.4) and (2.9) imply

M(xm) = xm+1 = x(tm+1) = x(tm) = xm, m ≥ 0,

which is (see an exercise) equivalent to

M(x0) = x0. (2.10)

Accordingly, we make the following definition.

Definition 7.2.1 A point x∗ in the domain of a map M is said to be a
fixed point of M if M(x∗) = x∗; or x∗ is a solution of M(x)− x = 0.
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Now, based on the relationship between (2.8) and (2.10), we find that a
critical point for a differential equation is translated to become a
fixed point of a map. Therefore, we are going to carry the study of critical
points of differential equations to the study of fixed points of maps and their
stabilities and bifurcations. Again, due to the close relationship between
differential equations and maps, the definitions of stabilities for fixed points
of maps are similar to those for critical points of differential equations. For
example, Definition 5.1.1 in Chapter 5 concerning stabilities for differential
equations now reads as follows.

Definition 7.2.2 Let x∗ be a fixed point of the map M in (2.6).

(a). x∗ is said to be stable (or uniformly stable because (2.6) is au-
tonomous) if for any ε > 0, there exists a δ = δ(ε) > 0, such that
|x0 − x∗| ≤ δ implies |xm − x∗| ≤ ε for m ≥ 0, where xm+1 =
M(xm), m ≥ 0.

(b). x∗ is said to be asymptotically stable (or uniformly asymptoti-
cally stable) if it is stable and in addition, there exists an (indepen-
dent constant) r > 0 such that |x0−x∗| ≤ r implies limm→∞ |xm−x∗| =
0, where xm+1 =M(xm), m ≥ 0.

(c). x∗ is said to be unstable if it is not stable.

For bifurcations of fixed points of maps, we should understand them in
the same way as we did for those of critical points of differential equations.
That is, we let the parameter µ in the map (2.7) to vary, and then look
at how fixed points are created and destroyed, and how their stabilities are
changed. Despite the similarities between critical points and fixed points,
we point out that solutions of scalar differential equations flow monoton-
ically on the x-axis, showing simple phase portraits. However, a solution
of a scalar map, {x0, x1, x2, · · ·}, is a set of discrete values on the x-axis
that can jump back and forth. So we anticipate that phase portraits, or
placements of solution sequences of maps, will be much more complex than
phase portraits of differential equations. In fact, maps, because of their dis-
crete structures, even in one-dimensional form, can exhibit some fascinating
phenomena leading to chaos.

Next, let’s introduce the so-called cobweb method, which is very ef-
fective in visualizing scalar maps in geometry. Let M(x) be a scalar map
and start with x0 on the x-axis. We draw the graph of y = M(x) and the
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Figure 7.5: Cobwebs for a scalar map xm+1 =M(xm)

straight line y = x in the (x, y) plane. Then x1 = M(x0) is on the y-axis
and (x0, M(x0)) is on the graph of y =M(x), see Figure 7.5.

Now, to perform the second iteration x2 = M(x1), we should regard
x1 =M(x0) as a value on the x-axis. To visualize this, we draw a horizontal
straight line from (x0, x1) = (x0, M(x0)) such that the x-component of the
intersection of this horizontal straight line and y = x is x1. Now, use x1 as
the x value to start the second iteration x2 =M(x1) such that (x1, M(x1))
is on the graph of y = M(x). This process can be continued to create
something looks like “cobwebs” after we use vertical lines to link points on
the graphs of y =M(x) and y = x. See Figure 7.5.

Example 7.2.3 Consider the scalar map

M(x) = 0.5x, or xm+1 =M(xm) = 0.5xm, m = 0, 1, 2, · · · . (2.11)

The cobwebs for the map (2.11) are given in Figure 7.6.
In this case, the fixed points are from

M(x)− x = 0, or 0.5x− x = 0,

thus x = 0 is the only fixed point. Moreover, from Figure 7.6, any solution
{x0, x1, x2, · · ·} of the map approaches the fixed point x = 0, or the fixed
point x = 0 is asymptotically stable.

Consider the scalar map

M(x) = 3x, or xm+1 =M(xm) = 3xm, m = 0, 1, 2, · · · . (2.12)
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Figure 7.6: Cobwebs for the map M(x) = 0.5x

The cobwebs for the map (2.12) are given in Figure 7.7.

In this case, x = 0 is also the only fixed point. And from Figure 7.7, any
solution of the map gets repelled by the fixed point x = 0, or the fixed point
x = 0 is unstable.

Consider the scalar map

M(x) = −x, or xm+1 =M(xm) = −xm, m = 0, 1, 2, · · · . (2.13)

The cobwebs for the map (2.13) are given in Figure 7.8.

In this case, x = 0 is also the only fixed point. And from Figure 7.8,
for any solution, the distance of each iteration of the map and x = 0 is a
constant, thus the fixed point x = 0 is stable.

Consider the scalar map

M(x) = x+ x3, or xm+1 =M(xm) = xm + x3m, m = 0, 1, 2, · · · . (2.14)

The cobwebs for the map (2.14) are given in Figure 7.9.

Again, x = 0 is also the only fixed point. And from Figure 7.9 (see an
exercise), any solution of the map gets repelled by the fixed point x = 0, or
the fixed point x = 0 is unstable. ♠

From Example 7.2.3, we find the following interesting things:

1. The fixed point x = 0 is asymptotically stable for the map (2.11),
where M ′(0) = 0.5 < 1.
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Figure 7.7: Cobwebs for the map M(x) = 3x

2. The fixed point x = 0 is unstable for the map (2.12), where M ′(0) =
3 > 1.

3. The solutions of the maps (2.11) and (2.12) are monotone, that is,
the iterations are increasing or decreasing monotonically on one side
of the fixed point x = 0, where M ′(0) > 0.

4. The solutions of the map (2.13) jump alternately to both sides of the
fixed point x = 0, where M ′(0) < 0. (This can never happen to solu-
tions of scalar differential equations because they flow monotonically
on the x-axis to critical points or ±∞.)

5. According to the results of the maps (2.13) and (2.14), stability prop-
erties of the fixed point x = 0 cannot be determined when |M ′(0)| = 1.

Next, let’s try to confirm these discoveries in Example 7.2.3 for general
cases. We will restrict our analysis to scalar continuously differentiable maps
M(x) defined on some closed interval [a, b]. That is, we assumeM : [a, b] →
[a, b] and M ′(x) is continuous, even though some results are also true for
other cases or higher order dimensions. Note that the reason we require
M : [a, b] → [a, b] is for the iterations xm+1 =M(xm) to be well defined.

First, let’s analyze the stabilities of a fixed point x∗ = M(x∗), that is,
the properties of |xm − x∗| for a solution sequence {x0, x1, x2, · · · , xm, · · ·}.
Assume that |M ′(x∗)| < 1, then there is a constant d > 0 such that

p = max
|x−x∗|≤d

|M ′(x)| < 1. (2.15)
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Figure 7.8: Cobwebs for the map M(x) = −x

Now, assume |x0 − x∗| ≤ d. Then from the mean value theorem, we have

x1 − x∗ =M(x0)− x∗ =M(x0)−M(x∗) =M ′(c)[x0 − x∗], (2.16)

where |c− x∗| ≤ d. Thus, (2.15) and (2.16) imply

|x1 − x∗| ≤ |M ′(c)||x0 − x∗| ≤ p|x0 − x∗| ≤ |x0 − x∗| ≤ d, (2.17)

which means x1 is still in the range of |x − x∗| ≤ d. Thus, this procedure
can be repeated to conclude that |xk − x∗| ≤ d, k = 1, 2, · · ·. Hence, from
(2.15),

|xm − x∗| = |M(xm−1)−M(x∗)| ≤ p|xm−1 − x∗| ≤ p2|xm−2 − x∗|
≤ · · ·
≤ pm|x0 − x∗| (2.18)

(which can be verified by an induction). As 0 ≤ p < 1, one has pm →
0, m→ ∞. Thus

|xm − x∗| ≤ pm|x0 − x∗| → 0, m→ ∞.

Therefore, the fixed point x∗ is asymptotically stable.
To determine if a solution of a map is monotone, we note from the mean

value theorem that

xm − xm−1 =M(xm−1)−M(xm−2) =M ′(c)[xm−1 − xm−2], c ∈ [a, b].
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Figure 7.9: Cobwebs for the map M(x) = x+ x3

Thus, if M ′(x) > 0 for x ∈ [a, b], then xm − xm−1 will have the same sign
as that of x1 −x0. Also, we find from (2.16) that if M ′(x) < 0 for x ∈ [a, b],
then xm−x∗ will have the opposite sign as that of xm−1−x∗. If we combine
all these analyses, we obtain the following result. The proof is left as an
exercise.

Lemma 7.2.4 Let M : [a, b] → [a, b] be a scalar continuously differentiable
map with a fixed point x∗.

1. x∗ is asymptotically stable if |M ′(x∗)| < 1.

2. x∗ is unstable if |M ′(x∗)| > 1.

3. The derivative test for the stabilities of the fixed point x∗ is inconclusive
when |M ′(x∗)| = 1.

4. If M ′(x) > 0 for x ∈ [a, b], then any solution of the map (2.6) is a
monotone sequence. In this case, the map M is called a monotone
map.

5. If M ′(x) < 0 for x ∈ [a, b], then any solution of the map (2.6) with
x0 ̸= x∗ will jump alternately to both sides of the fixed point x∗. ♠

Now, let’s look at bifurcations of the fixed points of the map (2.7), which
are the solutions of

M(x, µ) = x, or M(x, µ)− x = 0. (2.19)
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That is, we analyze how the fixed points of the map (2.7) are created or
destroyed, and how their stabilities are changed when the parameter µ is
varied. Note in geometry, (2.19) means that fixed points are the x compo-
nents of intersections of the graphs y = M(x, µ) and y = x in the (x, y)
plane, see Figure 7.10.

M(x,µ)

y =xy

xa fixed point

Figure 7.10: Fixed points are the solutions of M(x, µ) = x

Observe that if we define

f(x, µ) =M(x, µ)− x,

then, finding fixed points of the map (2.7) is equivalent to finding solutions
of

f(x, µ) = 0,

which is the same as finding critical points of the differential equation

x′ = f(x, µ).

Now, we look at some examples that reveal the connection between bi-
furcations for critical points and fixed points.

Example 7.2.5 Consider the map

M(x, µ) = x+ µ− x2, (2.20)

from which we find that M(x, µ)− x = 0 is equivalent to µ− x2 = 0. Thus,
the corresponding results from Chapter 6 show that the critical points of



7.2. Maps and Their Bifurcations 333

x′ = µ− x2, or the fixed points of M , undergo a saddle-node bifurcation at
(x, µ) = (0, 0). See Figure 7.11, where the stabilities are determined from
∂M
∂x = (1− 2x)|x=±√

µ = 1∓ 2
√
µ when µ > 0. ♠

x

µ

stable

unstable

Figure 7.11: A saddle-node bifurcation for M(x, µ) = x+ µ− x2

Example 7.2.6 Consider the map

M(x, µ) = x+ µx− x2. (2.21)

Then the fixed points of M are the solutions of M(x, µ)− x = µx− x2 = 0,
which, using the corresponding results in Chapter 6, undergo a transcritical
bifurcation at (x, µ) = (0, 0). See Figure 7.12, where the stabilities are
determined from ∂M

∂x = 1 + µ− 2x at x = 0 and x = µ. ♠

Example 7.2.7 Consider the map

M(x, µ) = x+ µx− x3. (2.22)

Then the fixed points of M are the solutions of M(x, µ) − x = µx − x3 =
x(µ−x2) = 0, which, from Chapter 6 again, undergo a pitchfork bifurcation
at (x, µ) = (0, 0). See Figure 7.13, where the stabilities are determined
from ∂M

∂x = (1 + µ− 3x2)|x=±√
µ = 1− 2µ when µ > 0. ♠

From the above three examples, we find that bifurcations for maps can
be handled in a similar way as those for differential equations. Therefore,
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Figure 7.12: A transcritical bifurcation for M(x, µ) = x+ µx− x2
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Figure 7.13: A pitchfork bifurcation for M(x, µ) = x+ µx− x3

the results in Chapter 6 concerning bifurcations for differential equations
can be applied here to derive the results concerning bifurcations for maps.
Consequently, we have the following results. The proofs are left as exercises.

Theorem 7.2.8 (Saddle-node bifurcation) LetM(x, µ) in the map (2.7)
be a scalar function defined on ℜ2 with continuous second partial derivatives
such that

M(0, 0) = 0,
∂M

∂x
(0, 0) = 1,

∂2M

∂x2
(0, 0) ̸= 0,

∂M

∂µ
(0, 0) ̸= 0. (2.23)

Then the map (2.7) undergoes a saddle-node bifurcation at (x, µ)=(0, 0). ♠
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Theorem 7.2.9 (Transcritical bifurcation) Let M(x, µ) in the map
(2.7) be a scalar function defined on ℜ2 with continuous second partial
derivatives such that

M(0, µ) = 0, µ ∈ ℜ, ∂M

∂x
(0, 0) = 1,

∂2M

∂x2
(0, 0) ̸= 0,

∂M

∂µ
(0, 0) = 0,

∂2M

∂µ2
(0, 0) = 0,

∂2M

∂x∂µ
(0, 0) ̸= 0. (2.24)

Then the map (2.7) undergoes a transcritical bifurcation at (x, µ)=(0, 0). ♠

Theorem 7.2.10 (Pitchfork bifurcation) Let M(x, µ) in the map (2.7)
be a scalar function defined on ℜ2 with M(x, µ) − x = xg(x, µ) and g has
continuous second partial derivatives such that

g(0, 0) = 0,
∂g

∂x
(0, 0) = 0,

∂2g

∂x2
(0, 0) ̸= 0,

∂g

∂µ
(0, 0) ̸= 0. (2.25)

Then the map (2.7) undergoes a pitchfork bifurcation at (x, µ) = (0, 0). ♠

Exercises 7.2

1. Verify that if M(x) = x, then M(M(x)) = x.

2. For xm+1 = M(xm), show that M(xm) = xm, m ≥ 0, if and only if
M(x0) = x0.

3. Examine the map defined by M(x) = 1, x ∈ ℜ.

4. Consider the map M(x) = x. Find the fixed points and determine
their stabilities.

5. Verify that Figure 7.9 is the cobwebs for the map (2.14).

6. Verify (2.18) using an induction.

7. Prove Lemma 7.2.4.

8. Determine the stabilities for the fixed points in Example 7.2.5.

9. Determine the stabilities for the fixed points in Example 7.2.6.

10. Determine the stabilities for the fixed points in Example 7.2.7.
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11. Prove Theorem 7.2.8.

12. Prove Theorem 7.2.9.

13. Prove Theorem 7.2.10.

7.3 Period-Doubling Bifurcations: Route to Chaos

From Lemma 7.2.4(5) of the previous section, we know that if x∗ is a fixed
point of a map M and dM

dx < 0, then a solution sequence (different from x∗)
of the map will jump alternately to both sides of the fixed point x∗. Now, if
x∗ is unstable, then the solution cannot approach x∗. Next, if the solution
is a bounded sequence, then the odd iterates, which are on one side of x∗,
will converge to a point x+ ̸= x∗. Therefore the even iterates, which are
on the other side of x∗, will converge to the point M(x+). In this case, we
have x+ = limm→∞ x2m+1 and M(x+) ̸= x+ (since M(x+) and x+ are on
different sides of x∗), and

M(M(x+)) = M(M( lim
m→∞

x2m+1)) = lim
m→∞

M(M(x2m+1))

= lim
m→∞

x2(m+1)+1 = x+. (3.1)

Thus,

{x+, M(x+), M(M(x+)), M(M(M(x+))), · · ·}
= {x+, M(x+), x+, M(x+), · · ·} (3.2)

is a solution that takes the two values x+ and M(x+) alternately. Accord-
ingly, (3.2) is called a solution of period 2, or a period-2 cycle or a
period-2 orbit.

Based on the above notations, we define

M [2](x) =M(M(x)), · · · , M [k](x) =M(M [k−1](x)), · · ·

and we have the following definition.

Definition 7.3.1 A point x⋆ is said to be a period-k point of a map M
if M [j](x⋆) ̸= x⋆, j = 1, 2, · · · , k− 1, M [k](x⋆) = x⋆. The set {x⋆, M(x⋆),
M [2](x⋆), · · · ,M [k−1](x⋆)} of a period-k point x⋆ is said to be a period-k
cycle, or a period-k orbit of the map M .
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For example, x+ (orM(x+)) in (3.2) is a period-2 point, and {x+, M(x+)}
is a period-2 cycle. Since a period-k point of a map M is a fixed point of
the map M [k], its stabilities are defined in the same way as those for fixed
points of the map M [k].

Definition 7.3.2 A period-k point of a map M is said to be stable, asymp-
totically stable, or unstable if it is, respectively, a stable, an asymptotically
stable, or an unstable fixed point of the map M [k].

Accordingly, the derivative d
dxM

[k](x) and Lemma 7.2.4 can be used to
test the stabilities of period-k points of a mapM . If a bifurcation happens to
a map M in such a way that period-2 points appear, then the bifurcation is
called a period-2 bifurcation, or a period-doubling bifurcation. Some
texts also call a period-2 bifurcation as a flip bifurcation to mean that
the map M will “flip” alternately around the two sides of some value. A
typical period-doubling bifurcation diagram is shown in Figure 7.14, which
looks like a pitchfork bifurcation, but they mean different things. That is,
in Figure 7.14, one branch is x and the other is M(x).

x

µ

x

m(x)

>

>

Figure 7.14: A typical period-doubling bifurcation diagram

Next, we study period-doubling bifurcations. In order for a map M to
jump alternately, we use Lemma 7.2.4 and assume dM

dx (x0) < 0. Observe

that if dM
dx (x0) ∈ (−∞,−1) ∪ (−1, 0), then the stabilities of x0 will be pre-

served under small perturbations to the map M and to the point x0. Thus
interesting things may occur near x0 when dM

dx (x0) = −1.
Because period-doubling bifurcations of a map M is related to bifurca-

tions of fixed points of the mapM [2], thus, whenM [2] is regarded as a general
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map, Theorems 7.2.8, 7.2.9, and 7.2.10 can be applied to M [2] and obtain
results concerning period-doubling bifurcations. For example, we have the
following result. The proof is left as an exercise.

Theorem 7.3.3 (Period-Doubling Bifurcation) LetM(x, µ) in the map
(2.7) be a scalar function defined on ℜ2 with continuous partial derivatives
and M(0, µ) = 0, µ ∈ ℜ, ∂M

∂x (0, 0) = −1, M [2](x, µ) − x = xg(x, µ) and g
has continuous second partial derivatives such that

g(0, 0) = 0,
∂g

∂x
(0, 0) = 0,

∂2g

∂x2
(0, 0) ̸= 0,

∂g

∂µ
(0, 0) ̸= 0. (3.3)

Then the map M [2](x, µ) undergoes a pitchfork bifurcation and the map
M(x, µ) undergoes a period-doubling bifurcation at (x, µ) = (0, 0). ♠

Observe that in general, a fixed point of M [2] may also be a fixed point
of M . However, we point out that under the conditions in Theorem 7.3.3,
the bifurcating nonzero fixed points of M [2] from Theorem 7.3.3 cannot be
fixed points of M . That is, there is a δ > 0 such that there is no nonzero
fixed point of M for |x| ≤ δ and |µ| ≤ δ. Otherwise, there are xm ̸= 0 and
µm ̸= 0 with xm → 0 and µm → 0, m → ∞, such that M(xm, µm) = xm.
From ∂M

∂x (0, 0) = −1 and the continuity of ∂M
∂x , we get

M(xm, µm)−M(0, µm)

xm
−→ −1, m→ ∞.

But
M(xm, µm)−M(0, µm)

xm
=
M(xm, µm)− 0

xm
=
xm
xm

= 1,

a contradiction.
After these remarks, we are ready to analyze a very important example,

the logistic map, given by

x→M(x, µ) = µx(1− x), (3.4)

which is nowadays regarded as an icon of bifurcations and chaos. The dis-
crete map (3.4) is related to the logistic equation for population growth
introduced in Chapter 1. Due to the map’s innocuous appearance (3.4), es-
pecially after seeing how easy the logistic differential equation is handled in
Chapter 1, you probably think that the analysis of the logistic map is also
easy. Then just wait: A whole new world is going to unfold.



7.3. Period-Doubling Bifurcations: Route to Chaos 339

In an influential article by May [1976], where the map (3.4) is analyzed
in detail, he plead “for the introduction of these difference equations into
elementary mathematics courses, so that students’ intuition may be enriched
by seeing the wild things that simple nonlinear equations can do.”

The logistic map (3.4), which has become a subject of great interest re-
cently, has benefited from the advancement in modern computer technology.
This is evidenced by a surge of research articles in this area in the 1970s.
Since “analysis” becomes extremely difficult and unmanageable at certain
stages, numerical solutions can lend a helping hand.

In the map (3.4), we assume x ∈ [0, 1]. The maximum value of x(1−x) is
1
4 at x = 1

2 , hence, to be able to continue the iterations, we assume 0 ≤ µ ≤ 4.
Next, the fixed points of the logistic map are the solutions of

µx(1− x)− x = x(µ− µx− 1),

which are given by

x∗ = 0, x∗µ = 1− 1

µ
. (3.5)

Now, in order to use x∗µ = 1 − 1
µ to denote a fixed point in [0, 1] that is

different from x∗ = 0, we further assume µ ∈ (1, 4], see Figure 7.15.

M(x,µ) = µx(1-x)

y =x

1

1< µ <4

1

x* =0 xµ
* =1-(1/µ)

Figure 7.15: Fixed points x∗ = 0 and x∗µ = 1 − 1
µ of the logistic map

µx(1− x) with 1 < µ ≤ 4

Since
∂

∂x
M(x, µ) = µ(1− 2x),
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we have

∂M

∂x
(x∗, µ) =

∂M

∂x
(0, µ) = µ,

∂M

∂x
(x∗µ, µ) = 2− µ.

Therefore, the fixed point x∗ = 0 is unstable since we assume µ > 1; the
fixed point x∗µ = 1 − 1

µ is stable if 1 < µ < 3 (where −1 < 2 − µ < 1) and
unstable if 3 < µ ≤ 4 (where 2 − µ < −1). Note that 2 − µ > 1 cannot
happen because we assume µ > 1.

Because the stabilities of x∗µ are different on the two sides of µ = 3, we
ask: What is going to happen when µ is increased through 3? At
µ = 3, ∂M

∂x (x∗µ, µ) = 2−3 = −1, thus from the conditions in Theorem 7.3.3, it
is a hint that a period-doubling bifurcation might occur. Another reason why
a period-doubling bifurcation might occur is that, now, the fixed point x∗µ =

1 − 1
µ will lose its stability as soon as µ > 3, so that any solution sequence

cannot approach either of the two fixed points x∗ = 0 and x∗µ = 1− 1
µ . But

the solution sequence is in [0, 1] and hence is bounded, and, for µ ≈ 3, the
solution sequence flips on the two sides of x∗µ since ∂M

∂x (x∗µ, µ) = 2 − µ < 0.
Thus, it is plausible that the fixed point x∗µ undergoes a period-doubling
bifurcation, creating a stable period-2 orbit with one branch on each side of
x∗µ.

Next, we first verify that a period-doubling bifurcation occurs at µ = 3
by using geometry and numerics. Then we will prove this by using Theorem
7.3.3.

The cobwebs for µx(1 − x) with different µ values are given in Figure
7.16, where x0 = 0.705. From Figure 7.16, we find that the fixed point
x∗µ = 1− 1

µ is stable for µ ≤ 3, but unstable for µ = 3.4. Moreover, part (c)
in Figure 7.16 indicates that a period-2 orbit is likely to occur.

Now, some numerics. For µ = 3.4, x∗µ = 1 − 1
3.4 ≈ 0.7059. We start

with x0 = 0.705 such that x0 and x∗µ ≈ 0.7059 are very close. Simi-
lar to the calculations for xm+1 = r sinπxm, we use Maple to calculate
xm+1 = 3.4xm(1− xm) and obtain

x[1] = .707115, x[2] = .704151, x[3] = .708295, x[4] = .7024843071, x[5] =
.7106003584, x[6] = .699201, x[7] = .715083, x[8] = .692712, x[9] = .723730,
x[10] = .679811, x[11] = .740070, x[12] = .654045, x[13] = .769318, x[14] =
.603390, x[15] = .813655, x[16] = .515508, x[17] = .849182, x[18] = .435443,
x[19] = .835830, x[20] = .466540, · · · · · ·
x[81] = .842155, x[82] = .451960, x[83] = .842153, x[84] = .451965, x[85] =
.842155, x[86] = .451961, x[87] = .842153, x[88] = .451964, x[89] = .842154,
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x[90] = .451962, x[91] = .842154, x[92] = .451963, x[93] = .842154, x[94] =
.451962, x[95] = .842154, x[96] = .451963, x[97] = .842154, x[98] = .451962,
x[99] = .842154, x[100] = .451963.

From this numerical solution, we find that even though x0 = 0.705 is so
close to x∗µ ≈ 0.7059, the iterations {xm} move away from x∗µ ≈ 0.7059
quickly. They appear to settle down, in an alternating fashion, to the two
values

{.451963, .842154}, (3.6)

which indicates that a period-2 orbit {x,M(x, 3.4)} = {.451963, .842154}
comes into being. See Figure 7.17.

The above can also be seen from the graph of the second iteration
M [2](x, µ) of the logistic map M in (3.4), which is given by

M [2](x, µ) = M(M(x, µ), µ) = µM(x, µ)[1−M(x, µ)]

= µ2[x− (µ+ 1)x2 + 2µx3 − µx4]. (3.7)

By using the sketching techniques in calculus or using Maple software,
one obtains the graphs of M [2](x, µ) for different µ values in Figure 7.18.

Note that the two fixed points x∗ = 0 and x∗µ = 1− 1
µ of the mapM(x, µ)

will be carried over to become two fixed points of the mapM [2](x, µ). Figure
7.18 shows that µ = 3 is the last time the graph of y =M [2](x, µ) intersects
the graph y = x twice at x∗ = 0 and x∗µ = 1 − 1

µ . When µ = 3.4, two new
intersections are created, and cobwebs can be drawn to verify that the two
new intersections are stable. This demonstrates in geometry that a stable
period-2 orbit is created.

Next, let’s do some theoretical analysis. The fixed points of M [2](x, µ)
are the solutions of M [2](x, µ)− x = 0, or

µ2[x− (µ+ 1)x2 + 2µx3 − µx4]− x = 0, (3.8)

which is a polynomial of degree 4 in x. Using the fact that the two fixed
points x∗ = 0 and x∗µ = 1 − 1

µ of the map M(x, µ) are also fixed points

of the map M [2](x, µ), we can perform a long division (dividing (3.8) by
x(1− µ+ µx)), and obtain

x(1− µ+ µx)[µ2x2 − (µ+ µ2)x+ 1 + µ] = 0. (3.9)
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Figure 7.16: Cobwebs for µx(1 − x): (a) µ = 2.9; (b) µ = 3; (c) µ = 3.4,
where x0 = 0.705 and the first 500 iterates are plotted
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Figure 7.17: The numerical solution of the logistic map with µ = 3.4 and
x0 = 0.705

The new fixed points ofM [2](x, µ) are the solutions of µ2x2−(µ+µ2)x+
1 + µ = 0, which are given by (note that we assume µ > 1)

x∗± =
µ+ 1±

√
(µ+ 1)(µ− 3)

2µ
. (3.10)

Now, for the discriminant to be nonnegative, we must have µ ≥ 3. Next,
observe that when µ = 3, x∗± = 1+3

6 = 2
3 = 1 − 1

3 is the same as the fixed

point x∗µ = 1 − 1
µ of the map M at µ = 3. Thus, new fixed points of M [2]

(different from the two of M) appear when µ > 3. It can be verified (see an
exercise) that for µ > 3,

M(x∗+, µ) = x∗− and M(x∗−, µ) = x∗+,

thus {x∗+, x∗−} is really a period-2 orbit of period-doubling bifurcating points
of the map M .

For the stabilities of x∗±, we take a derivative of M [2](x, µ) with respect
to x and evaluate at x = x∗±, and obtain (see an exercise)

∂M [2]

∂x
(x∗±, µ) = 4 + 2µ− µ2 = −(µ− 1)2 + 5. (3.11)

Since we now consider µ ≥ 3, we see that ∂M [2]

∂x (x∗±, µ) = −(µ− 1)2 + 5

is decreasing in µ. To determine the stabilities using |∂M [2]

∂x (x∗±, µ)| < 1, we
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Figure 7.18: Graphs of M [2](x, µ): (a) µ = 2.9; (b) µ = 3; (c) µ = 3.4
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solve −(µ− 1)2 + 5 = ±1 and find that −(µ− 1)2 + 5 = 1 at µ = 3;

| − (µ− 1)2 +5| < 1 for 3 < µ < 1+
√
6; −(µ− 1)2 +5 = −1 at µ = 1+

√
6;

and −(µ− 1)2 + 5 < −1 for µ > 1 +
√
6. The following Figure 7.19 is the

period-doubling bifurcation diagram near µ = 3. Notice that when µ = 3,
x∗µ = 1− 1

µ = 2
3 .

2/3

1 3 µ61+ 

x

Figure 7.19: Period-doubling bifurcation diagram near µ = 3 for the logis-
tic map

In Figure 7.19, the solid curves represent attractors, or stable period-1
or period-2 points of the map M for the corresponding µ values, and the
broken curves are for unstable fixed points. For example, for µ = 3.4, the
stable period-2 points x∗± in (3.10) are given by

x∗+ =
µ+ 1 +

√
(µ+ 1)(µ− 3)

2µ
≈ 0.842154,

x∗− =
µ+ 1−

√
(µ+ 1)(µ− 3)

2µ
≈ 0.451963,

which means that for the map M with µ = 3.4, we can start with any
x0 ∈ (0, 1), and the solution sequence {x0, x1, x2, · · ·} will eventually settle
down to the two values 0.842154 and 0.451963, which matches well with a
numerical solution we did above using x0 = 0.705 in Figure 7.17.

We summarize these as follows.

Proposition 7.3.4 Consider the logistic map M(x, µ) = µx(1−x) in (3.4)
with µ ∈ (1, 4]. The fixed point x∗µ = 1 − 1

µ of the map M(x, µ) is stable
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for 1 < µ < 3, unstable for 3 < µ ≤ 4, and undergoes a period-doubling
(period-2) bifurcation as µ is increased through 3, (or the map M [2](x, µ)
undergoes a bifurcation at µ = 3), creating a period-2 orbit that is stable for
3 < µ < 1 +

√
6 ≈ 3.4494897 and unstable for 1 +

√
6 < µ ≤ 4.

The above analysis can be used to verify this proposition. However, we
will look at how to apply Theorem 7.3.3 to the map M [2](x, µ) to obtain the
results concerning the period-doubling bifurcation.

Proof of Proposition 7.3.4. To be able to apply Theorem 7.3.3, we need
to transform the fixed point x∗µ = 1 − 1

µ to the origin and transform the
bifurcation value µ = 3 to zero. Thus, we change (x, µ) to (y, λ) according
to

y = x− (1− 1

µ
), λ = µ− 3.

Then the logistic map M(x, µ) = µx(1− x) becomes

(1− 1

3 + λ
)− (1 + λ)y − (3 + λ)y2 = x∗µ − (1 + λ)y − (3 + λ)y2. (3.12)

Next, in order to analyze the bifurcation from x∗µ, see Figure 7.19, we
should regard x∗µ as the “origin” in the vertical direction. That is, we should
analyze the bifurcation of −(1 + λ)y − (3 + λ)y2 at (y, λ) = (0, 0). Define

M(y, λ) = −(1 + λ)y − (3 + λ)y2. (3.13)

Then we obtain

M(0, λ) = 0, λ ∈ ℜ, ∂M

∂y
(0, 0) = −1,

and,

M
[2]
(y, λ) = M(M(y, λ), λ)

= −(1 + λ)[M(y, λ)]− (3 + λ)[M(y, λ)]2

= (1 + λ)2y − λ(1 + λ)(3 + λ)y2

−2(3 + λ)2(1 + λ)y3 − (3 + λ)3y4, (3.14)

thus,

M
[2]
(y, λ)− y = y[(2λ+ λ2)− λ(1 + λ)(3 + λ)y

−2(3 + λ)2(1 + λ)y2 − (3 + λ)3y3]
def
= yg(y, λ). (3.15)
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Next, for the function g defined in (3.15), we have

g(0, 0) = 0,
∂g

∂y
(0, 0) = 0,

∂2g

∂y2
(0, 0) = −36 ̸= 0,

∂g

∂λ
(0, 0) = 2 ̸= 0, (3.16)

therefore, according to Theorem 7.3.3, the mapM
[2]
(y, λ) undergoes a pitch-

fork bifurcation at (y, λ) = (0, 0). Thus the map M [2](x, µ) undergoes a
pitchfork bifurcation at (x, µ) = (1 − 1

µ , 3) = (23 , 3), or the map M(x, µ)

undergoes a period-doubling bifurcation at (x, µ) = (23 , 3). This completes
the proof. ♠

This concludes the detailed treatment of the logistic map M(x, µ) =
µx(1−x) near µ = 3 using geometry, numerics, and theoretical analysis; and
the period-doubling bifurcation diagram near µ = 3 is given in Figure 7.19.
In short, we find from the above analysis that the logistic map undergoes a
period-doubling bifurcation at µ = 3 because

∂M
∂x (x∗µ, µ)|µ=3 = −1, and

the fixed point x∗µ of M(x, µ) loses its stability when

µ is increased through 3.

(3.17)

Based on the above analysis and Proposition 7.3.4, it is natural to ask:
What is going to happen when µ is increased through 1 +

√
6 ≈

3.4494897? Now, for the period-2 orbit x∗± =
µ+1±

√
(µ+1)(µ−3)

2µ given in

(3.10) (which are fixed points of the map M [2](x, µ)), we know from (3.11)
and Proposition 7.3.4 that

∂M [2]

∂x (x∗±, µ)|µ=1+
√
6 = −1, and

the fixed points x∗± of M [2](x, µ) lose their stability when

µ is increased through 1 +
√
6.

(3.18)

That is, (3.18) is a duplication of (3.17), or the situation for the map
M [2](x, µ) and its fixed points x∗± at 1+

√
6 is a duplication of the situation

for the map M(x, µ) and its fixed point x∗µ at µ = 3. Therefore, if we regard

M [2](x, µ) as M(x, µ) and x∗± as x∗µ, then we expect M [2](x, µ) to undergo a

period-doubling bifurcation at 1 +
√
6, such that fixed points of the second

iteration of M [2], M [2](M [2]) = M [4], will appear, or a period-4 orbit will
come into being.
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How difficult it is to “analyze” M [4] near µ = 1 +
√
6? In the

above, we provided a detailed analysis for the map M [2] near µ = 3, which
you can use to compare and find what kind of analysis we should perform for
the mapM [4]. If you do, you will find that the analysis forM [4] is extremely
difficult and unmanageable, because M [4] is now a polynomial of degree
16. Even though the 4 fixed points of M [2] will be carried over to become 4
fixed points of M [4], we are still left with a polynomial of degree 12 to
be factored! In this sense, we give up “analysis” and leave the stage and
the show to “numerical experiments” and “graphical demonstrations.”

For example, for µ = 3.4495 > 1 +
√
6 (≈ 3.4494897), a calculation with

x0 = 0.5 using Maple gives

x[1] = .71740, x[2] = .69932, x[3] = .72532, x[4] = .68724, x[5] = .74143,
· · · · · ·
x[981] = .84831, x[982] = .44386, x[983] = .85150, x[984] = .43617, x[985] =
.84832, x[986] = .44385, x[987] = .85150, x[988] = .43617, x[989] = .84832,
x[990] = .44384, x[991] = .85149, x[992] = .43618, x[993] = .84832, x[994] =
.44384, x[995] = .85149, x[996] = .43619, x[997] = .84833, x[998] = .44383,
x[999] = .85149, x[1000] = .43619,
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Figure 7.20: A period-4 orbit for the logistic map with µ = 3.4495
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Figure 7.21: Cobwebs for the logistic map with µ = 3.25, 3.525, 3.555, and
3.568 showing the stable period 2, 4, 8, and 16 orbits, where x0 = 0.5 and
the first 500 iterates are plotted
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which is also plotted in Figure 7.20. They show the existence of a period-4
orbit. (Note, compared to previous calculations, it now takes more iterations
for the sequence to settle down.) In an exercise, you are asked to use a
computer software to plot the graph ofM [4](x, µ) with µ = 3.4495, and then
verify that a period-4 orbit exists.

In fact, for the logistic map µx(1 − x), the numerical experiments from
May [1976], Collet and Eckmann [1980], and Cvitanovic [1984] show that
there is a sequence µm ∈ [3, 4] such that µm is the first period-doubling
bifurcation value at which a stable period-2m orbit appears, and the stable
orbit loses its stability at the next period-doubling bifurcation value µm+1.
The first few µm values are approximately given by the following,

µ1=3, µ2=1+
√
6 ≈ 3.44949, µ3=3.54409, µ4=3.56441, µ5=3.56876, · · · .

See the cobwebs in Figure 7.21 for the logistic map with µ = 3.25, 3.525,
3.555, and 3.568, showing the corresponding stable period-2m orbits for m =
1, 2, 3, 4.

If µm → 4 as m → ∞, then things are not that bad, because then we
can simply say that on the µ-interval (1, 4], there is a sequence of period-
doubling bifurcations that is carried to the end of the interval at µ = 4, such
that for each fixed µ ∈ (1, 4), the map has only a finite number of attractors
(which are stable period-2m fixed points of M [2m]) and a finite number of
unstable orbits (since a stable orbit loses its stability at the next µm value).

However, the “bad news” is that µm → µ∞ ≈ 3.56994 as m → ∞. See
Figure 7.22 for a period-doubling bifurcations cascade.

Therefore, for µm near µ∞ as m → ∞, there will be 2m ≈ ∞ number
of attractors distributed inside the x-interval [0, 1], that is why the situa-
tion is so “bad.” We now see that the period-doubling bifurcations as µ is
increased through 3 and 1 +

√
6 are only the beginning of a fascinating se-

quence of bifurcations that will eventually lead to some very complicated
and unexpected behavior.

The “worst” is yet to come. That is, we now should ask: What is go-
ing to happen when µ is increased through µ∞ ≈ 3.56994? It turns
out that for some µ values in (µ∞, 4], the corresponding solution sequences
of the map behave in very erratic ways and never settle down to periodic
orbits, or the paths of solution sequences are nonperiodic and completely
unpredictable for all practical purposes. For example, for µ = 3.8, the nu-
merical solution with x0 = 0.5 using Maple gives
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Figure 7.22: µm → µ∞ ≈ 3.56994 and the period-doubling bifurcations
cascade

x[1] = .790305, x[2] = .629747, x[3] = .886029, x[4] = .383729, x[5] = .898628,
x[6] = .346163, x[7] = .860069, x[8] = .457328, · · · · · ·
x[981] = .567515, x[982] = .932678, x[983] = .238600, x[984] = .690347,
x[985] = .812318, x[986] = .579337, x[987] = .926081, x[988] = .260128,
x[989] = .731353, x[990] = .746606, x[991] = .718903, x[992] = .767909,
x[993] = .677253, x[994] = .830609, x[995] = .534651, x[996] = .945437,
x[997] = .196025, x[998] = .598877, x[999] = .912848, x[1000] = .302313,

and the cobwebs are given in Figure 7.23, showing that the solution se-
quence is unpredictable or chaotic.

Moreover, these solutions are “sensitively dependent” on initial values:
Solutions started with initial values that are very close can diverge widely
from each other after some iterations. In an exercise, you are asked to carry
out a numerical solution with µ = 3.8 and x0 = 0.505 for the logistic map
and compare it with the numerical solution given above for µ = 3.8 and
x0 = 0.5. This situation, showing unpredictability and sensitive dependence
on initial values, is in general referred to as chaos for discrete systems, and
it is often said that the period-doubling bifurcations cascade of the
logistic map is a route to chaos.
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Figure 7.23: Cobwebs for the logistic map with µ = 3.8 showing chaotic
behavior

Now, probably you would expect that the behavior of the logistic map
become more and more chaotic when µ is increased from µ∞ ≈ 3.56994
to µ = 4. However, the numerical experiments show a truly amazing phe-
nomenon: After seeing the nonperiodic and chaotic iterations that nearly
cover some x-intervals in [0, 1] for some µ values, such as µ = 3.8 in Figure
7.23, then, all of a sudden, a stable period-3 orbit emerges for (approx-
imately) 3.8284 ≤ µ ≤ 3.8415. For example, a numerical solution with
x0 = 0.5 and µ = 3.84 (which is close to µ = 3.8 in Figure 7.23) using Maple
gives

x[1] = .79862, x[2] = .61756, x[3] = .90692, x[4] = .32413, x[5] = .84123, x[6]
= .51286, x[7] = .95936, x[8] = .14969, x[9] = .48879, x[10] = .95951, x[11] =
.14915, x[12] = .48733, x[13] = .95938, x[14] = .14962, x[15] = .48860, x[16]
= .95950, x[17] = .14921, x[18] = .48749, x[19] = .95939, x[20] = .14957,
· · · · · · x[981] = .48800, x[982] = .95944, x[983] = .14940, x[984] = .48800,
x[985] = .95944, x[986] = .14940, x[987] = .48800, x[988] = .95944, x[989] =
.14940, x[990] = .48800, x[991] = .95944, x[992] = .14940, x[993] = .48800,
x[994] = .95944, x[995] = .14940, x[996] = .48800, x[997] = .95944, x[998] =
.14940, x[999] = .48800, x[1000] = .95944,
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which shows that

{.14940, .48800, .95944}

is a stable period-3 orbit for µ = 3.84. The set of these stable period-3 orbits
for 3.8284 ≤ µ ≤ 3.8415 is called a period-3 window. To understand why
this happens, we need to look at the map M [3](x, µ) of the logistic map M

because period-3 orbits are from fixed points of M [3](x, µ). In an exercise,
you are asked to plot the graphs of M [3](x, µ) for µ = 3.8 and 3.84, and use
them to argue that when µ is increased from µ = 3.8 to 3.84, the graph of
y = M [3](x, µ) intersects the graph of y = x and creates a stable period-3
orbit. Refer to the graphs in Arrowsmith and Place [1990].

After this period-3 window, a period-doubling bifurcation will occur to
this stable period-3 orbit, creating a stable period-6 orbit. Similar to the case
for the period-2m cascade, there follows a cascade of stable period-(3× 2m)
orbits. Then these stable period-(3× 2m) orbits accumulate at µ ≈ 3.8495,
and then a new window comes into being, and period-doubling bifurcations
come into play again · · ·.

Now, with the above analysis and description, it is time to introduce the
so-called Final State Diagrams (a name taken from Peitgen, Jurgens, and
Saupe [1992]) in Figure 7.24, which plots “all” attractors of the logistic
map M(x, µ) = µx(1 − x) for “all” parameter µ values. That is, depend-
ing on the printing device, the µ-interval [2.8, 4] and the x-interval [0, 1] are
divided according to the horizontal and the vertical pixel resolutions. (As
a reference, a computer monitor’s resolution is about 1000 × 800 pixels.)
For each parameter value µ that is determined by the resolution, iterations
{xm} are generated with an arbitrary initial x0 value. Typically the first few
hundreds of iterations are discarded to allow the solution sequence to settle
down to its eventual behavior, and the next few hundreds of iterations are
plotted. The parameter range is traversed one pixel at a time and eventu-
ally all parameter values set by the resolution are covered. See Figure 7.24,
which is generated using Maple with the code

u[0]:=2.8; N:=300; pix:=(4-2.8)/N; Max:=1000; Min:=500;

for i from 1 by 1 to N do

x[i,0]:=0.5; u[i]:= u[i-1]+pix;

for m from 0 by 1 to Max do

x[i,m+1]:= u[i]*x[i,m]*(1-x[i,m]);

od;

od:
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plot([seq([seq([u[i],x[i,k]],k=Min..Max)],i=1..N)],

color=black,style=point,symbol=point);

0

0.2

0.4

0.6

0.8

1

2.8 3 3.2 3.4 3.6 3.8 4

Figure 7.24: The Final State Diagrams for the logistic map

Note that the Final State Diagrams in Figure 7.24 is different from a
bifurcation diagram for fixed points (such as Figure 7.19), because unstable
fixed points are not shown in Figure 7.24. All of the results we have derived
for the logistic map M(x, µ) = µx(1 − x) can be found in Figure 7.24. For
example, when µ = 3.4, the period-2 orbit is given by {0.451963, 0.842154},
which can be determined from Figure 7.24. Also note that the white band
near µ = 3.835 is the period-3 window mentioned above. (Now, imagine
the Final State Diagrams in Figure 7.24 as a dark house, then you will
understand why the word “window” is used.)

Compare the logistic differential equation and the logistic map. It is now
clear that the logistic map is much more complex and difficult to handle be-
cause unlike scalar differential equations where solutions flow monotonically
on the x-axis, the solution sequences of the logistic map can jump back and
forth, leading to some strange and unexpected behavior, or chaos.
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Exercises 7.3

1. Verify that if M(x) = x, then M [m](x) = x, m ≥ 1.

2. Prove Theorem 7.3.3.

3. Prove that points {x,M(x),M [2](x), · · · ,M [k−1](x)} of a period-k orbit
are distinct.

4. Verify the pictures in Figure 7.15 for different µ values.

5. Divide the µ-interval [2.8, 4] into N=100 subintervals. For each subin-
terval, arbitrarily select a µ value and calculate (using a computer
software such as Maple) the corresponding logistic map with an arbi-
trary initial value x0. Plot your calculations in the (µ, x) plane and
compare it with Figure 7.24. Do the same with N=50, 200, 300,· · · .

6. Use the sketching techniques in calculus (that is, use derivatives) or
use Maple software to sketch the three functions in Figure 7.18.

7. Derive (3.9).

8. For the x∗± given by (3.10) for µ > 3, verify that M(x∗+, µ) = x∗− and
M(x∗−, µ) = x∗+.

9. Verify ∂M [2]

∂x (x∗±, µ) = 4 + 2µ− µ2 in (3.11).

10. Derive (3.12).

11. Derive (3.16).

12. Use a computer software to plot the graph of M [4](x, µ) of the logistic
map with µ = 3.4495, and then verify that a period-4 orbit exists.

13. Carry out a numerical solution with µ = 3.8 and x0 = 0.505 for the
logistic map and compare it with the numerical solution given in this
section for µ = 3.8 and x0 = 0.5.

14. Plot the graphs of M [3](x, µ) of the logistic map for µ = 3.8 and 3.84,
and use them to argue that when µ is increased from µ = 3.8 to 3.84,
the graph of y = M [3](x, µ) intersects the graph of y = x and creates
a stable period-3 orbit.
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7.4 Universality

In the previous section, we have seen how strange and complex the Final
State Diagrams are for the logistic map in Figure 7.24. Now, the sine map

M(x) = µ sinπx, x ∈ [0, 1], µ ∈ [0, 1], (4.1)

in Example 7.1.2 is completely different from the logistic map, therefore
we may expect the Final State Diagrams for the sine map (4.1) will be a
completely different “monster.” However, the amazing thing is that the Final
State Diagrams for the sine map (4.1) given in Figure 7.25 resembles Figure
7.24 of the logistic map almost perfectly. The calculations in Example 7.1.2
can be used to support the Final State Diagrams for the sine map (4.1) in
Figure 7.25. For example, for µ = 0.7, Example 7.1.2 indicates that x∗ =
.6365 is an attractor, which can be seen in Figure 7.25; for µ = 0.8, Example
7.1.2 indicates that x∗1 = .475163 and x∗2 = .797565 are two attractors (or a
period-2 cycle), which can also be seen in Figure 7.25; finally, for µ = 0.95,
Example 7.1.2 indicates that the iterations {xm} never settle down to a
single attractor or a periodic cycle, and cover nearly all values from 0.2 to
0.9, which is evident in Figure 7.25.

The difference between the Final State Diagrams for the two maps (the
logistic map and the sine map) is in the horizontal axis: [2.8, 4] for the logistic
map and [0.7, 1] for the sine map. Otherwise, the qualitative properties of
the two diagrams for the two maps are the same: they both start with one
single attractor, then period-doubling bifurcations lead them to chaos, then
periodic windows occur, then chaos, · · · .

This observation in fact illustrates a remarkable universality result of
Metropolis, et al. [1973] for any unimodal map µf(x), where the function
f(x) is concave down and has a unique maximum. See Figure 7.26 for a
unimodal map µf(x), which includes the logistic map and the sine map as
special cases.

Metropolis, et al. [1973] proved that for all unimodal maps, as the
parameter µ is varied, the numbers of periodic attractors appear in the
same order, now called the universal sequence or U-sequence:

1, 2, 2× 2, 4× 2, · · · , 6, · · · , 5, · · · , 3, 3× 2, · · ·

where 1 is for the first attractor; 2 is for the first period-doubling bifurcation;
2 × 2 = 22 is for the second period-doubling bifurcation, and 4 × 2 = 23 is
for the third period-doubling bifurcation; · · ·, 6, 5, and 3 are for the three
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Figure 7.25: The Final State Diagrams for the sine map (4.1)

large visible windows; and 3 × 2 is for the first period-doubling bifurcation
of the visible period-3 window, · · ·.

The U-sequence has been found in experiments on the Belousov-
Zhabotinsky chemical reaction. That is, within the experimental resolution,
the periodic states occurred in the exact order predicted by the U-sequence,
see Strogatz [1994] for further details.

Next, let’s look at another universality result for unimodal maps. For a
given unimodal map, define a sequence µm such that µm is the first period-
doubling bifurcation value at which a stable period-2m orbit appears. For
example, for the logistic map, we know from the previous section that

µ1 = 3, µ2 = 1+
√
6 ≈ 3.44949, µ3 = 3.54409, µ4 = 3.56441, µ5 = 3.56876, · · ·

(we use µ here for the logistic map). Now define

∆m = µm+1 − µm,

which in geometry measures the distance between consecutive bifurcation
values, see Figure 7.27.
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Figure 7.26: A unimodal map µf(x)

Consider the ratio

δm =
∆m

∆m+1
.

For example, for the logistic map,

δ1 =
∆1

∆2
=

3.44949− 3

3.54409− 3.44949
= 4.7514799;

δ2 =
∆2

∆3
=

3.54409− 3.44949

3.56441− 3.54409
= 4.6555118;

δ3 =
∆3

∆4
=

3.56441− 3.54409

3.56876− 3.56441
= 4.6712643; · · · . (4.2)

Feigenbaum [1979] verified (see de Melo and van Strien [1993] for refer-
ences of a formal proof) that the series {δm} converges and

δ = lim
m→∞

δm = 4.669 · · ·

which is an important mathematical constant, such as π and e. This useful
result can be applied to any unimodal map and estimate when the next
bifurcation will occur.

Finally, we introduce one more astonishing universality result of
Sarkovskii [1964] concerning general one-dimensional maps (not necessarily
unimodal maps). Let’s order the positive integers in the following way, called
the Sarkovskii ordering:

3 ≺ 5 ≺ 7 ≺ 9 ≺ · · ·
2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ 2 · 9 ≺ · · ·
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Figure 7.27: The distance between consecutive bifurcation values given by
∆m

22 · 3 ≺ 22 · 5 ≺ 22 · 7 ≺ 22 · 9 ≺ · · ·
23 · 3 ≺ 23 · 5 ≺ 23 · 7 ≺ 23 · 9 ≺ · · ·
· · · · · ·
· · · ≺ 24 ≺ 23 ≺ 22 ≺ 2 ≺ 1. (4.3)

That is, write all the odd numbers except 1, then 2 times these odd
numbers, 22 times these odd numbers, 23 times these odd numbers, etc,
finally, write the powers of 2 in decreasing order. They look strange, but
they include all positive integers.

Theorem 7.4.1 (Sarkovskii) Let f : ℜ → ℜ be a continuous map. If f
has a period-p orbit, then f has a period-q orbit if p ≺ q in the Sarkovskii
ordering. ♠

Theorem 7.4.1 is such a powerful result, and indicates, in particular,
that if f has a period-3 orbit, then f has periodic orbits of every integer
period. Applying this to the logistic map, for which we have calculated in
the previous section that {.14940, .48800, .95944} is a period-3 orbit for
µ̂ = 3.84, we conclude that for µ̂ = 3.84 the logistic map has periodic orbits
of every integer period. Note that we don’t see them (except period-3) in
the Final State Diagrams in Figure 7.24 because they are unstable. Next,
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for any µ ∈ [µ̂, 4] = [3.84, 4], the corresponding map also has a period-3 orbit
(which may be unstable for some µ values); thus the map also has periodic
orbits of every integer period. This idea was utilized by Li and Yorke [1975]
in their famous paper “Period Three Implies Chaos.”

Some related topics concerning universality results can be found in
Glendinning [1994], Strogatz [1994], and Smith [1998].

Exercises 7.4

1. For the sine map (4.1), divide the µ-interval [0, 1] into 100 subintervals.
For each subinterval, arbitrarily select a µ value and calculate, using
a computer software such as Maple, the corresponding sine map with
an arbitrary initial value x0. Plot your calculations in the (µ, x) plane
and compare it with Figure 7.25.

2. Use a computer software to plot the graph of M [4](x, µ) of the sine
map with µ = 0.85, and then verify that a period-4 orbit exists.

3. Plot the graphs of M [3](x, µ) of the sine map for µ = 0.925 and 0.94,
and use them to argue that when µ is increased from µ = 0.925 to
0.94, the graph of y = M [3](x, µ) intersects the graph of y = x and
creates a stable period-3 orbit.

4. Use the analysis for the logistic map in the previous section as a guide
and carry out similar analysis for the sine map.

5. Consider the map

M(x, µ) =

{
2µx, 0 ≤ x ≤ 1

2 ,
2µ(1− x), 1

2 < x ≤ 1,
µ ∈ [0, 1],

where for each fixed µ the graph of M(x, µ) in x looks like a “∧,” thus
it is called a tent map.

(a) Divide the µ-interval [0, 1] into 100 subintervals. For each subin-
terval, arbitrarily select a µ value and calculate, using a computer
software such as Maple, the corresponding tent map with an arbi-
trary initial value x0. Plot your calculations in the (µ, x) plane.

(b) Use the analysis for the logistic map in the previous section as a
guide and carry out similar analysis for the tent map.
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7.5 The Lorenz System and Strange Attractors

We have seen that chaotic behavior can occur to discrete systems (maps or
difference equations). For continuous systems (differential equations), solu-
tions of scalar differential equations behave orderly because they are mono-
tone flows on the x-axis. For differential equations in ℜ2, solutions move
in a plane and also behave orderly due to the famous Poincaré-Bendixson
theorem to be derived in Chapter 8. For differential equations in ℜn, n ≥ 3,
solutions are in space, thus chaotic behavior can occur.

A major contribution in this area was given by Lorenz in 1963, at a time
computer technology made heavy numerical calculations possible. The so-
called Lorenz system has generated a great deal of interest in analysis and
numerical solutions of nonlinear dynamical systems and chaos, and has be-
come another icon of nonlinear dynamics. It is also a rich source of examples
of various types of bifurcations and chaotic behavior in nonlinear dynamics.

The Lorenz system is a simplified version of a set of complicated equa-
tions modeling the motion of convective fluid (or weather for short) warmed
from below, but still retains the interesting and representative behavior of
the original equations. It is a differential equation in ℜ3 given by


dx
dt = σ(y − x),
dy
dt = rx− y − xz,
dz
dt = xy − bz,

(5.1)

where x measures the rate of convective overturning, y measures the horizon-
tal temperature variation, and z measures the vertical temperature variation,
and σ, r, and b are positive parameters that are proportional to some num-
bers derived from some physics experiments, such as the Prandtl number
and the Rayleigh number.

Similar to the logistic map, the Lorenz system (5.1) looks so innocuous,
and were it not for the two nonlinear terms xz and xy, the system can be
solved completely using the results of Chapter 3. However, as we will see,
the solutions of the Lorenz system can behave very “strangely” or “badly”
as the parameters are varied.

First, we outline some results about the Lorenz system that can still be
handled by using “analysis,” see Lorenz [1963], Sparrow [1982], and Guck-
enheimer and Holmes [1986] for more details. The origin (0, 0, 0) is a critical
point for all parameter values, thus let’s look at the linearized equation at
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(0, 0, 0), whose matrix is given by −σ σ 0
r −1 0
0 0 −b

 . (5.2)

Now, the eigenvalues are given by

−b, −(1 + σ)±
√
(1 + σ)2 − 4σ(1− r)

2
. (5.3)

If 0 < r < 1, then −4σ(1− r) < 0, and

(1 + σ)2 − 4σ(1− r) > (1 + σ)2 − 4σ = (1− σ)2 ≥ 0.

Thus, all three eigenvalues are real negative numbers. Therefore, the origin
(0, 0, 0) of Eq. (5.1) is asymptotically stable when 0 < r < 1, using the
stability analysis from Chapter 5. This result can also be established by
examining the Liapunov function

V =
1

2σ
[x2 + σy2 + σz2], (5.4)

and its derivative using Eq. (5.1),

dV

dt
= x(y − x) + y(rx− y − xz) + z(xy − bz)

= −x2 + (1 + r)xy − y2 − bz2

≤ −x2 + 1 + r

2
(x2 + y2)− y2 − bz2

= −(1− 1 + r

2
)x2 − (1− 1 + r

2
)y2 − bz2. (5.5)

Now, for 0 < r < 1, we have

dV

dt
≤ −(1− 1 + r

2
)x2 − (1− 1 + r

2
)y2 − bz2 ≤ 0, (5.6)

and

dV

dt
< 0 if (x, y, z) ̸= (0, 0, 0), (5.7)

which implies that V and −V ′ are positive definite. Thus, using the stability
analysis from Chapter 5, the origin (0, 0, 0) of Eq. (5.1) is asymptotically
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stable when 0 < r < 1. It is also true that the origin (0, 0, 0) is the only
critical point when 0 < r < 1, see an exercise.

When r > 1, the origin loses its stability because one (and only one)
eigenvalue given in (5.3) becomes positive. Now, two new critical points
appear at

C1 = (
√
b(r − 1),

√
b(r − 1), r−1), C2 = (−

√
b(r − 1), −

√
b(r − 1), r−1),

therefore, the system (5.1) undergoes a bifurcation at the bifurcation value
r = 1. For the parameter values σ = 10 and b = 8

3 selected in Lorenz
[1963], it is shown that using the linearizations near C1 and C2 and then the
eigenvalues of the corresponding matrices, the critical points C1 and C2 are
stable for 1 < r < 24.74 (approximately), and unstable for r > 24.74 (ap-
proximately). Moreover, Poincaré-Andronov-Hopf bifurcations take place at
C1 and C2 when r ≈ 24.74.

That is, for r > 24.74, all critical points of the Lorenz system are unsta-
ble, thus the trajectories cannot approach the three critical points. Accord-
ingly, we ask: Where do the trajectories go when r > 24.74? Based
on our current understanding of the trajectories on a line or on a plane of
scalar or planar equations, we may guess that the trajectories of the Lorenz
system would go to infinity or “pile up” at some periodic orbits. If that is
the case, then there is nothing strange about the Lorenz system. However,
things are so complex and strange about the Lorenz system, since now the
trajectories are in ℜ3 and can behave in erratic ways. In fact, the following
result says that the trajectories of Eq. (5.1) cannot go to infinity.

Proposition 7.5.1 Consider the Lorenz system (5.1). For any fixed pa-
rameter values σ, b, and r, there is a sphere with radius R, SR, in ℜ3 such
that every trajectory of Eq. (5.1) eventually enters SR and never thereafter
leaves it.

Proof. Consider the Liapunov function

V =
1

2σb
[rx2 + σy2 + σ(z − 2r)2], (5.8)

which is related to the distance from (x, y, z) to (0, 0, 2r). Its derivative using
Eq. (5.1) gives

dV

dt
=

r

b
x(y − x) +

1

b
y(rx− y − xz) +

1

b
(z − 2r)(xy − bz)
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= −r
b
x2 − 1

b
y2 − (z2 − 2rz)

= −r
b
x2 − 1

b
y2 − (z − r)2 + r2. (5.9)

Then dV
dt ≥ 0 (or r

bx
2+ 1

by
2+(z−r)2 ≤ r2) defines a bounded and closed

set D in ℜ3 including the point (0, 0, 2r). Therefore, there exists a sphere
with radius R, SR, in ℜ3 such that D is inside the interior of SR.

Consequently, dV
dt < 0 on the boundary or outside of SR. Now, a tra-

jectory inside SR cannot leave SR because dV
dt < 0 on the boundary of SR.

Next, if a trajectory starts from a point Q that is outside of SR, then Q is
inside a sphere with radius R∗ > R. For the closed and bounded set in ℜ3

defined by R ≤
√
x2 + y2 + z2 ≤ R∗, there is a constant δ > 0 such that

dV
dt ≤ −δ. Thus for the trajectory from Q, the corresponding V value de-
creases and (see an exercise) the trajectory enters SR at some finite t value.
This completes the proof. ♠

Now we know that the trajectories of the Lorenz system are confined in
a bounded set in ℜ3, so the next question is: Will the trajectories pile
up at some periodic orbits? The answer is that for the parameter values
σ = 10, b = 8

3 , and r near 28, there are no stable periodic orbits. Thus for
those parameter values, the trajectories are bounded but cannot pile up at
some periodic orbits. Then the question is: Where do the trajectories
go and how do they behave? Now, it is time to introduce Figure 7.28,
showing some pictures of a trajectory of Eq. (5.1) derived using numerical
experiments with σ = 10, b = 8

3 , and r = 28. See Lorenz [1963], Sparrow
[1982], and Guckenheimer and Holmes [1986] for additional references.

The trajectory in Figure 7.28 does not intersect itself in ℜ3, so the cross-
ings in Figure 7.28 are the result of projection in ℜ2. Moreover, the numerical
experiments indicate that all trajectories are attracted to a set that resem-
bles a butterfly in motion. That is, the set looks like a “thick” surface with
an infinite number of sheets or wings, or looks like a “book” with an infi-
nite number of pages. Next, the most bizarre thing is that the set has zero
volume and the dimension of the set is about 2.05, not even an integer!
Because things are so strange about this set, it is nowadays called a strange
attractor.

The numerical experiments also indicate that the solutions of Eq. (5.1)
are “sensitively dependent” on initial values. That is, solutions started with
initial values that are nearby diverge, or display radically different dynamical
behavior, after a short time, which makes the long time prediction impos-
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Figure 7.28: A trajectory of the Lorenz system with σ = 10, b = 8
3 , and

r = 28
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sible. In fact, Lorenz found that every time he tried to recompute a given
solution using the same computer and program, he got a different solution,
and those solutions looked as if they were not related. The reason was that
his recorded values of x, y, and z were less accurate than the internal rep-
resentation of the computer, so that actually those solutions started with
different but nearby initial values.

Moreover, in the projection onto the (x, z) plane in Figure 7.28 that
looks like a butterfly, a trajectory will cruise a few circuits on one side, then
suddenly move to the other side and cruise a few circuits, and then suddenly
move back · · ·, and this process will continue forever, such that the trajectory
will wind around the two sides infinitely many times without ever settling
down. And the fashion in which the trajectory moves around the two sides
is unpredictable. Similar to discrete systems, the nonperiodic behavior or
unpredictability of solutions and the sensitive dependence on initial values
is generally called chaos for continuous systems (differential equations).

Since we mentioned the nonperiodic behavior of solutions for the param-
eter values σ = 10, b = 8

3 , and r near 28, we also must mention that for
other r values, bifurcations can happen and periodic orbits will appear for
the Lorenz system, in ways similar to those of the logistic map. In fact,
for 145 < r < 167, the bifurcation diagram of the period-doubling cascade
of the Lorenz system is very similar to those of the logistic map given in
Section 7.3. See Sparrow [1982] for additional details.

Now, a periodic orbit of the Lorenz system, Γ, is in ℜ3 and is not easy
to deal with. A main tool here is to find a two-dimensional hypersurface,∑
, that is perpendicular to Γ at some point p0 of Γ, and then look at how

trajectories leave and return to
∑
. More precisely, if p ∈

∑
is sufficiently

near p0, then using continuous dependence on initial conditions, the trajec-
tory leaving p will return to

∑
. Thus we can denote P (p) ∈

∑
the point of

first return of the point p to
∑
. See Figure 7.29. We call

∑
a Poincaré

section and the map P a Poincaré map (or a first return map), because
this idea was introduced by Poincaré [1892] in his study of the three body
problem in celestial mechanics, where he reduced the study of a continuous
time system (differential equation) to the study of an associated discrete
time system (map).

With this Poincaré section and Poincaré map, the analysis of trajectories
near a periodic orbit Γ of the Lorenz system in dimension three is reduced
to a two-dimensional map. Now, p0 is a fixed point of the Poincaré map,
and the collection of points on

∑
can provide us with very good information

about the trajectories near Γ. For example, if p1 ∈
∑

is another fixed point
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Figure 7.29: A Poincaré section and a Poincaré map

of P , then the corresponding trajectory is a periodic orbit of the Lorenz
system with its period close to that of Γ. Otherwise, if p2 ∈

∑
gives rise

to a chaotic trajectory, then the corresponding points on
∑

will not show
any pattern. This way, the trajectories near periodic orbits can be analyzed.
See Hirsch and Smale [1974], Guckenheimer and Holmes [1986], Wiggins
[1990], Perko [1991], Tsonis [1992], and Alligood, Sauer, and Yorke [1997]
for additional details.

Finally, we point out that most results about the Lorenz system or
Lorenz-like chaotic differential equations are based on numerical experi-
ments, which suggests caution in the interpretation of them before some
“mathematical proofs” can be found. Nowadays, people have started to
rigorously define “strange attractors” and “chaos” and then prove their ex-
istence. For example, the following definitions are given in Wiggins [1990].

Definition 7.5.2 In ℜn, consider an autonomous system for t ≥ 0 and de-
note ϕ(t, x) the solution started from x (respectively denote M(x) the map
started from x). A set Λ ⊂ ℜn is said to be invariant if x ∈ Λ implies
ϕ(t, x) ∈ Λ for t ≥ 0, (respectively M [k](x) ∈ Λ for k ≥ 0). A closed invari-
ant set Λ ⊂ ℜn is called an attracting set if there is some neighborhood
U of Λ such that for any x ∈ U and any t ≥ 0, one has ϕ(t, x) ∈ U and
ϕ(t, x) → Λ as t → ∞ (respectively for any x ∈ U and any k ≥ 0, one has
M [k](x) ∈ U and M [k](x) → Λ as k → ∞).

Definition 7.5.3 A solution ϕ(t, x) (respectively a map M(x)) is said to
be topologically transitive on a closed invariant set Λ ⊂ ℜn if for any
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two open sets U, V ⊂ Λ, there exists a t ≥ 0 (respectively k ≥ 0) such that
ϕ(t, U) ∩ V ̸= Ø (respectively M [k](U) ∩ V ̸= Ø).

Definition 7.5.4 A closed invariant set Λ ⊂ ℜn is said to be an attractor
if it is a topologically transitive attracting set.

Definition 7.5.5 Let Λ ⊂ ℜn be a compact invariant set. A solution ϕ(t, x)
(respectively a mapM(x)) is said to have sensitive dependence on initial
conditions on Λ if there exists an ε > 0 such that for any x ∈ Λ and any
neighborhood U of x, there exists a y ∈ U and t > 0 (respectively k > 0)
such that |ϕ(t, x)− ϕ(t, y)| > ε (respectively |M [k](x)−M [k](y)| > ε).

Definition 7.5.6 A compact invariant set Λ ⊂ ℜn is said to be chaotic
if a solution ϕ(t, x) (respectively a map M(x)) has sensitive dependence on
initial conditions on Λ, and ϕ(t, x) (respectively a mapM(x)) is topologically
transitive on Λ, and the periodic orbits are dense in Λ.

Definition 7.5.7 Assume that the compact invariant set Λ ⊂ ℜn is an at-
tractor. Then Λ is called a strange attractor if it is chaotic.

An immediate consequence of the above definitions is that there is noth-
ing strange about x′ = 2x in Example 7.1.1, or there is no strange attractor
for x′ = 2x (see an exercise).

For one-dimensional maps, such as the logistic map, the existence results
for the strange attractors as defined in Definition 7.5.7 are quite complete,
see Jakobsen [1981], Misiurewicz [1981], and Johnson [1987]. For Lorenz or
Lorenz-like chaotic differential equations, some progress has been made in
this direction. See Sinai and Vul [1981], Afraimovich, Bykov, and Silnikov
[1983] for additional references.

Exercises 7.5

1. Verify that the origin (0, 0, 0) is the only critical point for the Lorenz
system (5.1) when 0 < r < 1.

2. Assume 0 < r < 1 and consider the function of two variables x and y
given by

f(x, y) = −x2 + (1 + r)xy − y2.
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Use 
∂f
∂x = −2x+ (1 + r)y,
∂f
∂y = −2y + (1 + r)x,

(5.10)

and
∂2f

∂x2
= −2,

∂2f

∂y2
= −2,

∂2f

∂x∂y
= 1 + r,

and the second derivative test to verify for f(x, y) that (x, y) = (0, 0) is
the only maximum point. This is another way to analyze the Liapunov
function in (5.4) and confirm that the origin (0, 0, 0) is asymptotically
stable.

3. Verify that if r > 1, two new critical points appear at

C1 = (
√
b(r − 1),

√
b(r − 1), r − 1),

C2 = (−
√
b(r − 1), −

√
b(r − 1), r − 1),

for the Lorenz system. Hence, the system undergoes a bifurcation at
the bifurcation value r = 1.

4. Find all critical points of the Lorenz system.

5. Linearize the Lorenz system near C1 and C2, and determine the lin-
ear matrices. Then use the matrices to determine the characteristic
equations for the eigenvalues, and then analyze the eigenvalues.

6. Verify in the proof of Proposition 7.5.1 that for the closed and bounded
set in ℜ3 defined by R ≤

√
x2 + y2 + z2 ≤ R∗, there is a constant δ > 0

such that dV
dt ≤ −δ.

7. Provide more details for the last statement in the proof of Proposition
7.5.1, that is, the corresponding V value decreases and the trajectory
enters SR at some finite t value.

8. Analyze x′ = 2x in Example 7.1.1 and verify that there is no strange
attractor as defined in Definition 7.5.7.



370 Chapter 7. Chaos

7.6 The Smale Horseshoe

In this section, we provide an example of a strange invariant set possessing
chaotic dynamics that resulted from a map first studied by Smale [1963]. Due
to the image of the map of its domain, the map is called a Smale horseshoe,
and will be briefly described here. See Guckenheimer and Holmes [1986],
Wiggins [1990], and Arrowsmith and Place [1990] for additional details.

Let
D = {(x, y) ∈ ℜ2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

be the unit square in ℜ2 enclosing the two horizontal rectangles

H0 = {(x, y) ∈ ℜ2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ η},
H1 = {(x, y) ∈ ℜ2 : 0 ≤ x ≤ 1, 1− η ≤ y ≤ 1}.

Define a map f : D → ℜ2 using the following geometry in Figure 7.30.

η

λ

H
1

H
0

V
0

V
1

H
1

H
0

A B

C D

0 1

1

1- η

1- λ

A B

C D

0 1

A B CD

> >

Figure 7.30: The Smale horseshoe map

That is, the map f contracts the unit square D in the x-direction to a
width of λ, and expands in the y-direction, and then folds H1, or the up
end, by negative 180o so that V0 = f(H0) and V1 = f(H1) are inside the
unit square D as shown in Figure 7.30, which looks like a horseshoe and
explains why the map f is called a horseshoe map.

Since f is one-to-one and onto, f has an inverse f−1, and f−1 restricted
to V0 ∪ V1 has the following geometry in Figure 7.31.
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Figure 7.31: The map f−1 restricted to V0 ∪ V1

That is, the map f−1 contracts in the y-direction to a height of η, and
expands in the x-direction, and then folds V1, or the right end, by positive
180o so that f−1(V0) = H0 and f−1(V1) = H1. Note that the part between
V0 and V1 is not in the domain of f−1, but it is attached for convenience in
geometry, and we write f−1(D) to mean f−1(V0 ∪ V1).

Accordingly, we have the following important result, which is explained
in Figure 7.32.

Lemma 7.6.1 (a). If V is a vertical rectangle inside D with height 1, then
f(V ) ∩ D consists of precisely two vertical rectangles with height 1, one in
V0 and one in V1. (b). If H is a horizontal rectangle inside D with width 1,
then f−1(H) ∩ D consists of precisely two horizontal rectangles with width
1, one in H0 and one in H1. ♠

To understand the iterations f i, i = ±1,±2, · · ·, we begin with f2. Ac-
cording to Lemma 7.6.1, f2(D)∩D maps H0∪H1 to four vertical rectangles
shown in Figure 7.33, where V0 is mapped to V00 in V0 and V01 in V1; V1
is mapped to V10 in V0 and V11 in V1. That is, the first digit from the left in
V∗∗ tells where it came from and the second digit from the left tells which
Vi, i = 0, 1, it belongs now.

Similarly, f3(D)∩D maps H0 ∪H1 to eight vertical rectangles shown in
Figure 7.33, where, for example, V101 resulted from

V1 → V10 = f(V1) ∩ V0 → V101 = f(V10) ∩ V1,

which is completely determined by the sequence (101) of 0’s and 1’s when
we consider the doubling of vertical rectangles. Therefore, we can identify
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Figure 7.32: f(V ) and f−1(H)

V101 with a sequence (101)V , where the subindex “V ” means that we are
dealing with vertical rectangles in V0 ∪ V1.

If we continue in this fashion, we find that f j(D) ∩D, j ≥ 1, consists of
2j vertical rectangles in V0 ∪ V1, and can be identified with sequences of 0’s
and 1’s of length j. For example, V1010 will result from

V1 → V10 = f(V1) ∩ V0 → V101 = f(V10) ∩ V1 → V1010 = f(V101) ∩ V0,

and can be identified with (1010)V . Accordingly,

∞∩
j=0

f j(D) = D ∩ f(D) ∩ f2(D) ∩ f3(D) ∩ f4(D) · · ·

gives
{Vs0s1s2··· : sj ∈ {0, 1}, j ≥ 0},

which can be identified with infinite sequences (s0s1s2 · · ·)V of 0’s and 1’s.
In geometry,

∩∞
j=0 f

j(D) consists of an infinite number of vertical lines (rect-
angles are sliced into lines after a limit process), and has a structure that
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Figure 7.33: f2(D) ∩D and f3(D) ∩D

looks like a Cantor set. (A one-dimensional Cantor set is constructed by
deleting the middle third open interval (13 ,

2
3) from the interval [0, 1], then

deleting the middle third open interval of each remaining piece, and continue
in this fashion.)

Next, let’s look at f−2. From Lemma 7.6.1, f−2(D) ∩ D maps V0 ∪ V1
to four horizontal rectangles shown in Figure 7.34, where H0 is mapped to
H00 in H0 and H01 in H1; H1 is mapped to H10 in H0 and H11 in H1.

Similar to V∗∗ of f2, H∗∗ can be identified with sequences (t1t2)H of 0’s
and 1’s, where the subindex “H” means that we are dealing with horizontal
rectangles in H0 ∪H1. Accordingly, f−j , j > 2, can be defined, and

∞∩
j=0

f−j(D) = D ∩ f−1(D) ∩ f−2(D) ∩ f−3(D) ∩ f−4(D) · · ·

gives

{Ht1t2t3··· : tj ∈ {0, 1}, j ≥ 1},

which can be identified with infinite sequences (t1t2t3 · · ·)H of 0’s and 1’s,
and

∩∞
j=0 f

−j(D) consists of an infinite number of horizontal lines.

Next, let’s look at the intersections of these vertical and horizontal rect-
angles and lines. For example,

f−2(D) ∩ f−1(D) ∩D ∩ f(D) ∩ f2(D)
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Figure 7.34: f−2(D) ∩D and its intersection with f2(D) ∩D

is given, in geometry, as the intersection of f2(D) ∩ D in Figure 7.33 and
f−2(D) ∩D in Figure 7.34, and is shown as sixteen small rectangles in the
second picture of Figure 7.34.

Now, if we define

Λ =
∞∩

j=−∞
f j(D) = · · · f−2(D) ∩ f−1(D) ∩D ∩ f(D) ∩ f2(D) · · · , (6.1)

then, since a decreasing intersection of compact sets is nonempty, Λ is well
defined and nonempty. And, due to its construction, Λ is (see an exercise)
invariant under any map f j , j ∈ {±1,±2, · · ·}. In geometry, Λ consists of an
infinite number of points which are the intersections of the vertical lines in
∩∞
j=0f

j(D) and the horizontal lines in ∩∞
j=0f

−j(D). Therefore, each point
p ∈ Λ can be identified with a pair of perpendicular lines with the vertical
line from ∩∞

j=0f
j(D) and the horizontal line from ∩∞

j=0f
−j(D). Thus each

point p ∈ Λ can be identified with an infinite sequence (s0s1s2 · · ·)V and an
infinite sequence (t1t2t3 · · ·)H of 0’s and 1’s, and hence we can define a map,
ϕ, from Λ to

∑
, the collection of all bi-infinite sequences of 0’s and 1’s, by

ϕ : p ∈ Λ −→ {· · · s−3s−2s−1 ; s0s1s2 · · ·} ∈
∑

, (6.2)

where we write (t1t2t3 · · ·)H as {· · · s−3s−2s−1} to indicate that it is related
to “negative” maps f−j , j ≥ 1. (Here, s−1 = t1, s−2 = t2 and so on.) It
can be shown (see an exercise) that the map ϕ is one-to-one, onto, con-
tinuous, and ϕ−1 is also continuous. Therefore, the study of the dynamics
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of Λ is now the same as the study of the dynamics of the bi-infinite se-
quences {· · · s−3s−2s−1 ; s0s1s2 · · ·} of 0’s and 1’s, which is called symbolic
dynamics.

Consider f(Λ), which maps the position of f−1(D) to the position of D,
the position of D to the position of f(D) and so on, we find that the effect
of f on Λ is to shift the position of D to the left by one position. Now,
if we regard the position of D in (6.1) as “;” of the bi-infinite sequences
{· · · s−3s−2s−1 ; s0s1s2 · · ·}, then the counterpart of f on Λ will be a shift
map σ on the bi-infinite sequences {· · · s−3s−2s−1 ; s0s1s2 · · ·} of

∑
such

that σ shifts the “;” of a sequence one place to the left. For example, for
a bi-infinite sequence s = {· · · 1010 ; 1010 · · ·} with 0 and 1 alternating, we
have

σ(s) = {· · · 0101 ; 0101 · · ·},
σ2(s) = σ({· · · 0101 ; 0101 · · ·}) = {· · · 1010 ; 1010 · · ·} = s,

which implies that s is a period-2 point of the map σ, or {s, σ(s)} is a period-
2 orbit of the map σ. Similarly, {· · · 100100 ; 100100 · · ·} (constructed using
“100”) is a period-3 point of the map σ. In fact, in this fashion, we can
find period-j points of the map σ for any j ≥ 1. Moreover, if a bi-infinite
sequence periodically repeats after some fixed length, k, then the sequence
is a period-k point of the map σ. And each period-j point of the map σ is
given by a bi-infinite sequence periodically repeating a block of length j.

Next, let’s look at whether the map σ has nonperiodic orbits. To this
end, we rewrite bi-infinite sequences of

∑
as follows

{· · · s−3s−2s−1 ; s0s1s2 · · ·} −→ 0.s0s1s−1s2s−2 · · · , (6.3)

which are the base-2 expansions of numbers in the interval [0, 1]. Now, it is
known that [0, 1] has an uncountable number of irrational numbers given as
nonrepeating base-2 expansions in (6.3), which correspond to nonrepeating
bi-infinite sequences of

∑
. Since these nonrepeating bi-infinite sequences

of
∑

are now nonperiodic points of the map σ, we conclude that σ has an
uncountable number of nonperiodic orbits.

Moreover, for

s = {· · · s−3s−2s−1 ; s0s1s2 · · ·}, s = {· · · s−3s−2s−1 ; s0s1s2 · · ·} ∈
∑

,

the distance between s and s can be defined to be

d(s, s) =
∞∑

i=−∞

δi
2|i|

, δi =

{
0 if si = si,
1 if si ̸= si,

(6.4)
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which can be used to show that the map σ has sensitive dependence on
initial conditions on

∑
, and that σ on

∑
has a dense orbit from some

s ∈
∑

such that for any s′ ∈
∑

and any ε > 0, there exists some integer j
with d(σj(s), s′) < ε.

Now, with the above discussions, we can state the following result of
Smale [1963].

Theorem 7.6.2 Consider the Smale horseshoe map f on Λ (or the shift
map σ on

∑
), it has

1. a countable infinity of periodic orbits of arbitrarily large period,

2. an uncountable infinity of nonperiodic orbits,

3. a dense orbit,

4. a chaotic invariant set Λ (or
∑
). ♠

Therefore, in addition to the logistic map and the Lorenz system, the
Smale horseshoe map provides an example of an invariant chaotic set having
the properties stated in Theorem 7.6.2. In particular, property 1 of Theorem
7.6.2 is the same as a property of the logistic map x→ µx(1−x) with µ near
3.84, where the logistic map has a period-3 orbit, and then the Sarkovskii
theorem 7.4.1 and Li and Yorke’s [1975] paper “Period Three Implies Chaos”
imply that the logistic map has period-j orbits for any j ≥ 1.

Exercises 7.6

1. Verify that f on H0 and H1 are given by

H0 :

[
x
y

]
−→

[
λ 0
0 1

η

] [
x
y

]
,

H1 :

[
x
y

]
−→

[
−λ 0
0 − 1

η

] [
x
y

]
+

[
1
1
η

]
.

2. Prove Lemma 7.6.1.

3. Verify that f−1 restricted to V0 ∪ V1 has the geometry in Figure 7.31.

4. Prove that Λ in (6.1) is well defined, nonempty, and is invariant under
any map f j , j ∈ {±1,±2, · · ·}.
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5. Prove that ϕ in (6.2) is one-to-one, onto, continuous, and ϕ−1 is also
continuous.

6. Find all period-j points of the map σ for j = 1, 2, 3.

7. Verify that we can find period-j points of the map σ for any j ≥ 1.

8. Verify that if a bi-infinite sequence periodically repeats after some
fixed length, k, then the sequence is a period-k point of the map σ;
and each period-j point of the map σ is given by a bi-infinite sequence
periodically repeating a block of length j.

9. Prove that d(s, s) in (6.4) defines a metric on
∑
.

10. Prove that the map σ on
∑

has sensitive dependence on initial condi-
tions.

11. Prove that the map σ on
∑

has a dense orbit.



Chapter 8

Dynamical Systems

8.1 Introduction

From Section 1 of Chapter 4, we know that the solutions of

x′ = f(x), x ∈ ℜ2, (1.1)

define a dynamical system, which describes how a point x0 ∈ ℜ2 moves with
respect to the time t according to the solution x(t, x0) of Eq. (1.1). We
also know from Theorem 4.1.9 in Chapter 4 that all possible trajectories
in ℜ2 are either critical points, periodic orbits (simple closed curves), or
nonintersecting curves.

In sections 2 and 3 of Chapter 4, we also discussed the phase portraits
of Eq. (1.1) near critical points. The study there can be characterized as
the local properties, because they only describe the trajectories that are
sufficiently close to the critical points.

In this chapter, we will do two things. First, we continue the study of Eq.
(1.1) and look at the movements of the trajectories “globally” over the entire
ℜ2 and try to derive some global properties. These are properties con-
cerning the geometrical relationship between critical points, periodic orbits,
and nonintersecting curves. Next, we will extend certain “local” properties
in ℜ2 to differential equations in ℜn, n ≥ 1.

In the study of the local properties, critical points play an important
role. For the global properties, however, we will see that periodic orbits
are the main subject of study. We have seen that solutions of differential

378
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equations in ℜn, n ≥ 3, can exhibit some chaotic behavior, such as the
solutions of the Lorenz system in ℜ3. However, we will see for Eq. (1.1) in
ℜ2 that we have a relatively simple geometry for the relationship between
critical points, periodic orbits, and nonintersecting curves, due to the famous
Poincaré-Bendixson theorem that we will derive in this chapter.

Next, we state the Jordan curve theorem, because it is used either ex-
plicitly or implicitly when we deal with the planar geometry. See Figure
8.1.

C

A B

Figure 8.1: The Jordan curve theorem

Theorem 8.1.1 (Jordan curve theorem) Let C be a simple closed
curve in ℜ2. Then

ℜ2 − C = A ∪B,

where A and B are disjoint nonempty connected open sets such that

1. The curve C is the boundary of A and of B.

2. One of the open set, say for example, A, is bounded (called the interior
of C) and the other, B, is unbounded (called the exterior of C). ♠

The Jordan curve theorem looks “obvious.” However, a rigorous proof
is lengthy and difficult, because we are dealing with the planar geometry,
so sometimes distinguishing between intuitive and rigorous arguments is not
easy. See Cronin [1994], for example, for a proof.

This chapter is organized as follows: In Section 2, we study the dynamics
in ℜ2 and prove the Poincaré-Bendixson theorem. In Section 3, we use the
Poincaré-Bendixson theorem, together with other results, to obtain existence
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and nonexistence of limit cycles, which in turn help us determine the global
properties of planar systems. In Section 4, we apply the results to a Lotka-
Volterra competition equation. In Section 5, we study invariant manifolds
and the Hartman-Grobman theorem, which generalize certain results for
planar equations in Chapter 4 to differential equations in ℜn.

Exercises 8.1

1. Find the solutions of{
x′(t) = y − x(x2 + y2 − 1),
y′(t) = −x− y(x2 + y2 − 1),

in a polar system. Show that the circle x2 + y2 = 1 is a trajectory
of the equation. Next, if (x(t), y(t)) is a solution of the equation, find
limt→∞[x2(t) + y2(t)].

8.2 Poincaré-Bendixson Theorem in ℜ2

To begin, we introduce the first, and maybe the most important definition
here: “limit points.” The definition is given here for planar equations and is
also valid for equations in ℜn, n ≥ 1.

Definition 8.2.1 Let x(t, x0) be the unique solution of the planar equation
(1.1) that exists on ℜ with x(0) = x0. A point p ∈ ℜ2 is called an ω-limit
point of the trajectory x(t, x0) if there exists a sequence tm → ∞ as m→ ∞
such that

lim
m→∞

x(tm, x0) = p.

The set of all ω-limit points of the trajectory x(t, x0) is called the ω-
limit set of x(t, x0), and is denoted by ω(x0) or ω(Γ) where Γ denotes the
trajectory x(t, x0). If we want to specify that Γ is the trajectory starting at
x0 when t = 0, then we write Γ as Γx0.

Similarly, a point q ∈ ℜ2 is called an α-limit point of the trajectory
x(t, x0) if there exists a sequence tm → −∞ as m→ ∞ such that

lim
m→∞

x(tm, x0) = q.

The set of all α-limit points of the trajectory x(t, x0) is called the α-
limit set of x(t, x0), and is denoted by α(x0) or α(Γ) where Γ denotes the
trajectory x(t, x0).
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If x(t) is a solution of Eq. (1.1), then y(t) = x(−t) satisfies y′(t) =
−x′(−t) = −f(x(−t)) = −f(y(t)). Thus an α-limit point of x(t) can be
regarded as an ω-limit point of a solution of another system, therefore, any
result about an ω-limit set is also true for an α-limit set.

Example 8.2.2 If a trajectory of a differential equation is shown in Figure
8.2, then the ω-limit set is given by the straight lines x2 = ±1. ♠

0 x
1

1

-1

>

<

x
2

Figure 8.2: An ω-limit set given by the straight lines x2 = ±1

Example 8.2.3 If the trajectories of a differential equation are shown in
Figure 8.3, then the ω-limit set is given by the unit circle. ♠

x
2

x
1

>

>

>

1

Figure 8.3: An ω-limit set given by the unit circle
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Example 8.2.4 If the origin (0, 0) is a saddle point shown in Figure 8.4,
then for a point p that is on the x1-axis, the ω-limit set ω(p) is (0, 0);
otherwise, the ω-limit set ω(p) is empty if p is not on the x1-axis. ♠

x
1

x
2

>

>

p
p

>

>

Figure 8.4: ω(p) = (0, 0) for p on the x1-axis; otherwise ω(p) is empty

Other related definitions concerning the trajectories are given below.

Definition 8.2.5 Let x(t, x0) be the unique solution of the planar equation
(1.1) that exists on ℜ with x(0) = x0, and let

Γx0 = {x(t, x0) ∈ ℜ2 : t ∈ ℜ},

be the corresponding trajectory. We use

Γ+
x0

= {x(t, x0) ∈ ℜ2 : t ≥ 0},

and
Γ−
x0

= {x(t, x0) ∈ ℜ2 : t ≤ 0},

to denote the positive half-trajectory and the negative half-trajectory
through x0 respectively.

Definition 8.2.6 A set M ⊂ ℜ2 is called a positively (negatively) in-
variant set of Eq. (1.1) if for each x0 ∈ M , Γ+

x0
⊂ M (Γ−

x0
⊂ M). A

set M ⊂ ℜ2 is called an invariant set of Eq. (1.1) if for each x0 ∈ M ,
Γx0 ⊂M .

Accordingly, any trajectory is itself an invariant set. The following are
some general results concerning limit sets.
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Theorem 8.2.7 The ω-limit set ω(Γ) and the α-limit set α(Γ) of a trajec-
tory Γ are closed and invariant. Furthermore, if Γ+ (Γ−) is a bounded set of
ℜ2, then ω(Γ) (α(Γ)) is a nonempty, compact (that is, bounded and closed),
and connected set in ℜ2.

Proof. We only prove the results for ω(Γ) since the case for α(Γ) is similar.
To show that ω(Γ) is closed, we let qm ∈ ω(Γ) with qm → q, m → ∞, and
verify that q ∈ ω(Γ). Let Γ = Γx0 . Since each qm, m = 1, 2, · · · , is an ω-limit
point of Γx0 , there exists, for each m, a sequence tm ≥ m such that

|x(tm, x0)− qm| ≤ 1

m
.

Now,

|x(tm, x0)− q| ≤ |x(tm, x0)− qm|+ |qm − q| ≤ 1

m
+ |qm − q| → 0, m→ ∞,

therefore, q ∈ ω(Γ), hence ω(Γ) is closed.
To show that ω(Γ) is invariant, let Γ = Γx0 be the trajectory of x(t, x0)

and let q ∈ ω(Γ). Then there is a sequence tm → ∞ such that x(tm, x0) → q
as m → ∞. Now, consider x(t, q) for any fixed t ∈ ℜ. We have, according
to the properties of a dynamical system,

x(t+ tm, x0) = x(t, x(tm, x0)) → x(t, q), m→ ∞,

thus, x(t, q) ∈ ω(Γ), and then Γq ⊂ ω(Γ) since t ∈ ℜ is arbitrary. Therefore,
ω(Γ) is invariant.

Next, if Γ+ is bounded in ℜ2, then any sequence x(tm, x0), tm ≥ 0, is
bounded and hence has a convergent subsequence. This implies that ω(Γ)
is nonempty. Now, ω(Γ) is bounded since Γ+ is bounded, hence ω(Γ) is
compact since we have just proved that ω(Γ) is closed.

If ω(Γ) is not connected when Γ+ is bounded in ℜ2, then, as ω(Γ) is
compact, there exist nonempty disjoint compact sets L and R such that
ω(Γ) = L ∪R. Now, the distance between L and R,

d0 = d(L,R) = inf
a∈L, b∈R

|a− b|,

is positive. Let Γ be the trajectory of x(t, x0). Accordingly, since ω(Γ) =
L ∪R, there exist t′m → ∞ and t′′m → ∞ with t′m < t′′m < t′m+1 such that

d
(
x(t′m, x0), L

)
<
d0
3
, and d

(
x(t′′m, x0), R

)
<
d0
3
, (2.1)
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see Figure 8.5. Now, as the curve of x(t, x0) is connected and the distance
function is continuous, there exists a sequence t∗m with t′m < t∗m < t′′m such
that

d
(
x(t∗m, x0), L

)
≥ d0

3
, and d

(
x(t∗m, x0), R

)
≥ d0

3
. (2.2)

Note that the sequence x(t∗m, x0), m = 1, 2, · · ·, is bounded, hence it has
a convergent subsequence, whose limit is in ω(Γ), but not in L∪R according
to (2.2), a contradiction since L ∪R = ω(Γ). This completes the proof. ♠
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Figure 8.5: ω(Γ) = L ∪ R with L and R disconnected, and the solution
x(t, x0)

Corollary 8.2.8 If Γ+ (Γ−) is bounded in ℜ2 and ω(Γ) (α(Γ)) contains a
periodic orbit, then ω(Γ) (α(Γ)) coincides with this periodic orbit. ♠

In Figure 8.2 in Example 8.2.2 where the trajectory is unbounded, the
ω-limit set, shown as the straight lines x2 = ±1, is nonempty, invariant,
closed, but not bounded, and not connected. In Example 8.2.3, the ω-
limit set, shown as the unit circle in Figure 8.3, is invariant, compact, and
connected.

We have seen in Chapter 4 that a critical point of a planar differential
equation means “directionless” in geometry, thus the trajectories near a
critical point could go in all different directions; while for a regular point, the
trajectories nearby will go in essentially the same direction. The following
two results clarify this even further. Recall that Bd(p) = {x ∈ ℜn : |x− p| ≤
d} is used to denote the ball centered at p with radius d. However, if we
look at |x| = |x1| + |x2| carefully for x = (x1, x2) ∈ ℜ2, we find that the
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“ball” Bd(p) is actually a square. To clear this up, we note that |x1|+ |x2| is
equivalent to the commonly used norm

√
x21 + x22, thus all results stated with

|x1|+ |x2| will also be true if |x1|+ |x2| is replaced by
√
x21 + x22. Therefore,

in the rest of this chapter, especially when we draw graphs in ℜ2, we will

use |x| to denote
√
x21 + x22. Hence, the “ball” Bd(p) is still a round ball.

Theorem 8.2.9 If p is a regular point of Eq. (1.1), then there exists a
δ > 0 such that for any q ∈ Bδ(p), the trajectory of x(t, q) will leave Bδ(p)
as |t| → ∞. That is, there exists a T > 0 such that x(±T, q) ̸∈ Bδ(p).

Proof. Since p is a regular point, we know from Corollary 4.1.10 in Chapter
4 that there exists a T > 0 such that p1 = x(−T, p) ̸= p. Now we must
have p2 = x(T, p) ̸= p, because otherwise, y(t) = x(T + t, p) is also a
solution of Eq. (1.1) with y(0) = x(T, p) = p. Then uniqueness implies
that x(t, p) = y(t) = x(T + t, p), or x(t, p) is T -periodic on ℜ, and hence
x(−T, p) = p, a contradiction.

Let d = min{|p− p1|, |p− p2|} > 0. From the continuity of a dynamical
system (or continuous dependence on initial data), we know that when w is
in a compact set of ℜ2, x(t, w) is continuous in w uniformly for t ∈ [−T, T ].
Accordingly, there exists a δ = δ(d) > 0 and δ ≤ d

3 such that if |p − q| ≤ δ

(or q ∈ Bδ(p)) then |x(t, p) − x(t, q)| ≤ d
3 for t ∈ [−T, T ], see Figure 8.6.

Hence, |p2 − x(T, q)| = |x(T, p)− x(T, q)| ≤ d
3 . Since

d ≤ |p− p2| ≤ |p− x(T, q)|+ |x(T, q)− p2| ≤ |p− x(T, q)|+ d

3
,

we have

|p− x(T, q)| ≥ 2d

3
>
d

3
≥ δ.

That is, x(t, q) leaves Bδ(p) at T . The same is true for −T . This completes
the proof. ♠

For a regular point p of Eq. (1.1), f(p) ̸= 0. Thus in geometry, the
direction vector f(p) at p is a nonzero vector. We can now draw a normal
(perpendicular) lineNp with respect to f(p), and call the side in the direction
of f(p) as the positive side of Np and the other side as the negative side
of Np, see Figure 8.7.

Theorem 8.2.10 If p is a regular point of Eq. (1.1), then there exists an
ε > 0 such that any trajectory of Eq. (1.1) cannot enter the ball Bε(p) from
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Figure 8.6: |x(t, p)− x(t, q)| ≤ d
3 for t ∈ [−T, T ]

> f(p)

N
p

N
p

p

negative side

positive side positive side

Figure 8.7: The positive and negative sides of Np of a regular point

the positive side of the normal line Np. If a trajectory of Eq. (1.1) enters
Bε/2(p) from the negative side, then it intersects the normal line Np and
then leaves Bε(p). See figures 8.8 and 8.9.

Proof. Since f(p) ̸= 0 and f(x) is continuous in x, we have, as q → p,

cos θ =
f(p) · f(q)
|f(p)||f(q)|

=
f(p) · f(p)
|f(p)||f(q)|

+
f(p) · [f(q)− f(p)]

|f(p)||f(q)|
→ 1,

where θ is the angle between f(p) and f(q). Hence, there exists an ε > 0
such that if q ∈ B3ε(p) then f(q) ̸= 0 and the angle θ between f(p) and f(q)
is at most 30o. Now draw Figure 8.8, where p is the center, the small circle
is of radius ε, the middle half circle is of radius 2ε, and the larger half circle
is of radius 3ε.

Draw the straight lines AB and BC as shown in Figure 8.8. Then from
the planar geometry, the two straight lines will not intersect the small circle
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x(t,x
0
)

f(p)

C A

B

N
p

p

>

Figure 8.8: A trajectory cannot enter Bε(p) from positive side of Np

with radius ε (see an exercise). If there is an x0 ∈ ℜ2 and t0 ∈ ℜ such that
x(t0, x0) is on one of the two straight lines, then when t increases a little,
that is, when t > t0 and near t0, the corresponding solution curve x(t, x0)
will remain inside a sector whose angle is 60o and whose center line is parallel
to f(p), as shown in 8.8. In other words, the straight lines AB and BC serve
as a “shield” or a “wall” that bounces back any trajectory trying to get close
to p from the positive side of the normal line Np. Now, the circle with center
p and radius ε is protected, therefore, any trajectory of Eq. (1.1) cannot
enter the ball Bε(p) from the positive side of the normal line Np.

If a trajectory x(t, q) enters Bε/2(p) from the negative side of Np at
t = t1, then at the point x(t1, q) we draw a sector whose angle is 60o and
whose center line is parallel to f(p), as shown in Figure 8.9. According to
the planar geometry, the side lines of this sector intersect Np at the points
a and b that are at most away from p by a distance of ε.

Similar to the above, when t increases from t1, x(t, q) will remain inside
of this sector (as long as x(t, q) is inside B3ε(p)). Finally, from Theorem
8.2.9, when ε is small (say for example, ε ≤ δ where δ is from Theorem
8.2.9), x(t, q) will leave Bε(p) as t → ∞. Therefore, x(t, q) has to intersect
the normal line Np and then leave Bε(p). This completes the proof. ♠
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Figure 8.9: A trajectory from Bε/2(p) intersects Np and then leaves Bε(p)

We will see that Theorem 8.2.10 is a very useful tool in analyzing the
trajectories near a regular point.

Note that if x(t, x0) is a critical point or a periodic orbit, then any point
on x(t, x0) is an ω-limit point and an α-limit point of x(t, x0). The next
result says that they are the only possible cases in ℜ2.

Theorem 8.2.11 If a trajectory x(t, p) of Eq. (1.1) contains an ω-limit
point or an α-limit point of x(t, p), then x(t, p) is either a critical point or
a periodic orbit.

Proof. Assume that the trajectory x(t, p) contains an ω-limit point Q of
x(t, p), (the case for an α-limit point is similar). If x(t, p) is neither a critical
point nor a periodic orbit, then from Theorem 4.1.9 in Chapter 4, x(t, p) is
a nonintersecting curve. Now, Q is a regular point (otherwise x(t, p) is a
critical point), so from Theorems 8.2.9 and 8.2.10, there exists an ε > 0 such
that x(t,Q) leaves Bε(Q) from the positive side of the normal line NQ as t
increases. Since x(t, p) and x(t, Q) describe the same trajectory, and Q is
an ω-limit point of x(t, p), x(t,Q) will get close to Q for some large t. Using
Theorem 8.2.10, x(t,Q) has to enter Bε/2(Q) from the negative side, then
x(t,Q) intersects the normal line NQ at some point denoted by Z before
leaving Bε(Q), and |Q − Z| ≤ ε. Since x(t, p) is a nonintersecting curve,
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Q ̸= Z. Then, since x(t, Q) cannot enter Bε(Q) from the positive side of
NQ, we only have the two possibilities shown in Figure 8.10.

N
Q

f(Q)

>
>

B
ε
(Q)

Q

Z

x(t,Q)

N
Q

f(Q)

B
ε
(Q)

x(t,Q)

>

>

Q

Z

> >

Figure 8.10: Two possibilities when Q ̸= Z

According to Figure 8.10, where Jordan curves can be formed, x(t,Q)
cannot get close to Q when t is large because x(t,Q) cannot intersect it-
self and cannot enter Bε(Q) from the positive side of the normal line NQ.
Therefore, Q cannot be an ω-limit point of x(t,Q) (or x(t, p)). This is a
contradiction, and hence we complete the proof. ♠

Now, we are ready to prove the most important result for planar au-
tonomous differential equations: the Poincaré-Bendixson theorem, which
describes the relationship between critical points, periodic orbits, and non-
intersecting curves of Eq. (1.1), and indicates that trajectories for planar
autonomous differential equations behave in an orderly fashion as compared
to what may happen for differential equations in ℜn, n ≥ 3.

Theorem 8.2.12 (Poincaré-Bendixson theorem) If a trajectory x(t, p)
of Eq. (1.1) is bounded in ℜ2 for t ≥ 0 (the corresponding results for t ≤ 0
are also true), then one of the following three things must happen:

1. the ω-limit set of x(t, p), ω(p), contains a critical point,

2. x(t, p) is a periodic orbit,

3. ω(p) is a periodic orbit, and x(t, p) approaches ω(p) spirally as t→ ∞.
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Proof. Assume that ω(p) contains no critical points and that x(t, p) is
not a periodic orbit, then we show that ω(p) is a periodic orbit and x(t, p)
approaches this periodic orbit in a spiral way. From Theorem 8.2.7, ω(p) is
nonempty. Let A ∈ ω(p), then A is a regular point. Since ω(p) is invariant
from Theorem 8.2.7, x(t, A) ∈ ω(p), t ∈ ℜ. As Γ+

p is bounded, ω(p) is also
bounded, hence the trajectory x(t, A) ∈ ω(p) is bounded. Therefore, ω(A)
is nonempty. Let B ∈ ω(A). As x(t, A) ∈ ω(p) and ω(p) is closed from
Theorem 8.2.7, B ∈ ω(p), and hence B is a regular point.

We first verify that the trajectory x(t, p) does not intersect the trajectory
x(t, A). Otherwise the two trajectories coincide using uniqueness, and hence
x(t, p) contains its ω-limit point A. Then, from Theorem 8.2.11, x(t, p) must
be a critical point or a periodic orbit, a contradiction.

Next, we prove that x(t, A) is a periodic orbit. To do this, we show that
the point B is on the trajectory x(t, A), which implies that x(t, A) contains
its ω-limit point B, hence, from Theorem 8.2.11, x(t, A) must be a periodic
orbit. Since B ∈ ω(A), x(t, A) will get close to B for some large t. Using
Theorem 8.2.10, x(t, A) has to enter Bε/2(B) from the negative side of the
normal line NB and then intersect the normal line NB at some point denoted
by Z before leaving Bε(B). If B is not on the trajectory x(t, A), then B ̸= Z,
so we only have the two possibilities shown in Figure 8.11, where Jordan
curves can be formed.

N
B

f(B)

x(t,A)

N
B

f(B)

x(t,A)

>

>

>

Z

B

>

>

Z

x(t,p)

S

> >

Figure 8.11: Two possibilities when B ̸= Z
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In the first case, similar to the last part of the proof of Theorem 8.2.11, we
find that B ̸∈ ω(A), a contradiction (unless x(t, A) intersects itself, in which
case x(t, A) must be a periodic orbit). In the second case, for a sufficiently
small circle S around B as shown in Figure 8.11, x(t∗, p) ∈ S for some
t∗ > 0 since B ∈ ω(p). Now, x(t, p) cannot get close to Z by entering the
ball Bε(B) from the positive side of the normal line NB; and x(t, p) cannot
intersect x(t, A), thus x(t, p) cannot get close to Z by entering Bε(B) from
the negative side of NB either. Therefore, Z ̸∈ ω(p), a contradiction to the
fact that Z ∈ x(t, A) ⊂ ω(p). Thus, B must be on the trajectory x(t, A),
therefore x(t, A) is a periodic orbit. Since x(t, A) ∈ ω(p), ω(p) must be the
same as this periodic orbit x(t, A), using Corollary 8.2.8.

Next, we prove that x(t, p) approaches the periodic orbit ω(p) in a spiral
way. Assume that x(t, p) is inside the periodic orbit ω(p). (The case when
x(t, p) is outside is the same.) Let H be any point on ω(p), then H is a
regular point. There exists an ε > 0 such that x(t, p) gets close to H as
shown in Figure 8.12.

>
>

ω(p) N
H

H

f(H)
>

Figure 8.12: x(t, p) approaches the periodic orbit ω(p) spirally

Accordingly, there exist tm → ∞, tm < tm+1, such that x(tm, p) inter-
sects the normal line NH and x(tm+1, p) is between x(tm, p) and H. There-
fore, as H is an arbitrary point on ω(p), x(t, p) approaches the periodic orbit
ω(p) spirally. The proof is complete. ♠

From the study of phase portraits in sections 2 and 3 in Chapter 4,
we find that when the origin (0, 0) is an isolated critical point and also a
stable spiral point, then (0, 0) is the ω-limit set of trajectories. That is,
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trajectories “pile up” at the critical point (0, 0), and periodic orbits do not
exist. However, if x(t, p), t ≥ 0, is bounded and has no critical points as its
ω-limit points, then x(t, p) has to “pile up” at somewhere other than a single
point. According to the Poincaré-Bendixson theorem, x(t, p) piles up at a
periodic orbit. Therefore, solutions of the planar autonomous differential
equations behave in an orderly fashion, compare to what may happen to
solutions of differential equations in ℜn, n ≥ 3, such as the Lorenz system.

An important consequence of the Poincaré-Bendixson theorem is the fol-
lowing result describing the geometrical relationship between periodic orbits
and critical points.

Theorem 8.2.13 Every periodic orbit of Eq. (1.1) has a critical point in-
side its interior.

Proof. Let C be the periodic orbit and denote R the interior of C together
with C. Then periodic orbits exist in R, since C is at least one such periodic
orbit. If C∗ is a periodic orbit in R, then we use R∗ to denote the interior
of C∗ together with C∗. Consider a nonempty set {Cµ} of periodic orbits in
R and a nonempty set {Rµ} of compact regions that is partially ordered by
the inclusion relation. By Hausdorff’s maximality principle, there exists a
maximal chain {Rτ} of this partially ordered set {Rµ}. Let ∆ = ∩Rτ , then
∆ is nonempty since each Rτ is compact. Let p ∈ ∆, then the trajectory
x(t, p), t ∈ ℜ, is contained in ∆ since it is in each Rτ .

Suppose that ∆ does not contain critical points. If x(t, p) is not a periodic
orbit, then from the Poincaré-Bendixson theorem, its ω-limit set ω(p) and
α-limit set α(p) are both periodic orbits in ∆. Now, ω(p) and α(p) must
be different and one is entirely inside the interior of the other one (see an
exercise). Assume α(p) is inside ω(p). Then p cannot be on α(p) because
x(t, p) is not periodic; and p cannot be inside α(p) because otherwise x(t, p)
cannot get out of α(p) to approach ω(p) for large t. Therefore, α(p) is not
in {Cτ} since p ∈ ∆ = ∩Rτ . Now, α(p) can be added to {Cτ} using the
inclusion relation since α(p) is inside each Rτ . This contradicts the fact that
{Rτ} is a maximal chain.

If x(t, p) is a periodic orbit, then, as ∆ contains no critical points, there
is a point q in the interior of x(t, p) which will result in at least one periodic
orbit C∗ that is in the interior of x(t, p). Now, p ∈ ∆ = ∩Rτ and p is not
on or inside C∗, therefore, similar to the above case, C∗ is not in {Cτ} and
hence can be added to {Cτ}. Thus, {Rτ} is not maximal, a contradiction.
Therefore, ∆ ⊂ R must contain critical points. This completes the proof. ♠
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The above proof uses Hausdorff’s maximality principle. Next, let’s give a
concrete proof when the region in ℜ2 enclosed by the periodic orbit is convex
or can be made to become convex in a continuous one-to-one fashion.

Proof of Theorem 8.2.13 when the periodic orbit encloses a convex
region. Let R be the compact region in ℜ2 enclosed by the periodic orbit
such that R is convex. For any T1 > 0 fixed, consider the mapping p →
x(T1, p). This mapping is from R to R because a trajectory from inside of R
cannot get outside of R using uniqueness. From Brouwer’s first fixed point
theorem (see the Appendix), there is a p1 ∈ R such that x(T1, p1) = p1.
Thus, there are Tm > 0, Tm → 0, and pm ∈ R such that x(Tm, pm) = pm.
Hence x(t, pm) is Tm-periodic. Using a subsequence if necessary, we may
assume that pm converges to a p0 ∈ R. Let t > 0 be fixed. For any
integer m, there is a τ = τ(t,m) and an integer k = k(t,m) such that
t = kTm + τ, 0 ≤ τ < Tm. Now, as m→ ∞,

|x(t, p0)− p0| ≤ |x(t, p0)− x(t, pm)|+ |x(t, pm)− pm|+ |pm − p0|
≤ |x(t, p0)− x(t, pm)|+ |x(kTm + τ, pm)− pm|+ |pm − p0|
≤ |x(t, p0)− x(t, pm)|+ |x(τ, pm)− pm|+ |pm − p0| → 0,

since 0 ≤ τ < Tm → 0 as m → ∞. Therefore, x(t, p0) = p0 for any t ≥ 0,
hence p0 is a critical point, using Corollary 4.1.10 in Chapter 4. ♠

Example 8.2.14 Consider

x′ = y + x[1− x2 − y2], y′ = −x+ y[1− x2 − y2]. (2.3)

Taking a derivative in t on both sides of r2(t) = x2(t) + y2(t) and tan θ(t) =
y(t)
x(t) , we obtain

r′(t) =
x(t)x′(t) + y(t)y′(t)

r(t)
= r(t)[1− r2(t)],

θ′(t) =
x(t)y′(t)− y(t)x′(t)

r2(t)
= −1.

Then, using partial fractions, the solutions are given by

r(t) =
1√

1 + ce−2t
, c > −1, θ(t) = −t+ d, t ≥ 0, (2.4)

where c and d are constants. Now, when c = 0, (x(t), y(t)) = (cos t, − sin t)
is a periodic solution with its trajectory given by the unit circle. If c > 0,
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then, since r(t) ↗ 1 as t → ∞, the corresponding solution approaches the
unit circle from inside of the circle in a spiral way as t→ ∞; if −1 < c < 0,
then, since r(t) ↘ 1 as t → ∞, the corresponding solution approaches the
unit circle from outside of the circle in a spiral way as t → ∞. Therefore,
the unit circle is the ω-limit set. Note that the only critical point of Eq.
(2.3) is the origin (0, 0), which is inside the unit circle.

Another way to derive a periodic orbit in this case is to consider the
annular ring r1 ≤ r ≤ r2 with 0 < r1 < 1 and 1 < r2 < ∞. Since the
ring is free of critical points and the solutions entering the ring will stay in
the ring according to the increasing or decreasing of r(t) = 1√

1+ce−2t
, the

Poincaré-Bendixson theorem is applicable to obtain a periodic orbit inside
the ring. See Figure 8.13. ♠

>

>

>

>

>

y

x

Figure 8.13: The solutions approach the ω-limit set (the unit circle) spirally

Next, we briefly discuss the stability of periodic orbits. Let’s first get
some ideas from Example 8.2.14, where for any point near the periodic orbit
Γ : r = 1, the corresponding trajectory will approach Γ as t → ∞, thus
Γ (regarded as a periodic solution) is L-asymptotically stable (see Remark
6.5.2).

To study the L-asymptotic stability of a periodic orbit, Γ, of a general
planar system, a main tool is to use a Poincaré section

∑
and a Poincaré map

P , where
∑

is now a line segment perpendicular to Γ at some point p0 ∈ Γ,
and P is a one-dimensional map. We first use an example to demonstrate
some of the details.
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Example 8.2.15 Consider the equation in Example 8.2.14 again and write
the solution (r, θ) as

r = r(t, r0) =
[
1 +

( 1

r20
− 1

)
e−2t

]−1/2
, t ≥ 0,

θ = θ(t, θ0) = −t+ θ0, t ≥ 0.

For any angle θ0, we may let
∑

be the ray θ = θ0. See Figure 8.14,
where the trajectory from (r0, θ0) to (r, θ) implies that θ = θ0 − 2π, or
t = 2π. Therefore, the one-dimensional Poincaré map P is given by

r0 → P (r0) = r(2π, r0) =
[
1 +

( 1

r20
− 1

)
e−4π

]−1/2
.

>
>

>

>

>
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x

Σ
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θ
0P(r

0
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Figure 8.14: A Poincaré section and a Poincaré map near r = 1

Since Γ : r = 1 is a periodic orbit, we have P (1) = 1, that is, 1 is a fixed
point of the map P . Next, we have

P ′(r0) = e−4πr−3
0

[
1 +

( 1

r20
− 1

)
e−4π

]−3/2
,

hence

P ′(1) = e−4π < 1, P (1) = 1.

Now, recall from Chapter 7 that |P ′(1)| < 1 implies that the fixed point
1 of the map P is asymptotically stable. Therefore, for points (r, θ0) with
r ≈ 1, we have P j(r) → 1, j → ∞. Since the choice of the ray θ = θ0
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is arbitrary, similar things happen near every point on Γ, thus, trajectories
started with points near Γ will approach Γ, which verifies that the periodic
orbit Γ is L-asymptotically stable. ♠

In the previous example, a Poincaré section can be constructed every-
where on the periodic orbit. For a general planar system, if one Poincaré
section can be constructed at some point p0 of a periodic orbit Γ such that
p0 is an asymptotically stable fixed point of the corresponding Poincaré map
P , then the periodic orbit Γ is L-asymptotically stable, due to the following
result of Hubbard and West [1995].

Theorem 8.2.16 If |P ′(p0)| < 1, there is a neighborhood of Γ such that
every solution starting in that neighborhood converges to Γ as t→ ∞. ♠

Therefore, we have the following result.

Theorem 8.2.17 Let Γ be a periodic orbit of a planar system and let
∑

be a Poincaré section (a line segment) that is perpendicular to Γ at some
point p0 ∈ Γ. If the corresponding Poincaré map P satisfies |P ′(p0)| < 1,
then the periodic orbit Γ is L-asymptotically stable. If |P ′(p0)| > 1, then Γ
is unstable. ♠

For planar systems, P ′(p0) can be calculated, based on the following
result of Andronov, Leontovich, Gordon, and Maier [1973](2).

Theorem 8.2.18 Let r(t) be a T -periodic orbit of a planar system x′ = f(x)
where f is differentiable. Let

∑
be a Poincaré section (a line segment) that

is perpendicular to r(t) at the point p0 = r(0). Then the corresponding
Poincaré map P satisfies

P ′(p0) = exp
( ∫ T

0

[ ∂f
∂x1

(r(t)) +
∂f

∂x2
(r(t))

]
dt
)
.

Accordingly, r(t) is L-asymptotically stable if
∫ T
0

[
∂f
∂x1

(r(t))+ ∂f
∂x2

(r(t))
]
dt

< 0, and r(t) is unstable if
∫ T
0

[
∂f
∂x1

(r(t)) + ∂f
∂x2

(r(t))
]
dt > 0. ♠

We can check this result with Example 8.2.15, where r(t) = (cos t, − sin t),
T = 2π, and (let x1 = x, x2 = y)

∂f

∂x1
= 1− 3x21 − x22,

∂f

∂x2
= 1− x21 − 3x22,
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then

P ′(p0) = exp
( ∫ 2π

0

[
1− 3 cos2 t− sin2 t+ 1− cos2 t− 3 sin2 t

]
dt
)

= exp
( ∫ 2π

0
[2− 3− 1]dt

)
= e−4π,

which is the same as P ′(1) found in Example 8.2.15.
The same ideas can be extended to systems in ℜn, where a Poincaré sec-

tion at a point p0 of a periodic orbit Γ is an (n−1)-dimensional hypersurface
and the corresponding Poincaré map is an (n− 1)-dimensional map, whose
derivative P ′(p0) at p0, now an (n − 1) × (n − 1) matrix, can still be used
to determine the stability of the periodic orbit Γ. We only outline some
of the results here, see Hartman [1964], Hirsch and Smale [1974], Gucken-
heimer and Holmes [1986], Wiggins [1990], Perko [1991], Tsonis [1992], and
Alligood, Sauer, and Yorke [1997] for additional details.

Let v1 ∈
∑

and define vi+1 = P (vi), i = 1, 2, · · ·, and write ui = vi −
p0, i = 1, 2, · · ·. Then, since P (p0) = p0, we have

u2 = v2 − p0 = P (v1)− p0 = P (p0 + u1)− p0

= P (p0) + P ′(p0)u1 +O(|u1|2)− p0 = P ′(p0)u1 +O(|u1|2)
≈ P ′(p0)u1.

Now, if uk ≈ [P ′(p0)]
k−1u1, then

uk+1 = vk+1 − p0 = P (vk)− p0 = P (p0 + uk)− p0

= P (p0) + P ′(p0)uk +O(|uk|2)− p0 = P ′(p0)uk +O(|uk|2)
≈ P ′(p0)uk ≈ [P ′(p0)][P

′(p0)]
k−1u1 ≈ [P ′(p0)]

ku1,

therefore, we obtain uj ≈ [P ′(p0)]
j−1u1, j ≥ 2, using an induction.

Let λ1, λ2, · · · , λn−1 and η1, η2, · · · , ηn−1 be the n − 1 eigenvalues and
their corresponding eigenvectors of the (n− 1)× (n− 1) matrix P ′(p0), and
assume we can write u1 =

∑n−1
i=1 ciηi, a linear combination of ηi, then

uk+1 ≈ [P ′(p0)]
ku1 = [P ′(p0)]

k−1P ′(p0)
n−1∑
i=1

ciηi

= [P ′(p0)]
k−1

n−1∑
i=1

ciP
′(p0)ηi = [P ′(p0)]

k−1
n−1∑
i=1

ciλiηi

= [P ′(p0)]
k−2

n−1∑
i=1

ciλ
2
i ηi =

n−1∑
i=1

ciλ
k
i ηi.
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Now, if |λi| < 1, i = 1, 2, · · · , n − 1, then |uk| → 0, k → ∞. Thus we
obtain vk → p0, k → ∞, therefore p0 is an asymptotically stable fixed point
of the map P , and consequently the periodic orbit is L-asymptotically stable.
On the other hand, if |λj | > 1 for some j, then perturbations along ηj grow
large, thus p0 is unstable. This way, the stability of periodic orbits can be
analyzed. Finally, we point out that for a planar system, the conditions on
eigenvalues reduce to the condition on the scalar P ′(p0) itself.

Exercises 8.2

1. Prove Theorem 8.2.7 for the α-limit set.

2. Find the ω and α limit sets for
(a) x′ = 2x; (b) x′ = −2x; (c) x′ = 0.

3. Find the ω-limit sets and α-limit sets for the solutions in Example
8.2.4.

4. Prove that the ω-limit set and α-limit set of a critical point is itself.
Then prove the same result for a periodic orbit.

5. Prove Corollary 8.2.8.

6. Draw Bd(p) = {x ∈ ℜ2 : |x − p| ≤ d} where p = (0, 0) and |x| =
|x1|+ |x2|.

7. Verify in the proof of Theorem 8.2.9 that x(t, q) leaves Bδ(p) at −T .

8. Verify in Figure 8.8 that the two straight lines connecting points A,B
and B,C will not intersect the small circle with radius ε.

9. Verify in Figure 8.9 that the side lines of the sector intersect Np at the
points a and b that are at most away from p by a distance of ε.

10. Prove Theorem 8.2.11 for an α-limit point.

11. In the last part of the proof of Theorem 8.2.12, complete the case when
x(t, p) is outside the periodic orbit ω(p).

12. In the proof of Theorem 8.2.13, verify that ∆ = ∩Rτ is nonempty.

13. Prove that the ω-limit set of a bounded solution contains a critical
point if the system has no periodic orbits.
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14. Prove that if x(t, p) is not a periodic orbit and is bounded in a set
free of critical points, then its ω-limit set ω(p) and α-limit set α(p) are
different periodic orbits and one is entirely inside the interior of the
other one.

15. In the proof of Theorem 8.2.13 when the periodic orbit encloses a
convex region, show that x(t, pm) is Tm-periodic.

16. Find the critical points of Eq. (2.3).

17. Prove that if the ω-limit set of a bounded solution contains an asymp-
totically stable critical point, then it contains nothing else.

18. Derive a periodic orbit for

x′ = −y + x[1− x2 − y2], y′ = x+ y[1− x2 − y2]. (2.5)

19. Prove Theorem 8.2.16.

20. Prove Theorem 8.2.17.

8.3 Limit Cycles

An interesting feature of Example 8.2.14 is that the ω-limit set, r = 1, is a
“cycle” and is also the “limit” of some other trajectories, thus we make the
following definition.

Definition 8.3.1 A limit cycle L of Eq. (1.1) in ℜ2 is a periodic orbit of
Eq. (1.1) which is also the ω-limit set or α-limit set of some trajectory of
Eq. (1.1) other than L.

Accordingly, r = 1 in Example 8.2.14 is a limit cycle. To determine
the local properties, critical points are important subjects. But in order to
determine the global behavior of trajectories of a planar dynamical system,
besides the critical points, it is also crucial to know how many limit cycles
are around each critical point of the system. Therefore, limit cycles are
important in applications and also in theoretical analysis. However, deter-
mining the exact number of limit cycles is extremely difficult. In 1900, the
world-famous mathematician Hilbert presented to the Second International
Congress of Mathematicians a list of twenty three frontline mathematical
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research problems. Part of Hilbert’s sixteenth problem asks for the maxi-
mum number of limit cycles, Hm, of the mth degree polynomial system in
ℜ2 given by,

x′ =
m∑

i+j=0

aijx
iyj , y′ =

m∑
i+j=0

bijx
iyj .

This problem is still open. So far, the best results about the Hilbert
number Hm are given below:

H0 = 0; H1 = 0; H2 ≥ 4; H3 ≥ 11;
Hm ≥ m−1

2 if m is odd;
For any m, Hm <∞.

The example showing the existence of 4 limit cycles when m = 2 (that
is, H2 ≥ 4) is given by Shi [1980] as

x′ = − 1

10200
x− y − 10x2 + (5− 1

1013
)xy + y2, (3.1)

y′ = x+ x2 + (
9

1013
− 8

1052
− 25)xy, (3.2)

which may give you a sense of how delicate the analysis there would be.
Next, we first give some results that can be used to eliminate the exis-

tence of periodic orbits, and hence limit cycles; then we present some results
concerning the existence of limit cycles. Recall that a domain D is said to
be “simply connected” if the interior of any simple closed curve in D is in D,
or in other words, there are no holes in D. Let’s write a planar autonomous
differential equation as{

x′(t) = P (x(t), y(t)),
y′(t) = Q(x(t), y(t)), x, y, t ∈ ℜ. (3.3)

Theorem 8.3.2 (Bendixson’s criterion) Let P (x, y) and Q(x, y) have
continuous first partial derivatives in a simply connected domain D ⊂ ℜ2 and
assume that ∂P

∂x + ∂Q
∂y is not identically zero and does not change sign in any

open set of D. Then Eq. (3.3) has no periodic orbit in D.

Proof. Suppose Eq. (3.3) has a periodic orbit Γ with period T in D and
denote R the interior of Γ. Then along Γ, we have, from Green’s theorem,∫ ∫

R

[∂P
∂x

+
∂Q

∂y

]
dxdy =

∫
Γ
(Pdy −Qdx) =

∫ T

0
(Py′ −Qx′)dt

=

∫ T

0
(PQ−QP )dt = 0. (3.4)
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But this is impossible since ∂P
∂x + ∂Q

∂y is not identically zero and does not
change sign in R. The proof is complete. ♠

Example 8.3.3 Consider{
x′ = g(y),
y′ = (1 + x2)y + h(x),

(3.5)

where g and h are any differentiable functions. Now,

∂P

∂x
+
∂Q

∂y
= 1 + x2 > 0, x ∈ ℜ,

thus the equation has no periodic orbit. ♠

Example 8.3.4 Consider x′′ + g(x)x′ + h(x) = 0, which is equivalent to{
x′ = y,
y′ = −g(x)y − h(x).

(3.6)

Now,
∂P

∂x
+
∂Q

∂y
= −g(x).

Thus, if g(x) > 0 or g(x) < 0 for all x, then the equation has no periodic
orbit. Later we will see that when g satisfies other conditions, the equation
may have periodic orbits. ♠

Example 8.3.5 The motion of a simple pendulum, θ′′(t)+kθ′(t)+q sin θ(t)
= 0, is a special case of Example 8.3.4, where g(x) = k. Accordingly, if k ̸= 0,
then the equation has no periodic orbit, which is already obtained in Chapter
4. If k = 0, then Bendixson’s criterion does not apply. In fact, it is verified
in Chapter 4 that the equation has periodic orbits in this case. ♠

The following is an extension of Bendixson’s criterion. The proof is left
an an exercise.

Theorem 8.3.6 (Bendixson-Dulac’s criterion) Let P (x, y), Q(x, y),
and B(x, y) have continuous first partial derivatives in a simply connected

domain D ⊂ ℜ2 and assume that ∂(PB)
∂x + ∂(QB)

∂y is not identically zero and
does not change sign in any open set of D. Then Eq. (3.3) has no periodic
orbit in D. ♠
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Example 8.3.7 Consider{
x′ = (y − a)x,
y′ = bx+ cy + ky2,

(3.7)

where a, b, c, k are constants. Note that

∂P

∂x
+
∂Q

∂y
= y − a+ c+ 2ky,

thus Bendixson’s criterion does not apply. Let B(x, y) = x−(2k+1), then

∂(PB)

∂x
+
∂(QB)

∂y
= (c+ 2ka)x−(2k+1).

Thus, if c + 2ka ̸= 0, then Bendixson-Dulac’s criterion implies that the
equation has no periodic orbit in the half plane x > 0 or x < 0. Next, if
x = 0, then starting from any point on the y-axis, the equation has a solution
that lies on the y-axis. Thus we conclude that the equation has no periodic
orbit in ℜ2 (otherwise uniqueness will be violated). ♠

You probably have noticed that finding B(x, y), just like finding a Lia-
punov function, requires certain skills and experience. Typically one such
B(x, y) emerges after many trials and errors.

Example 8.3.8 Consider{
x′ = y,
y′ = −x− y + x2 + y2.

(3.8)

Again, Bendixson’s criterion does not apply. Choose B(x, y) = e−2x, then

∂(PB)

∂x
+
∂(QB)

∂y
= −2ye−2x − e−2x + 2ye−2x = −e−2x < 0,

hence the equation has no periodic orbit in ℜ2. ♠

The above are some results about the nonexistence of periodic orbits or
limit cycles. Next, we look at the existence of limit cycles. First, using the
idea of Example 8.2.14, we find that if a solution enters and then stays in a
bounded annular region that is free of critical points, then this solution will
pile up at a limit cycle. In fact, we have the following result. The proof is
left as an exercise.
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Theorem 8.3.9 (Poincaré-Bendixson annular region theorem) Let
R be a bounded region in ℜ2 enclosed by two simple closed curves Cin and
Cout, as shown in Figure 8.15. If R is free of critical points and if there is
a solution of Eq. (3.3) that enters the interior of R from the boundary and
stays in the interior of R as t increases (or decreases), then R has a limit
cycle of Eq. (3.3). ♠

C
in

>

>

x(t)

C
out

Figure 8.15: An annular region for the existence of limit cycles

Accordingly, to apply Theorem 8.3.9, all we need is to construct such
curves Cin and Cout. To do so, two things are commonly used. One is the
direction field, or “slopes” dy

dx , that can “guide” solutions to enter and stay

in the region R. Another one is the Liapunov function V (t) = x2(t)+y2(t)
2

that indicates the “tendency” of a solution (x(t), y(t)).

Example 8.3.10 Revisit Example 8.2.14,

x′ = y + x[1− x2 − y2], y′ = −x+ y[1− x2 − y2]. (3.9)

Define V (t) = x2(t)+y2(t)
2 where (x(t), y(t)) is a solution. Now, taking a

derivative in t and plugging in the equation, we obtain

V ′(t) = xx′ + yy′ = [1− (x2 + y2)](x2 + y2). (3.10)

If we select Cin to be a circle centered at (0, 0) with radius 1
2 and Cout a

circle centered at (0, 0) with radius 2, then

V ′(t) = [1− (x2 + y2)](x2 + y2) > 0 on Cin, (3.11)
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and

V ′(t) = [1− (x2 + y2)](x2 + y2) < 0 on Cout. (3.12)

Thus any solution that enters the interior of R formed by Cin and Cout

from the boundary will stay in the interior of R as t increases, hence, from
Theorem 8.3.9, there exists a limit cycle. ♠

Next, let’s apply the Poincaré-Bendixson annular region theorem to the
famous Lienard-type equation

x′′ + g(x)x′ + x = 0, (3.13)

which has important applications in physics concerning the sustained oscilla-
tions. (See Chapter 1 for a brief introduction of the Lienard-type equations.)
Eq. (3.13) is equivalent to{

x′ = y −G(x), G(x) =
∫ x
0 g(s)ds,

y′ = −x, (3.14)

and includes the well-known van der Pol equation

x′′ + (x2 − 1)x′ + x = 0, (3.15)

which can be used to model the voltage in a triode circuit and also the human
heartbeat.

For Eq. (3.13), we make the following assumptions.

Hypothesis H. The function g in Eq. (3.13) is continuous, and

1. G(x) =
∫ x
0 g(s)ds is odd in x,

2. G(x) → ∞ as x→ ∞ and there is an a > 0 such that G(x) > 0 and is
increasing monotonically for x > a,

3. there is a b > 0 such that G(x) < 0 for 0 < x < b.

Theorem 8.3.11 Under the Hypothesis H, the Lienard equation (3.14) has
a limit cycle.

Proof. Note first that the only critical point of Eq. (3.14) is at (0, 0). Define

V (t) = x2(t)+y2(t)
2 where (x(t), y(t)) is a solution, then

dV

dt
= xx′ + yy′ = x(y −G(x)) + y(−x) = −xG(x).
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Consider a circle Lr centered at (0, 0) with radius r. From the Hypothesis
H(1) and H(3), if 0 < r < b, then dV

dt > 0 on Lr except when Lr intersects
the y-axis. Thus Lr can be used as Cin.

Next, we construct Cout. Note that (−x(t),−y(t)) is also a solution of Eq.
(3.14) (see an exercise), thus if we can construct a trajectory (x(t), y(t)) for
x ≥ 0, then (−x(t),−y(t)) gives a trajectory for x ≤ 0, using the symmetry.
From Eq. (3.14), we have

dy

dx
=

−x
y −G(x)

, (3.16)

which is zero if and only if x = 0, or the tangent of a trajectory is zero
only when the trajectory intersects the y-axis. Also, x = x(t) increases for
y > G(x) (since x′ = y − G(x)) and y = y(t) decreases for x > 0 (since
y′ = −x). Thus a trajectory Γ starting from A = (0, y0), y0 > 0, will go to
right and go down, and then intersects y = G(x) since G(x) → ∞, x → ∞.
The tangent at the interception is vertical since x′(t) = y(t) − G(x(t)) = 0
and hence dy

dx is undefined there. Thus Γ gets below y = G(x), and then
x = x(t) decreases and y = y(t) decreases, or Γ goes to left and goes down.
If Γ doesn’t cross the negative y-axis, then y → −∞ and hence x → −∞
from Eq. (3.14), a contradiction because now x is bounded. Consequently,
Γ intersects the y-axis at E = (0,−y1), y1 > 0, and Γ has the shape shown
in Figure 8.16 when y0 is sufficiently large.

Next, we verify that y1 ≤ y0. When (x, y) is a solution of Eq. (3.14), we
have

dV

dx
= x+ y

dy

dx
=

xG(x)

G(x)− y
, (3.17)

dV

dy
= x

dx

dy
+ y = G(x). (3.18)

Accordingly, the line integral along Γ is such that

V (E)− V (A) =

∫
ABCDE

dV =
( ∫

AB
+

∫
DE

) xG(x)

G(x)− y
dx+

∫
BCD

G(x)dy.

Now, ( ∫
AB

+

∫
DE

) xG(x)

G(x)− y
dx→ 0, as y → ∞,

and
∫
BCDG(x)dy = −

∫
DCB G(x)dy = q(y0) is a function of y0. Let m be

any point between (a, 0) and C in Figure 8.16, then, using the Hypothesis
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A
y
0

E

y
1

b a

B

D

M

m

y = G(x)

C

Γ

x

Figure 8.16: The graph of y = G(x) and the shape of trajectory Γ

H(2), ∫
DCB

G(x)dy ≥
∫
CM

G(x)dy ≥ G(m)|m−M |.

For the fixed m,
∫
DCB G(x)dy ≥ G(m)|m − M | → ∞ as y0 → ∞.

Therefore, there is a y0 > 0 such that V (E) ≤ V (A), or y1 ≤ y0. (Note that
if y1 = y0 then Γ is periodic.)

Now, let Cout be the union of Γ for x ≥ 0, its reflection through the origin,
and the segments on the y-axis connecting these curves, as shown in Figure
8.17. Then Cin and Cout satisfy the conditions of Theorem 8.3.9, which
implies that the Lienard equation (3.14) has a limit cycle. This completes
the proof. ♠

For the van der Pol equation given in Eq. (3.15), we can regard it as
a special case of the Lienard-type equation (3.13) with g(x) = x2 − 1, and
then apply Theorem 8.3.11 to obtain limit cycles. However, in this special
case, we would like to construct concrete Cin and Cout here. To do so, let’s
introduce Lienard’s graphing method under the Hypothesis H, given in
Figure 8.18.
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y

x

Γ

C
out

Figure 8.17: Construction of Cout using Γ and its reflection through the
origin for the Lienard equation

In Figure 8.18, the point (x, y) is P , the straight line PR is parallel to
the y-axis and R is on the curve of y = G(x), and the straight line QR
is parallel to the x-axis and Q is on the y-axis. Thus R = (x,G(x)) and
Q = (0, G(x)). The straight line PS is perpendicular to the straight line
PQ, hence the angle formed by PS and PR is the same as the angle formed
by PQ and QR. Accordingly, the slope of the straight line PS in the (x, y)
plane is given by

− tan ̸ OSP = − tan(
π

2
− ϕ) = − x

y −G(x)
=

−x
y −G(x)

=
dy

dx
.

That is, the derivative dy
dx at the point (x, y), or the slope of the trajectory at

(x, y), is determined by the slope of the straight line PS, or the trajectory
moves in the direction of the straight line PS.

Corollary 8.3.12 The van der Pol equation

x′′ + (x2 − 1)x′ + x = 0, (3.19)

has a limit cycle.

Proof. We will construct a concrete Cout in this case (Cin is the same as
in the proof of Theorem 8.3.11). Now, as shown in Figure 8.19, G(x) =∫ x
0 (s

2 − 1)ds = x3

3 − x has a minimum value y = −2
3 for x > 0.

Let’s construct Cout and the corresponding region R only for x ≥ 0, that

is,
⌢
AB ∪BC ∪

⌢
CD in Figure 8.19, then the symmetry through the origin
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y = G(x)=(x3/3)-x

x

y

Q

O

R

P =(x,y)

S

φ

φ >

Figure 8.18: Lienard’s graphing method under the Hypothesis H

will give the other half. The arc
⌢
CD is on the circle centered at (0,−2

3) with

radius x1, the vertical straight line BC is x = x1, and the arc
⌢
AB is on the

circle centered at (0,−2
3) with radius x1 +

4
3 . For x1 sufficiently large, x1 +

2
3 <

x3
1
3 − x1, thus the y component of the point A is below the graph of

y = G(x) = x3

3 − x at x1. Hence the point B is below y = x3

3 − x at
x1. A solution intersecting BC will go to left and go down since x′(t) =

y − G(x) < 0 and y′(t) = −x < 0. For any point E on
⌢
AB, draw a right

triangle according to Lienard’s graphing method. Now, the tangent of arc
⌢
AB at E is perpendicular to the straight line from E to the center (0,−2

3),
and the point F is above (0,−2

3), hence the direction of a trajectory at E,
which is perpendicular to the straight line EF , must move inside the region

R (or below the arc
⌢
AB). The same is true for the arc

⌢
CD. This completes

the construction of Cout and hence the proof. ♠

From the above, we see that if an annular region can be constructed so as
to apply the Poincaré-Bendixson annular region theorem 8.3.9, then the ex-
istence of limit cycles is guaranteed. However, constructing annular regions
is difficult and requires a very good understanding of both the direction field
of the equation under study and the planar geometry in order to find certain
relationships between trajectories and the functions involved.
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 G(x)=(x3/3)-x
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Figure 8.19: Construction of Cout for the van der Pol equation

At the beginning of this chapter, we claimed that critical points and
limit cycles and their positions can help us determine the global properties
of trajectories in ℜ2. Now, we will use some examples to demonstrate how
they are done.

Example 8.3.13 Consider{
x′ = 2x+ 2x3 − 4xy2,
y′ = −y + 4x2y − 3y3.

(3.20)

This system has five critical points C1 = (0, 0), C2 = (1, 1), C3 = (1,−1), C4 =
(−1, 1), C5 = (−1,−1). For C1 = (0, 0), the origin is a saddle point for the
linearization, thus C1 is also a saddle point for Eq. (3.20). For C2 = (1, 1),
we change the variables x1 = x− 1, x2 = y − 1 and obtain{

x′1 = 4x1 − 8x2 + 6x21 − 8x1x2 − 4x22 + 2x31 − 4x1x
2
2,

x′2 = 8x1 − 6x2 + 4x21 + 8x1x2 − 9x22 + 4x21x2 − 3x32.
(3.21)

Now, denote A the coefficient matrix of the linearization of Eq. (3.21),

then p = trA = −2, q = detA = 40 > p2

4 . Thus, the origin (0, 0) for the
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linearization of Eq. (3.21) is a stable spiral point. Accordingly, C1 = (1, 1)
is a stable spiral point for Eq. (3.20). Similarly, one finds that Ci, i = 3, 4, 5,
are all stable spiral points for Eq. (3.20), see an exercise.

Since Eq. (3.20) has solutions on the x-axis or on the y-axis, no periodic
orbits can intersect the x-axis or the y-axis. Next, if (x, y) is a solution, then
so are (−x, y), (x,−y), and (−x,−y) (see an exercise), thus we only need to
check the existence of periodic orbits for Eq. (3.20) in the first quadrant.
Let B(x, y) = x−3/2y−2, then

∂(PB)

∂x
+
∂(QB)

∂y
= −x−3/2y−2[x2 + y2],

which will not change sign in the first quadrant. Therefore, using Bendixson-
Dulac’s criterion 8.3.6, Eq. (3.20) has no periodic orbit in the first quadrant,
thus Eq. (3.20) has no periodic orbit in ℜ2. A phase portrait in ℜ2 is shown
in Figure 8.20. ♠
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Figure 8.20: A phase portrait in ℜ2 for Eq. (3.20)

Example 8.3.14 Consider{
x′ = 3x− x2 − 5xy,
y′ = −y + xy + y2.

(3.22)
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This system has four critical points C1 = (0, 0), C2 = (0, 1), C3 = (3, 0), and
C4 = (12 ,

1
2). Since Eq. (3.22) has solutions on the x-axis or on the y-axis,

no periodic orbits can intersect the x-axis or the y-axis. Next, since any
periodic orbit contains a critical point in its interior, the only region that
may have periodic orbits is the first quadrant.

C1 = (0, 0) is a saddle point for Eq. (3.22) since it is a saddle point
for the linearization. One can check that C2 and C3 are all saddle points
for Eq. (3.22), see an exercise. For C4 = (12 ,

1
2), we change the variables

x1 = x− 1
2 , x2 = y − 1

2 and obtain{
x′1 = −1

2x1 −
5
2x2 − x21 − 5x1x2,

x′2 = 1
2x1 +

1
2x2 + x1x2 + x22.

(3.23)

Now, denote A the coefficient matrix of the linearization of Eq. (3.23), then
p = trA = 0, q = detA = 1. Thus, the origin (0, 0) for the linearization
of Eq. (3.23) is a center, whose property is, in general, not clear after
perturbations. However, Eq. (3.23) is of the second-order polynomials and
we can check it with Theorem 4.3.8 in Chapter 4. In order to do this,
transform Eq. (3.23) into the standard form in Theorem 4.3.8. Using the
analysis in Section 2 of Chapter 4, we find that −i is an eigenvalue and
[−1, 1]T + i[−2, 0]T is an eigenvector for the matrix A. Then,

P =

[
−1 −2
1 0

]
, P−1AP =

[
0 −1
1 0

]
, (3.24)

and [y1, y2]
T = P−1[x1, x2]

T transforms Eq. (3.23) into{
y′1 = −y2 − 2y1y2,
y′2 = y1 − 2y21 − 2y1y2 + 2y22.

(3.25)

Now, applying Theorem 4.3.8, one has a20 = 0, a11 = −2, a02 = 0, b20 =
−2, b11 = −2, b02 = 2. Then A = a20 + a02 = 0, B = b20 + b02 = 0, γ = 0.
Hence W1 = W2 = W3 = 0, thus (0, 0) for Eq. (3.25) is a center, therefore,
C4 = (12 ,

1
2) for Eq. (3.22) is also a center. A phase portrait in ℜ2 is shown

in Figure 8.21. ♠

In the above, we briefly discussed the existence and nonexistence of limit
cycles, and used examples to demonstrate that they are very important
components in determining the global behavior of dynamical systems. Some
related studies include the behavior of trajectories at infinity, and uniqueness
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Figure 8.21: A phase portrait in ℜ2 for Eq. (3.22)

and stability of limit cycles. See Hartman [1964], Hale [1969], and Perko
[1991] for additional references.

Exercises 8.3

1. Show that H0 = 0 and H1 = 0 for Hilbert’s sixteenth problem.

2. Prove Theorem 8.3.6.

3. Prove the following result: Let P (x, y), Q(x, y), B(x, y), and F (x, y)
have continuous first partial derivatives in a simply connected domain
D ⊂ ℜ2 and assume that ∂(PB)

∂x + ∂(QB)
∂y +B[P ∂F

∂x +Q∂F
∂y ] is not iden-

tically zero and does not change sign in any open set of D. Then Eq.
(3.3) has no periodic orbit in D.

4. Prove that the system

x′ = y7, y′ = ax+ by + cx2 + dy2

has no limit cycles.
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5. Discuss the existence of periodic orbits for

x′ = y, y′ = 2(1− xy).

6. Prove Theorem 8.3.9.

7. Use the Poincaré-Bendixson theorem 8.2.12 to prove that the system

x′ = x+ y − x[x2 + y2] cos2(x2 + y2),

y′ = −x+ y − y[x2 + y2] cos2(x2 + y2).

has a limit cycle.

8. Verify for Eq. (3.14) that if (x(t), y(t)) is a solution, then so is
(−x(t),−y(t)).

9. Answer the following question: Why must we verify y1 ≤ y0 in the
proof of Theorem 8.3.11 ?

10. Verify that the function g(x) = x2 − 1 satisfies the Hypothesis H.

11. Find all the critical points for Example 8.3.13. Then verify that Ci, i =
3, 4, 5, are all stable spiral points for Eq. (3.20).

12. In Example 8.3.13, verify that if (x, y) is a solution, then so are (−x, y),
(x,−y), and (−x,−y).

13. Find all the critical points for Example 8.3.14. Then verify that C2

and C3 are all saddle points for Eq. (3.22).

14. Verify that y = −1
3x+ 1 is a solution curve for Eq. (3.22).

8.4 An Application: The Lotka-Volterra Equation

Consider two populations, x and y. If they compete for a shared limited
resource (space or a nutrient, for example), and each interferes with the
other’s utilization of it, then a classic model describing the situation is the
Lotka-Volterra competition equation

x′(t) = β1x(K1 − x− µ1y),
y′(t) = β2y(K2 − y − µ2x),

x(0) ≥ 0, y(0) ≥ 0,
(4.1)



414 Chapter 8. Dynamical Systems

where βi, Ki, µi, i = 1, 2, are positive constants. First, note that a trajec-
tory started from the interior of the first quadrant of the (x, y) plane will
remain in the first quadrant (see an exercise). Now, (0, 0), (0, k2), and (k1, 0)
are critical points of Eq. (4.1). Other possible critical points of Eq. (4.1)
are the solutions of {

x+ µ1y = K1,
y + µ2x = K2.

(4.2)

Note, the solutions of Eq. (4.2) that we are interested in should be inside
the interior of the first quadrant of the (x, y) plane because x and y denote
populations. Accordingly, we have the four cases shown in Figure 8.22
based on the straight lines x+ µ1y = K1 and y + µ2x = K2.

case 1 case 2

case 3 case 4
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Figure 8.22: Four cases based on the straight lines x + µ1y = K1 and
y + µ2x = K2
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We also find that when K1 <
K2
µ2

and K2 <
K1
µ1

, it follows that K1 >

µ1K2 > µ1µ2K1, or 1 > µ1µ2. Similarly, when K2
µ2

< K1 and K1
µ1

< K2, one
has K2 < K1µ2 < µ1µ2K2, or 1 < µ1µ2. In these cases, the solution of Eq.
(4.2) given by

(K1 − µ1K2

1− µ1µ2
,
K2 − µ2K1

1− µ1µ2

)
(4.3)

is the fourth critical point and is inside the interior of the first quadrant of
the (x, y) plane. Next, we shift these critical points to the origin (0, 0) in
order to apply Theorem 4.3.1 in Chapter 4. Thus we denote by (xc, yc) one
of those four critical points, and change the variables x = x−xc, y = y− yc
to derive the equation{

x′(t) = β1(x+ xc)[K1 − (x+ xc)− µ1(y + yc)],

y′(t) = β2(y + yc)[K2 − (y + yc)− µ2(x+ xc)],
(4.4)

such that (0, 0) is a critical point for Eq. (4.4), which corresponds to (xc, yc)
for Eq. (4.1).

The matrix of the linearization of Eq. (4.4) is[
β1(K1 − 2xc − µ1yc) −β1µ1xc

−β2µ2yc β2(K2 − 2yc − µ2xc)

]
, (4.5)

therefore the local qualitative properties are determined by its eigenvalues
λi. Next, we look at all different cases. At (xc, yc) = (0, 0), λi = βiKi > 0,
hence (0, 0) is an unstable node (see Theorem 4.3.1 and Exercises 5.6). At
(xc, yc) = (0,K2), λ1 = β1(K1 − µ1K2) and λ2 = −β2K2 < 0. Hence (0, 0)
for the linearization of Eq. (4.4), or (0,K2) for the original equation (4.1),
is a saddle if β1(K1 − µ1K2) > 0 or a stable node if β1(K1 − µ1K2) < 0. At
(xc, yc) = (K1, 0), λ1 = −β1K1 < 0 and λ2 = β2(K2 − µ2K1). Thus (0, 0)
for the linearization of Eq. (4.4), or (K1, 0) for the original equation (4.1),
is a saddle if β2(K2 − µ2K1) > 0 or a stable node if β2(K2 − µ2K1) < 0.

Next, let’s look at the four cases shown in Figure 8.22 separately.

Case 1. K2
µ2

< K1 and K2 <
K1
µ1

. Now, (0,K2) is a saddle and (K1, 0)
is a stable node. In this case, the fourth critical point in (4.3) does not
occur; or, there is no critical point of Eq. (4.1) inside the interior of the first
quadrant of the (x, y) plane. Then there is no periodic orbit in the interior of
the first quadrant due to Theorem 8.2.13. Now, if a point (x, y) is in the first
quadrant and above the straight line x + µ1y = K1 (and hence also above



416 Chapter 8. Dynamical Systems

y + µ2x = K2), then one has x + µ1y > K1 and y + µ2x > K2, or x
′ < 0

and y′ < 0. Therefore, the solutions in the first quadrant must be bounded.
Accordingly, every trajectory in the first quadrant, except those started with
x = 0, will tend to the stable node (K1, 0) by using the Poincaré-Bendixson
theorem 8.2.12 (otherwise, periodic orbits will occur from bounded solutions
away from critical points). Therefore, in this case the population x wins and
y loses: limt→∞ x(t) = K1 and limt→∞ y(t) = 0.

Case 2. K1 <
K2
µ2

and K1
µ1

< K2. The analysis is similar to Case 1 and
is left as an exercise.

Case 3. K1 <
K2
µ2

and K2 <
K1
µ1

, and hence 1 > µ1µ2. Both (0,K2) and
(K1, 0) are saddles, and the fourth critical point in (4.3) now occurs inside
the interior of the first quadrant. The matrix of the linearization (4.5) when
(xc, yc) is given by (4.3) becomes[

−β1xc −β1µ1xc
−β2µ2yc −β2yc

]
, (4.6)

with its characteristic equation

λ2 + [β1xc + β2yc]λ+ [1− µ1µ2]β1β2xcyc = 0. (4.7)

The eigenvalues are given by

λ =
−[β1xc + β2yc]±

√
[β1xc + β2yc]2 − 4[1− µ1µ2]β1β2xcyc

2
, (4.8)

and are all negative because

[β1xc + β2yc]
2 − 4[1− µ1µ2]β1β2xcyc

= (β1xc)
2 + 2β1xcβ2yc + (β2yc)

2 − 4β1β2xcyc + 4µ1µ2β1β2xcyc

= (β1xc)
2 − 2β1xcβ2yc + (β2yc)

2 + 4µ1µ2β1β2xcyc

= [β1xc − β2yc]
2 + 4µ1µ2β1β2xcyc > 0, (4.9)

and, as 1− µ1µ2 > 0,

[β1xc + β2yc]
2 − 4[1− µ1µ2]β1β2xcyc < [β1xc + β2yc]

2. (4.10)

Thus the critical point given by (4.3) is a stable node. In this case, since
the interior of the first quadrant has a critical point, the existence of limit
cycles is possible. We apply Bendixson-Dulac’s criterion 8.3.6 and choose
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the domain D to be the interior of the first quadrant and let B(x, y) = 1
xy ,

then, for Eq. (4.1),

∂(PB)

∂x
=

∂

∂x

[ 1

xy
β1x(K1 − x− µ1y)

]
=

β1
y

∂

∂x

[
K1 − x− µ1y

]
= −β1

y
, (4.11)

and

∂(QB)

∂y
=

∂

∂y

[ 1

xy
β2y(K2 − y − µ2x)

]
=

β2
x

∂

∂y

[
K2 − y − µ2x

]
= −β2

x
, (4.12)

hence
∂(PB)

∂x
+
∂(QB)

∂y
= −β1

y
− β2

x
< 0, (x, y) ∈ D.

Therefore, we conclude that there is no periodic orbit in the interior of the
first quadrant. Similar to Case 1, the solutions in the first quadrant are
bounded and every trajectory, except those started with x = 0 or y = 0,
will tend to the stable node given by the critical point (4.3), by using the
Poincaré-Bendixson theorem 8.2.12. Therefore, populations x and y may
coexist and tend to the “shared” status.

Case 4. K2
µ2

< K1 and K1
µ1

< K2, and hence 1 < µ1µ2. Both (0,K2) and
(K1, 0) are stable nodes, and the fourth critical point in (4.3) now occurs
inside the interior of the first quadrant. Similar to the calculations in Case
3, we find that now the two eigenvalues have the opposite signs. Thus the
critical point given by (4.3) is a saddle. Again, there is no periodic orbit
in the interior of the first quadrant. Now, because both (0,K2) and (K1, 0)
are stable nodes and the critical point given by (4.3) is a saddle, then initial
conditions determine who wins the competition.

The phase portraits are given in Figure 8.23.

Exercises 8.4

1. Prove that a trajectory started from the interior of the first quadrant
of (x, y) plane will remain in the first quadrant.

2. Complete Case 2 and determine its phase portrait.
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Figure 8.23: Phase portraits of the Lotka-Volterra competition equation

3. Complete Case 4 and determine its phase portrait.

4. Analyze the Volterra equation{
x′(t) = ax(t)− bx2(t)− cx(t)y(t),
y′(t) = −dy(t) + ex(t)y(t),

where a, b, c, d, e are positive constants.

8.5 Manifolds and the Hartman-Grobman
Theorem

In Chapter 4, we studied planar autonomous differential equations and found
that most properties of those equations can be determined by the eigenvalues
of their linearization matrices, and that in a small neighborhood of the origin,
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solutions of both the original nonlinear equations and their linearizations
have essentially the same qualitative properties. In this section, we will
extend these ideas to general ℜn and investigate the relationship between
the linear differential equation

x′ = Ax (5.1)

with a constant n× n matrix A and its nonlinear perturbation

x′ = Ax+ f(x) (5.2)

where |f(x)| is small when |x| is small. We will show that near the origin,
most properties of solutions of Eq. (5.2) can still be determined by the
eigenvalues of the matrix A, which is called the stable, unstable, and center
manifolds theorem. We will also show (with some additional conditions on
the matrix A) that near the origin, the trajectories of Eq. (5.1) and of Eq.
(5.2) are very similar. This is called the Hartman-Grobman theorem.

To begin, we notice from linear algebra that there is a real nonsingular
n× n matrix P which transforms Eq. (5.1) into u

v
w


′

=

 As 0 0
0 Au 0
0 0 Ac


 u
v
w

 , (5.3)

where (u, v, w) ∈ ℜs × ℜu × ℜc with s + u + c = n, and the real parts
of eigenvalues of the square matrices As, Au, and Ac are negative, positive,
and zero respectively. See Coddington and Levinson [1955] or Hirsch and
Smale [1974] for a proof. This result is also called the Jordan canonical form
theorem, but it is different from the one introduced in Chapter 3 in that for
Eq. (5.3), we do not require the eigenvalues to lie on the diagonal, so that
the transformation matrix P can be chosen to be a real matrix, while the
transformation matrix in Chapter 3 may be complex valued.

Therefore, in the rest of this section, we assume that such a transforma-
tion has been made so that we can use x = (u, v, w) and Eq. (5.3) to replace
Eq. (5.1). Now, for Eq. (5.3), we find that

Es = {x = (u, v, w) ∈ ℜn : v = 0, w = 0} (5.4)

is a subspace in ℜn such that for any initial point xs0 = (u0, 0, 0) in E
s, the

corresponding solution x(t, 0, xs0) of Eq. (5.3) is also in Es for t ∈ ℜ; that is,
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Es is invariant for Eq. (5.3). (This is defined in the same way as in Section
8.2 with ℜ2 replaced by ℜn.) Moreover, from Chapter 5, we also know that

|x(t, 0, xs0)| −→ 0, t→ ∞. (5.5)

Next, for any initial point xu0 in the subspace

Eu = {x = (u, v, w) ∈ ℜn : u = 0, w = 0}, (5.6)

the corresponding solution x(t, 0, xu0) of Eq. (5.3) is also in Eu for t ∈ ℜ,
and

|x(t, 0, xu0)| −→ 0, t→ −∞. (5.7)

Finally, for any initial point xc0 in the subspace

Ec = {x = (u, v, w) ∈ ℜn : u = 0, v = 0}, (5.8)

the corresponding solution x(t, 0, xc0) of Eq. (5.3) is also in Ec for t ∈ ℜ, but
(5.5) and (5.7) do not hold (for arbitrary xc0 in Ec).

Accordingly, the invariant subspaces Es, Eu, and Ec are called the stable
subspace, the unstable subspace, and the center subspace of Eq. (5.3).

Next, let’s use an example to illustrate the counterparts of these invariant
subspaces of linear equations when small nonlinear perturbations are applied.
The example will also be used to introduce the corresponding terminology.

Example 8.5.1 Consider
x′1 = −x1,
x′2 = x2 + x21,
x′3 = 0,

(5.9)

whose solutions can be found by solving the first equation and then plugging
in the second equation, and are given by

x1 = c1e
−t,

x2 = (c2 +
c21
3 )e

t − c21
3 e

−2t,
x3 = c3,

(5.10)

where x(0) = (c1, c2, c3). Now, to find the counterpart of the invariant stable
subspace Es of the linearization of Eq. (5.9), which is the x1-axis now, we
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need to find c = (c1, c2, c3) such that |x(t, 0, c)| → 0, t→ ∞. From (5.10), it
is given by

M s = {c = (c1, c2, c3) ∈ ℜ3 : c2 = −c
2
1

3
, c3 = 0}, (5.11)

which defines a curve that is tangent to Es (the x1-axis) at the origin. See
Figure 8.24 (where we mix xi with ci, i = 1, 2, 3).
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Figure 8.24: Es, Eu, Ec, and M s,Mu,M c, for Eq. (5.9)

Moreover, if an initial point c = (c1, c2, c3) is in M s, then from (5.10),
the corresponding solution x(t, 0, c) = (x1, x2, x3) satisfies x3 = c3 = 0 and

x2 = (c2 +
c21
3
)et − c21

3
e−2t = −1

3
(c1e

−t)2 = −x
2
1

3
,

that is, M s is invariant for Eq. (5.9).
For the counterpart of the invariant unstable subspace Eu of the lineariza-

tion of Eq. (5.9), which is the x2-axis now, we need to find c = (c1, c2, c3)
such that |x(t, 0, c)| → 0, t→ −∞. It is given by

Mu = {c = (c1, c2, c3) ∈ ℜ3 : c1 = 0, c3 = 0}, (5.12)

or the x2-axis itself, and it is also invariant for Eq. (5.9). Since Mu is now
the same as Es, it is of course tangent to Es at the origin. See Figure 8.24.
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Similarly, we find that Ec for the linearization of Eq. (5.9) is the x3-axis,
and that

M c = {c = (c1, c2, c3) ∈ ℜ3 : c1 = 0, c2 = 0} (5.13)

is tangent to Ec at the origin (since they are the same now, see Figure 8.24),
and M c is also invariant for Eq. (5.9). ♠

For the subsetM s given in (5.11), it is not a one-dimensional subspace of
ℜ3 (in fact, it is not even a subspace of ℜ3), but M s is composed with many
small pieces such that every small piece is an image of an open interval on the
x1-axis. Accordingly, M

s in (5.11) is called a one-dimensional manifold.
Moreover, M s is called a one-dimensional invariant stable manifold of
Eq. (5.9) due to the properties that M s is invariant and when initial points
are in M s, the corresponding solutions approach the origin. Similarly, Mu

and M c are called one-dimensional invariant unstable manifold and
one-dimensional invariant center manifold of Eq. (5.9) respectively.
(They are identical with Eu and Ec in Example 8.5.1.)

The following is based on Coddington and Levinson [1955], Hartman
[1964], Kelley [1967], Guckenheimer and Holmes [1986], Wiggins [1990], and
Perko [1991]. We only consider the situation near the origin, and sometimes
we only outline the major steps without details, since some of the details are
not within the scope of this book. First, we list some definitions.

Definition 8.5.2 Two subsets A and B of a metric space X are said to be
homeomorphic if there is a continuous map h : A→ B that is one-to-one

and onto, and h−1 is also continuous. In this case, it is denoted by A
h−→ B

and h is called a homeomorphism.

Definition 8.5.3 A k-dimensional differentiable manifoldM is a con-
nected metric space with an open covering M =

∪
α Vα such that

1. for all α, Vα is homeomorphic to the open unit ball in ℜk, and

2. if Vα ∩ Vβ ̸= Ø (empty set), and Vα
hα−→ B ⊂ ℜk, Vβ

hβ−→ B, then the
map

h = hα(h
−1
β ) : hβ(Vα ∩ Vβ) −→ hα(Vα ∩ Vβ)

is a differentiable function of x ∈ hβ(Vα∩Vβ) ⊂ ℜk, with det ∂h(x)
∂x ̸= 0.
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That is, a manifold is a set which locally has the structure of Euclidean
space, and for our purpose here, we can think of a manifold as a curve or a
surface embedded in ℜn. See, for example, M s,Mu, and M c in Figure 8.24
as one-dimensional differentiable manifolds. The following subset of ℜ3,

{x = (x1, x2, x3) ∈ ℜ3 : x3 = x21} (5.14)

defines a two-dimensional differentiable manifold that is tangent to the (x1, x2)
plane at the origin, see Figure 8.25.

x
1

x
2

x
3

Figure 8.25: A two-dimensional differentiable manifold in ℜ3

Definition 8.5.4 Consider Eq. (5.2) in a small neighborhood D of the ori-
gin of ℜn where the matrix A is given in Eq. (5.3). A manifold M s ⊂ D
is said to be a stable manifold of Eq. (5.2) at the origin if M s is
positively invariant for Eq. (5.2), tangent to Es of the linearization at the
origin, and for any xs0 ∈ M s, the corresponding solution x(t, 0, xs0) of Eq.
(5.2) satisfies |x(t, 0, xs0)| → 0, t → ∞. A manifold Mu ⊂ D is said to be
an unstable manifold of Eq. (5.2) at the origin if Mu is negatively
invariant for Eq. (5.2), tangent to Eu of the linearization at the origin, and
for any xu0 ∈Mu, the corresponding solution x(t, 0, xu0) of Eq. (5.2) satisfies
|x(t, 0, xu0)| → 0, t → −∞. A manifold M c ⊂ D is said to be a center
manifold of Eq. (5.2) at the origin if M c is invariant for Eq. (5.2) and
tangent to Ec of the linearization at the origin.
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We find from Example 8.5.1 that stable and unstable manifolds are
uniquely determined, but center manifolds may not be, see the following
example.

Example 8.5.5 Consider {
x′ = x2,
y′ = −y, (5.15)

whose solutions are given by x(t) = x0
1−tx0

and y(t) = y0e
−t. Then we get

t = 1
x0

− 1
x from x(t) = x0

1−tx0
and hence obtain solution curves which are

graphs of the functions y(x) = (y0e
−1/x0)e1/x. Now, for each (x0, y0) with

x0 < 0, the graph of y(x) = (y0e
−1/x0)e1/x will start with (x0, y0) and

approach the origin (x, y) = (0, 0) as x→ 0−. Therefore, we can patch such
a graph with the positive x-axis at the origin and still call it y(x), see Figure
8.26.
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Figure 8.26: The nonuniqueness of center manifolds for Eq. (5.15)

Now, it can be verified (see an exercise) that dy
dx(0) = 0, that is, such a

graph forms a one-dimensional differentiable center manifold of Eq. (5.15)
at the origin. Since such a point (x0, y0) with x0 < 0 is arbitrary, center
manifolds of Eq. (5.15) at the origin are not uniquely determined, see Figure
8.26. ♠

Next, we state and prove the following result confirming the existence of
stable and unstable manifolds of Eq. (5.2) with a small nonlinear perturba-
tion f(x), where we assume

(H). f is continuously differentiable, f(0) = 0,
∂f

∂x
(0) = 0. (5.16)
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Under the assumption (H), for any ε > 0 there is a δ > 0 such that

|f(x)− f(y)| ≤ ε|x− y|, for |x|, |y| ≤ δ. (5.17)

Theorem 8.5.6 (Stable and Unstable Manifolds Theorem) Consider
Eq. (5.2) where the matrix A is given in Eq. (5.3) and the function f sat-
isfies the hypothesis (H) in (5.16). Let s = dim(ℜs) > 0 (the matrix A
has s eigenvalues with negative real parts), u = dim(ℜu) > 0 (u eigenvalues
with positive real parts), and c = dim(ℜc) = 0 (no eigenvalues with zero real
parts). Then there exists an s-dimensional differentiable stable manifold M s

and a u-dimensional differentiable unstable manifold Mu of Eq. (5.2).

Proof. Let

S(t) =

[
etAs 0
0 0

]
, U(t) =

[
0 0
0 etAu

]
, (5.18)

then etA = S(t)+U(t) and S′ = AS, U ′ = AU . Let α > 0 be chosen so that
the real parts of the eigenvalues of As are less than −α (since they are all
negative). Then we can find positive constants K and σ such that

|S(t)| ≤ Ke−(α+σ)t, t ≥ 0; |U(t)| ≤ Keσt, t ≤ 0. (5.19)

For a ∈ ℜn, consider the integral equation

v(t, a) = S(t)a+

∫ t

0
S(t− h)f(v(h, a))dh

−
∫ ∞

t
U(t− h)f(v(h, a))dh, t ≥ 0, (5.20)

whose construction guarantees that the integrals are convergent using (5.19).
It is true (see an exercise) that a solution of Eq. (5.20) is also a solution of
Eq. (5.2). We will prove the existence of solutions of Eq. (5.20) and then use
them to define a stable manifold. Start with the successive approximations

v(0)(t, a) = 0,

v(j+1)(t, a) = S(t)a+

∫ t

0
S(t− h)f(v(j)(h, a))dh

−
∫ ∞

t
U(t− h)f(v(j)(h, a))dh, t ≥ 0, j ≥ 0, (5.21)

we find that

|v(1)(t, a)| = |S(t)a| ≤ K|a|e−(α+σ)t ≤ K|a|, t ≥ 0. (5.22)
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In order to use condition (5.17), we choose ε < σ
4K and then choose a

such that |a| ≤ δ
2K . Then let’s use an induction to prove |v(j)(t, a)| ≤ (12 + 1

22
+ · · ·+ 1

2j
)δ,

|v(j)(t, a)− v(j−1)(t, a)| ≤ K|a|e−αt

2j−1 ,
t ≥ 0, j ≥ 1, (5.23)

which is true for j = 1 already using (5.22). If (5.23) is true for j =
1, 2, · · · ,m, then |v(j)(t, a)| ≤ (12 + 1

22
+ · · · + 1

2j
)δ < δ, and hence condi-

tion (5.17) can be applied to obtain, for t ≥ 0,

|v(m+1)(t, a)− v(m)(t, a)| ≤
∫ t

0
|S(t− h)|ε|v(m)(h, a)− v(m−1)(h, a)|dh

+

∫ ∞

t
|U(t− h)|ε|v(m)(h, a)− v(m−1)(h, a)|dh

= ε

∫ t

0
Ke−(α+σ)(t−h)K|a|e−αh

2m−1
dh+ ε

∫ ∞

t
Keσ(t−h)K|a|e−αh

2m−1
dh

≤ εK2|a|e−αt

2m−1

∫ t

0
eσ(h−t)dh+

εK2|a|e−αt

2m−1

∫ ∞

t
eσ(t−h)dh

≤ εK2|a|e−αt

σ2m−1
+
εK2|a|e−αt

σ2m−1
=

(2εK
σ

)K|a|e−αt

2m−1
≤ K|a|e−αt

2m
,

which in turn implies, for t ≥ 0,

|v(m+1)(t, a)| ≤ |v(m)(t, a)|+
K|a|e−αt

2m
≤ (

1

2
+

1

22
+ · · ·+ 1

2m
)δ +

δ

2m+1
,

and hence completes the induction of (5.23). Now, for j > m > N and t ≥ 0,

|v(j)(t, a)− v(m)(t, a)| ≤
∞∑

i=N

|v(i+1)(t, a)− v(i)(t, a)| ≤ K|a|
∞∑

i=N

1

2i
=
K|a|
2N−1

,

which implies that {v(i)(t, a)}i≥1 is a Cauchy sequence, and that

lim
i→∞

v(i)(t, a) = v(t, a)

exists uniformly for |a| ≤ δ
2K and t ≥ 0, which gives rise to a solution of

Eq. (5.20) and of Eq. (5.2). Moreover, since each v(i)(t, a) is a differentiable

function of |a| ≤ δ
2K for t ≥ 0, v(t, a) (as a uniform limit) is also a differ-

entiable function of |a| ≤ δ
2K for t ≥ 0. The estimate (5.23) also implies

that

|v(t, a)| ≤ 2K|a|e−αt, |a| ≤ δ

2K
, t ≥ 0. (5.24)
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Next, let’s look at how to define a stable manifold from solutions of Eq.
(5.20). First, note from the successive approximations in (5.21) and the
structure of the matrix S(t) that the last u components of the vector a do
not enter into the solution of Eq. (5.20) and may be taken as zero, which
we assume has been done. From Eq. (5.20), the components vi(t, a) of the
solution v(t, a) satisfy the initial conditions vi(0, a) = ai, i = 1, 2, · · · , s

vi(0, a) = −
( ∫∞

0 U(−h)f(v(h, a))dh
)
i
, i = s+ 1, s+ 2, · · · , n,

(5.25)

where (·)i denotes the ith component. If the functions ψi are defined by

ψi(a1, a2, · · · , as) = −
( ∫ ∞

0
U(−h)f(v(h, a))dh

)
i
, i = s+ 1, s+ 2, · · · , n,

where the first s components of a are a1, a2, · · · , as and other components
of a are zero, and v(·, a) is the corresponding solution (which is uniquely
determined due to the Lipschitz condition), then the initial values xi =
vi(0, a), i = 1, 2, · · · , n, satisfy the equations

xi = ψi(x1, x2, · · · , xs), i = s+ 1, s+ 2, · · · , n, (5.26)

in x space ℜn. This defines an s-dimensional differentiable manifold M s for
|xs| ≤ δ

2K where xs = (x1, x2, · · · , xs). If x(t) is a solution of Eq. (5.2) near
the origin with x(0) ∈M s, then x(0) = v(0, a) where the first s components
of a are the same as those of x(0) and other components of a are zero, and v
is the corresponding solution. From uniqueness, we have x(t) = v(t, a), then
x(t) ∈ M s for t ≥ 0 and |x(t)| → 0 as t → ∞ using (5.24). Moreover, from
Coddington and Levinson [1955] p. 333, one has

∂ψi

∂xl
= 0, i = s+ 1, s+ 2, · · · , n, l = 1, 2, · · · , s,

at x1 = x2 = · · · = xs = 0, hence M s is tangent to Es = {x ∈ ℜn : xs+1 =
· · · = xn = 0} of the linearization. Therefore, M s is an s-dimensional
differentiable stable manifold of Eq. (5.2).

To derive an unstable manifold of Eq. (5.2), we can make a change of
t→ −t in Eq. (5.2) to get

x′(t) = −Ax(t)− f(x(t)), (5.27)
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and replace the vector x = (x1, · · · , xs, xs+1, · · · , xn) by (xs+1, · · · , xn, x1, · · · ,
xs) and then obtain a stable manifold of the resulting equation, which in turn
gives an unstable manifold of Eq. (5.2). This completes the proof. ♠

Next, we use an example to illustrate the successive approximations of
v(j)(t, a) in the above proof and the approximations of stable and unstable
manifolds.

Example 8.5.7 Consider{
x′1 = −x1 − x22,
x′2 = x2 + x21,

(5.28)

for which we have

A =

[
−1 0
0 1

]
, f(x) =

[
−x22
x21

]
, S(t) =

[
e−t 0
0 0

]
, U(t) =

[
0 0
0 et

]
.

Then the successive approximations of v(j)(t, a) in (5.21) with a = [a1, 0]
T

give

v(0)(t, a) =

[
0
0

]
,

v(1)(t, a) = S(t)a =

[
e−ta1
0

]
,

v(2)(t, a) = S(t)a+

∫ t

0
S(t− h)f(v(1)(h, a))dh−

∫ ∞

t
U(t− h)f(v(1)(h, a))dh

=

[
e−ta1
0

]
−

∫ ∞

t

[
0

et−he−2ha21

]
dh =

[
e−ta1

−1
3e

−2ta21

]
,

v(3)(t, a) =

[
e−ta1
0

]
−

∫ t

0

[
e−(t−h)e−4ha41

9
0

]
dh−

∫ ∞

t

[
0

et−he−2ha21

]
dh

=

[
e−ta1 +

1
27(e

−4t − e−t)a41

−1
3e

−2ta21

]
.

Accordingly, we have v(t, a) ≈
[

e−ta1
−1

3e
−2ta21

]
when |a| = |[a1, 0]T | is

small, or when a1 is small. Thus the stable manifold is approximated by

ψ2(a1) = −
( ∫ ∞

0
U(−h)f(v(h, a))dh

)
2



8.5. Manifolds and the Hartman-Grobman Theorem 429

≈ −
( ∫ ∞

0

[
0 0
0 e−h

] [
−1

9e
−4ha41

e−2ha21

]
dh

)
2

= −
∫ ∞

0
e−he−2ha21dh = −1

3
a21.

That is, near the origin, the stable manifold M s is approximated by

{(x1, x2) ∈ ℜ2 : x2 = −1

3
x21}.

The unstable manifold can be approximated in the same way as above
with t→ −t and x1 and x2 interchanged, whose stable manifold will be the
unstable manifold Mu of Eq. (5.28), and is approximated by

{(x1, x2) ∈ ℜ2 : x1 = −1

3
x22},

see Figure 8.27. ♠
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Figure 8.27: Local approximations of M s and Mu for Eq. (5.28)

Next, we state a result that also concerns center manifolds. Refer to the
previous references for a proof and additional remarks.

Theorem 8.5.8 (Stable, Unstable, and Center Manifolds Theorem)
Consider Eq. (5.2) where the matrix A is given in Eq. (5.3) and the function
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f satisfies the hypothesis (H) in (5.16). Let s = dim(ℜs) > 0 (the matrix A
has s eigenvalues with negative real parts), u = dim(ℜu) > 0 (u eigenvalues
with positive real parts), and c = dim(ℜc) > 0 (c eigenvalues with zero real
parts). Then there exists an s-dimensional differentiable stable manifoldM s,
a u-dimensional differentiable unstable manifold Mu, and a c-dimensional
differentiable center manifold M c of Eq. (5.2). ♠

That is, for Eq. (5.2) near the origin, we can find those invariant mani-
foldsM s,Mu, andM c which are the counterparts of the invariant subspaces
Es, Eu, and Ec of the linearization, and M s,Mu,M c have the asymptotic
properties of Es, Eu, Ec respectively. That is, solutions of Eq. (5.2) with
initial points inM s (Mu) approach the origin at an exponential rate asymp-
totically as t→ ∞ (−∞), and there exist initial points in M c such that the
corresponding solutions do not approach the origin as |t| → ∞.

Next, we look at the relationship between the trajectories of Eq. (5.2)
and its linearization near the origin. Recall from Chapter 4 that a center
can be changed to a spiral point after a small perturbation. For example,
look at

x′1 = −x2 + x1(x
2
1 + x22), x′2 = x1 + x2(x

2
1 + x22), (5.29)

which is Example 4.3.4 in Chapter 4. We know that the origin is a center
for the linearization of Eq. (5.29) but a spiral point for Eq. (5.29). Since
the trajectories for centers and for spiral points are qualitatively different,
we find that we must restrict our study to the cases where the real parts of
eigenvalues of linearization matrices are nonzero.

Let’s also recall that we have seen some cases where trajectories of one
equation are transformed to become trajectories of another equation. For
example, the linear equation with the matrix

B =

[
−1 −2
−2 −1

]
(5.30)

is Example 4.2.5 in Chapter 4, and we know that if we let

P =

[
1 1
−1 1

]
, (5.31)

then

PBP−1 =

[
−3 0
0 1

]
= A, (5.32)
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and y = Px transforms x′ = Bx into y′ = Ay. Now, if we define a mapping
H(x) = Px on ℜ2, then H is a rotation of −45o and hence a homeomorphism
on ℜ2. Moreover, for x = etBx0 and y = etAy0 with y0 = Px0, we have
etAPx0 = etAy0 = y = Px = PetBx0, or

etAH = HetB. (5.33)

That is, H maps trajectories of x′ = Bx onto trajectories of y′ = Ay and, due
to (5.33), we say that H preserves the parameterization. See Figure
8.28.
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Figure 8.28: A homeomorphism preserving parameterization

Now, we introduce the Hartman-Grobman theorem, proved indepen-
dently by Hartman in 1960 and Grobman in 1959, showing that near the
origin, the trajectories of Eq. (5.2) and its linearization are related by a
homeomorphism preserving parameterization.

Theorem 8.5.9 (Hartman-Grobman theorem) Consider Eq. (5.2)
where the matrix A is given in Eq. (5.3) and the function f satisfies the
hypothesis (H) in (5.16). Let s = dim(ℜs) > 0 (the matrix A has s eigenval-
ues with negative real parts), u = dim(ℜu) > 0 (u eigenvalues with positive
real parts), and c = dim(ℜc) = 0 (no eigenvalues with zero real parts). Let
T t : x0 → x(t, 0, x0) denote the solution (flow) of Eq. (5.2). Then there
exists a homeomorphism H of a neighborhood of the origin onto a neighbor-
hood of the origin such that for x0 near the origin and t in some interval
containing zero,

etAH = HT t (or etAH(x0) = H(x(t, 0, x0))). (5.34)
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That is, near the origin, H maps trajectories of Eq. (5.2) onto trajectories
of the linearization and preserves the parameterization.

Proof. The following steps are based on Hartman [1964] p. 228–251. See
also Perko [1991].

Step 1. Based on Chapter 2, we can assume without loss of generality that
solutions (flows) x(t, 0, x0) of Eq. (5.2) exist on t ∈ [−1, 1] for x0 near the
origin. The solution x(t, 0, x0) of Eq. (5.2) can be written as a linear term
in x0 and a higher order term in x0, given by

x(t, 0, x0) = etAx0 +K(t, x0), (5.35)

which can be done if we define K to be the difference of x(t, 0, x0) and e
tAx0.

From Corollary 2.3.11 in Chapter 2, the n×nmatrix J(t, x0) =
∂x(t,0,x0)

∂x0
=

etA + ∂K(t,x0)
∂x0

is the solution of

d

dt
J(t, x0) = [A+

∂f

∂x
(x(t, 0, x0))]J(t, x0), J(0, x0) = E,

where E is the n × n unit or identity matrix. Since x(t, 0, 0) = 0 and
∂f
∂x (0) = 0, we have

d

dt
J(t, 0) = AJ(t, 0), J(0, 0) = E,

thus J(t, 0) = etA, or etA + ∂K
∂x0

(t, 0) = etA. Therefore

K(t, 0) = 0,
∂K

∂x0
(t, 0) = 0. (5.36)

Now, write x(1, 0, x0) (at t = 1) as

x(1, 0, x0) = eAx0 +K(1, x0) =

[
eAs 0
0 eAu

] [
y0
z0

]
+K(1, x0), (5.37)

where x0 = (y0, z0) and the matrices As and Au are given in Eq. (5.3). From
(5.36), we have

K(1, 0) = 0,
∂K

∂x0
(1, 0) = 0. (5.38)
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Step 2. Based on (5.38), we claim that for any θ > 0 there exists a number
s = s(θ) > 0 (which tends to zero with θ) and a continuously differentiable
function G(x) defined on ℜn satisfying G(x) = K(1, x) for |x| ≤ s

2 , G(x) = 0

for |x| ≥ s, and |∂G(x)
∂x | ≤ θ for all x.

To prove the claim, we let θ > 0. Then we can let s > 0 be so small that
|∂K(1,x)

∂x | ≤ θ
8 when |x| ≤ s, hence from the mean value theorem, |K(1, x)| ≤

|x|θ
8 . Then we let ϕ(t) be a differentiable real-valued function of t ≥ 0 such

that ϕ(t) = 1 for t ≤ ( s2)
2, 0 < ϕ(t) < 1 for ( s2)

2 < t < s2, ϕ(t) = 0 for
t ≥ s2, and 0 ≤ −ϕ′(t) ≤ 2

s2
for all t ≥ 0. Define G(x) = K(1, x)ϕ(|x|2)

for |x| ≤ s and G(x) = 0 for |x| ≥ s (where | · | is defined using the square

root). For |x| ≤ s, ∂G(x)
∂x = ∂K(1,x)

∂x ϕ(|x|2) + 2ϕ′(|x|2)K(1, x)xT and hence

|∂G(x)
∂x | ≤ θ

8 + 2 2
s2

|x|2θ
8 ≤ θ, which proves the claim.

Accordingly, since we are only concerned with the properties near the
origin, we may replace K(1, x) by G(x) if necessary. That is, we can assume
without loss of generality that{

K(1, 0) = 0, K(1, x) = 0 for |x| ≥ s;
∂K(1,0)

∂x = 0, |∂K(1,x)
∂x | ≤ θ for all x,

(5.39)

where s = s(θ) and s = s(θ) → 0 as θ → 0.
Now write

K(1, x) = (Y (x), Z(x)) (5.40)

as components such that

T 1x0 = x(1, 0, x0) =

[
eAs 0
0 eAu

] [
y0
z0

]
+

[
Y (x0)
Z(x0)

]

=

[
eAsy0 + Y (x0)
eAuz0 + Z(x0)

]
, x0 =

[
y0
z0

]
.

From (5.39), we have{
Y (0) = 0, Z(0) = 0, Y (x) = 0, and Z(x) = 0 for |x| ≥ s;

∂Y
∂x (0) = 0, ∂Z

∂x (0) = 0, |∂Y (x)
∂x | ≤ θ and |∂Z(x)

∂x | ≤ θ for all x.
(5.41)

And we follow a normalization in Hartman [1964] p. 233 and assume
without loss of generality that

|eAs | < 1, |e−Au | < 1. (5.42)
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Step 3. We show that there exists a homeomorphism

H0(x) =

[
Φ(x)
Ψ(x)

]
(5.43)

on x ∈ ℜn such that

eAH0 = H0T
1, (5.44)

which is, in components, the same as solving Φ(x) and Ψ(x) from (for x =
(y, z))

eAsΦ(x) = Φ(eAsy + Y (x), eAuz + Z(x)), (5.45)

eAuΨ(x) = Ψ(eAsy + Y (x), eAuz + Z(x)). (5.46)

First, let’s derive a continuous solution Ψ(x) for Eq. (5.46) using succes-
sive approximations. Define{

Ψ(0)(x) = z, x = (y, z) ∈ ℜn,

Ψ(j)(x) = e−AuΨ(j−1)(e
Asy + Y (x), eAuz + Z(x)), j ≥ 1,

(5.47)

so that Ψ(j)(x) is continuous in x ∈ ℜn. From Z(x) = 0, |x| ≥ s, and

|z| ≤ |e−Au ||eAuz| < |eAuz|, we can use an induction to show (see an exercise)
that

Ψ(j)(x) = z if |z| ≥ s, j ≥ 0. (5.48)

To prove the convergence of Ψ(j)(x), define

Dj(x) = Ψ(j)(x)−Ψ(j−1)(x),

so that

D1(x) = Ψ(1)(x)−Ψ(0)(x) = e−AuZ(x), (5.49)

Dj(x) = e−AuDj−1(e
Asy + Y (x), eAuz + Z(x)), j ≥ 2. (5.50)

Since |e−Au | < 1, we can find δ ∈ (0, 1) such that

r = |e−Au |
(
|eAs |+ |eAu |+ θ

)δ
< 1, (5.51)

and then we can define

M =
1

r
|e−Au |θs1−δ, (5.52)
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where θ and s are from (5.41). From (5.41), (5.49), and the mean value
theorem, we get, for all x ∈ ℜn,

|D1(x)| ≤ |e−AuZ(x)| ≤ |e−Au |θ|x| = |e−Au |θ|x|1−δ|x|δ

≤ |e−Au |θs1−δ|x|δ =Mr|x|δ (5.53)

(where |x| ≤ s is used because Z(x) = 0 if |x| ≥ s and then (5.53) is true
automatically). Next, we use an induction to prove

|Dj(x)| ≤Mrj |x|δ, x ∈ ℜn, (5.54)

which is true for j = 1 from (5.53). If (5.54) is true for j − 1, then from
(5.39), (5.40), (5.50), and (5.51), we get

|Dj(x)| ≤ |e−Au ||Dj−1(e
Asy + Y (x), eAuz + Z(x))|

≤ |e−Au |Mrj−1|(eAsy + Y (x), eAuz + Z(x))|δ

= |e−Au |Mrj−1|
[
eAsy
eAuz

]
+

[
Y (x)
Z(x)

]
|δ

= |e−Au |Mrj−1|
[
eAs 0
0 eAu

]
x+K(1, x)|δ

≤ |e−Au |Mrj−1
[
(|eAs |+ |eAu |+ θ)|x|

]δ
= |e−Au |Mrj−1

(
|eAs |+ |eAu |+ θ

)δ
|x|δ

= Mrj |x|δ,

which completes the induction for (5.54). Thus, similar to the proof of the
stable and unstable manifolds theorem, Ψ(j)(x) is a Cauchy sequence of con-
tinuous functions and hence converges uniformly as j → ∞ to a continuous
function Ψ(x), which gives rise to a solution of Eq. (5.46), and Ψ(x) = z if
|z| ≥ s.

To get a continuous solution Φ of Eq. (5.45), we follow Hartman [1964]
p. 246 and write the inverse of

T 1 : y = eAsy + Y (x), z = eAuz + Z(x), (5.55)

as

T−1 : y = e−Asy + Y (x), z = e−Auz + Z(x),
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which exists near the origin. Now, x = (y, z) = (e−Asy + Y (x), e−Auz +
Z(x)), hence from (5.55), Eq. (5.45) becomes

eAsΦ(e−Asy + Y (x), e−Auz + Z(x)) = Φ(y, z), (5.56)

and moreover, from the structures of T 1 and T−1, we have

Y (x) = −eAsY (x), Z(x) = −eAuZ(x), (5.57)

for x and x near the origin. Therefore, Y (x) and Z(x) satisfy the analogous
conditions for Y (x) and Z(x) in (5.41) and Eq. (5.56) can be treated in
exactly the same way Eq. (5.46) was treated since we assume |eAs | < 1.
Thus we obtain a continuous solution Φ of Eq. (5.45) with Φ(x) = y if
|y| ≥ s, and then obtain the continuous map H0 in (5.43) satisfying (5.44).

Finally, H0 is one-to-one and onto; that is, H0 is a homeomorphism on
ℜn. For example, when |y| ≥ s and |z| ≥ s, we have Φ(x) = y and Ψ(x) = z
for x = (y, z), thus H0(x) = (Φ(x), Ψ(x)) = x, which is one-to-one and
onto. If x0 ̸= x0 exist near the origin such that H0(x0) = H0(x0), then an
induction shows (see an exercise) that

H0

[
T j(x0)

]
= H0

[
T j(x0)

]
, j ≥ 1. (5.58)

In one case, x0 is in the stable manifold and x0 is in the unstable
manifold, then |T j(x0)| → 0 and |T j(x0)| → ∞ as j → ∞. Thus, as

j → ∞, |H0

[
T j(x0)

]
| → 0 since H0(0) = 0, and |H0

[
T j(x0)

]
| → ∞ since

H0 = (Φ, Ψ) and Φ(x) = y when y of x = (y, z) is big, and Ψ(x) = z when z
of x = (y, z) is big. This contradicts (5.58). See Hartman [1964] p. 248–249
for other cases.

Step 4. Use the homeomorphism H0 derived above to define

H =

∫ 1

0
e−hAH0T

hdh. (5.59)

Since etA and T t satisfy the properties of dynamical systems, and H0 =
e−AH0T

1, we obtain

etAH =
( ∫ 1

0
e(t−h)AH0T

h−tdh
)
T t =

( ∫ 1−t

−t
e−τAH0T

τdτ
)
T t

=
( ∫ 0

−t
e−τAH0T

τdτ +

∫ 1−t

0
e−τAH0T

τdτ
)
T t



8.5. Manifolds and the Hartman-Grobman Theorem 437

=
( ∫ 0

−t
e−τA[e−AH0T

1]T τdτ +

∫ 1−t

0
e−τAH0T

τdτ
)
T t

=
( ∫ 0

−t
e−(τ+1)AH0T

τ+1dτ +

∫ 1−t

0
e−τAH0T

τdτ
)
T t

=
( ∫ 1

1−t
e−hAH0T

hdh+

∫ 1−t

0
e−hAH0T

hdh
)
T t

=
( ∫ 1

0
e−hAH0T

hdh
)
T t = HT t,

which is (5.34). Since e−hA,H0, and T
h are all homeomorphisms, H in (5.59)

is also a homeomorphism. See Hartman [1964] p. 250–251 for details.

This completes the proof of the Hartman-Grobman theorem. ♠

Next, we use an example to illustrate how the successive approxima-
tions in the above proof are used to approximate the homeomorphism in the
Hartman-Grobman theorem.

Example 8.5.10 Consider{
y′ = −y,
z′ = z + y2,

(5.60)

which comes from the first two equations of Eq. (5.9) in Example 8.5.1,
hence solutions are given by{

y = y0e
−t,

z = z0e
t +

y20
3 (e

t − e−2t),
(5.61)

where x = (y, z), x(0) = (y0, z0). Thus, at t = 1, we have

eAs = e−1, eAu = e, Y (x) = 0, Z(x) =
e− e−2

3
y2, x = (y, z). (5.62)

Therefore,

eAuΨ(x) = Ψ(eAsy + Y (x), eAuz + Z(x))

becomes

eΨ(x) = Ψ(e−1y, ez +
e− e−2

3
y2), (5.63)
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and the successive approximations are given by

Ψ(0)(x) = z, x = (y, z) ∈ ℜ2,

Ψ(1)(x) = e−1Ψ(0)(e
−1y, ez + e−e−2

3 y2) = z + 1−e−3

3 y2,

Ψ(2)(x) = e−1Ψ(1)(e
−1y, ez + e−e−2

3 y2)

= e−1
(
ez + e−e−2

3 y2 + 1−e−3

3 e−2y2
)
= z + 1−e−3

3

(
1 + e−3

)
y2,

Ψ(3)(x) = e−1Ψ(2)(e
−1y, ez + e−e−2

3 y2)

= e−1
(
ez + e−e−2

3 y2 + 1−e−3

3

(
1 + e−3

)
e−2y2

)
= z + 1−e−3

3

(
1 + e−3 + e−6

)
y2,

· · ·
Ψ(j)(x) = z + 1−e−3

3

(
1 + e−3 + [e−3]2 + · · ·+ [e−3]j−1

)
y2.

Accordingly, we obtain

lim
j→∞

Ψ(j)(x) = z +
1− e−3

3

1

1− e−3
y2 = z +

y2

3
= Ψ(x),

uniformly for x = (y, z) ∈ ℜ2, and Ψ(x) satisfies (5.63).

Similarly, Φ can be solved from

eAsΦ(e−Asy + Y (x), e−Auz + Z(x)) = Φ(y, z), (5.64)

where from (5.55), (5.57), and (5.62),

Y (x) = 0,

Z(x) = −e−1Z(x) = −e−1 e− e−2

3
y2 = −1− e−3

3

[
e−Asy + Y (x)

]2
= −1− e−3

3
e2y2 = −e

2 − e−1

3
y2.

Thus Eq. (5.64) can be replaced by

e−1Φ(ey, e−1z − e2 − e−1

3
y2) = Φ(y, z), (5.65)

or

e−1Φ(ey, e−1z − e2 − e−1

3
y2) = Φ(y, z). (5.66)
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With the successive approximations
Φ(0)(x) = y, x = (y, z) ∈ ℜ2,

Φ(1)(x) = e−1Φ(0)(ey, e−1z − e2−e−1

3 y2) = y,

· · · · · ·

we obtain
Φ(x) = y, x = (y, z) ∈ ℜ2.

Therefore, the homeomorphism H0 is given by

H0(x) =

[
Φ(x)
Ψ(x)

]
=

[
y

z + y2

3

]
, x = (y, z).

Since now we have, for x = (y, z) ∈ ℜ2,

etAx =

[
e−ty
etz

]
, T t(x) =

[
ye−t

zet + y2

3 (e
t − e−2t)

]
,

the homeomorphism H is given by

H(x) =

∫ 1

0
e−hAH0T

h(x)dh =

∫ 1

0
e−hAH0

[
ye−h

zeh + y2

3 (e
h − e−2h)

]
dh

=

∫ 1

0
e−hA

[
ye−h

zeh + y2

3 (e
h − e−2h) + 1

3y
2e−2h

]
dh

=

∫ 1

0
e−hA

[
ye−h

zeh + y2

3 e
h

]
dh

=

∫ 1

0

[
ehye−h

e−h[zeh + y2

3 e
h]

]
dh =

[
y

z + y2

3

]
,

and

etAH(x) =

[
e−ty

etz + et y
2

3

]
= HT t(x).

To find the subset that gets mapped onto the stable subspace Es of the
linearization, we need to find (y, z) such that

H(x) =

[
y

z + y2

3

]
∈ Es = {(y, z) ∈ ℜ2 : z = 0},
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thus, the subset is given by

{(y, z) ∈ ℜ2 : z = −1

3
y2},

which, from Example 8.5.1, is the stable manifold of Eq. (5.60). That is,
H maps the stable manifold M s onto Es. Similarly, H maps the unstable
manifold Mu = {(y, z) ∈ ℜ2 : y = 0} onto Eu = {(y, z) ∈ ℜ2 : y =
0} = Mu. Also, to find the curve that gets mapped onto the curve z = c

y

of the linearization, we need H(x) = (y, cy ), or (y, z + 1
3y

2) = (y, cy ), thus

z = c
y − 1

3y
2. Finally, note that H preserves the parameterization. See

Figure 8.29. ♠

y

z

>

>

>

>

>

>

> >

> >

>

>

y

z

Ms

Mu Eu

Es

>

>

H

H-1

Figure 8.29: The map H and M s,Mu, Es, Eu, of Eq. (5.60)

Exercises 8.5

1. Prove that M s in Figure 8.24 is a one-dimensional differentiable man-
ifold.

2. Prove that the subset defined in (5.14) is a two-dimensional differen-
tiable manifold that is tangent to the (x1, x2) plane at the origin.
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3. In Example 8.5.5, prove that y(x) = (y0e
−1/x0)e1/x → 0 as x→ 0− and

then prove that dy
dx(0) = 0 for y(x) (together with the positive x-axis

at the origin). Then prove that such a graph forms a one-dimensional
differentiable center manifold of Eq. (5.15) at the origin.

4. Prove (5.17).

5. Verify in the proof of Theorem 8.5.6 that a solution of Eq. (5.20) is
also a solution of Eq. (5.2).

6. Verify that a change of t → −t will change Eq. (5.2) to Eq. (5.27),
and then complete the proof of Theorem 8.5.6 by deriving an unstable
manifold.

7. Verify (5.26) in the proof of Theorem 8.5.6.

8. Prove that xi = ψi(x1, x2, · · · , xs), i = s + 1, s + 2, · · · , n, in (5.26) of
Theorem 8.5.6 defines an s-dimensional differentiable manifold M s for
|xs| ≤ δ

2K where xs = (x1, x2, · · · , xs).

9. Find the approximations v(4)(t, a) and v(5)(t, a) for Example 8.5.7.
Next, approximate the unstable manifold near the origin.

10. Find the first four successive approximations v(1)(t, a), v(2)(t, a),
v(3)(t, a), and v(4)(t, a) for{

x′1 = −x1 − x32,
x′2 = x2 + x31,

(5.67)

and then approximate the stable manifold near the origin. Next, ap-
proximate the unstable manifold near the origin.

11. Find the first three successive approximations v(1)(t, a), v(2)(t, a), and
v(3)(t, a) for 

x′1 = −x1,
x′2 = −x2 + x21,
x′3 = x3,

(5.68)

and then approximate the stable manifold near the origin. Next, ap-
proximate the unstable manifold near the origin.

12. Use an induction to show (5.48).
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13. Verify (5.57).

14. Verify that the continuous map H0 in (5.43) of Theorem 8.5.9 satisfies
H0(0) = 0.

15. Verify (5.58).

16. Prove for each fixed t that etA and T t (defined in Theorem 8.5.9) are
homeomorphisms on ℜn.

17. Approximate the homeomorphism H and the stable and unstable man-
ifolds near the origin for

(a)


y′1 = −y1,
y′2 = −y2 + y31,
z′ = z + y31.

(b)

{
z′1 = z1,
z′2 = 2z2 + z31 .

(c)


y′ = −y,
z′1 = z1 + y2,
z′2 = z2.

(d)

{
y′1 = −y1,
y′2 = −3y2 + y21.



Chapter 9

Stability. Part II

9.1 Introduction

In Chapter 5, we studied stabilities for autonomous differential equations and
linear differential equations with constant or periodic coefficients, and those
results are applied in chapters 6, 7, and 8. In this chapter, we will extend the
study of stabilities to general nonautonomous differential equations, which,
of course, include autonomous differential equations as special cases.

Thus, we will look at the general differential equation

x′(t) = f(t, x(t)), (1.1)

in D = [0,∞) × Q, where Q ⊂ ℜn is a domain containing the zero vector.
Similar to Chapter 5, when we study stability properties, we are concerned
with “long-term” behavior of solutions for “future time,” so we will make
the following assumption throughout this chapter.

(H). For any (t0, x0) ∈ [0,∞)×Q, Eq.(1.1) has a unique solution x(t, t0, x0)
existing on [t0, ∞) with x(t0) = x0.

We will still use the definitions regarding stability properties in the sense
of Liapunov given in Section 1 of Chapter 5. In particular, if x(t) = 0, t ≥ 0,
is a solution of Eq. (1.1), or equivalently when f(t, 0) = 0, t ≥ 0, those
definitions give the corresponding definitions concerning stability properties
for the zero solution x = 0. Also recall from Chapter 5 that to consider

443
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stabilities of a solution ϕ(t) of Eq. (1.1), we may look at x(t) = y(t)− ϕ(t)
where y is also a solution of Eq. (1.1), and obtain

x′(t) = y′(t)− ϕ′(t) = f(t, y(t))− f(t, ϕ(t))

= f(t, x(t) + ϕ(t))− f(t, ϕ(t)). (1.2)

Now we can define

f(t, x) = f(t, x+ ϕ(t))− f(t, ϕ(t)),

then f(t, 0) = f(t, ϕ(t))− f(t, ϕ(t)) = 0, and x(t) = y(t)−ϕ(t) is a solution
of

x′(t) = f(t, x(t)). (1.3)

That is, the zero is now a solution of Eq. (1.3) and it corresponds to the
solution ϕ(t) of Eq. (1.1). Therefore, in most cases, we can simply assume
f(t, 0) = 0 in Eq. (1.1) and study stability properties of the zero solution of
Eq. (1.1).

In Chapter 5 we stated without proof that “stability” (or “asymptotic
stability”) for autonomous or periodic differential equations is equivalent to
“uniform stability” (or “uniform asymptotic stability”). Now, we provide a
proof.

Theorem 9.1.1 Assume that Eq. (1.1) is autonomous or periodic in t, and
satisfies a Lipschitz condition (or weak or local Lipschitz) with respect to x
on D. Assume further that ϕ(t) = 0, t ≥ 0, is a solution of Eq. (1.1). If
ϕ = 0 is stable, then it is uniformly stable. If ϕ = 0 is asymptotically stable,
then it is uniformly asymptotically stable.

Proof. We only prove the statement for the case when Eq. (1.1) is au-
tonomous, that is, f(t, x) = f(x). The proof for the case when Eq. (1.1) is
periodic can be found in Yoshizawa [1966].

Assume that ϕ = 0 is stable. Note that ϕ = 0 is defined on [tϕ, ∞) =
[0,∞), then for t0 = 0 and any ε > 0, there exists a δ = δ(ε, t0) = δ(ε, 0) >
0, such that |x0| ≤ δ(ε, 0) implies |x(t, 0, x0)| ≤ ε for t ≥ 0. Now, for
any solution x(t, t0, x0) with |x0| ≤ δ(ε, 0) and t0 ≥ 0, we define y(t) =
x(t+ t0, t0, x0), t ≥ 0. Then, similar to the “shifting” used in Chapter 4 for
autonomous differential equations, we have

y′(t) = x′(t+ t0, t0, x0) = f(x(t+ t0, t0, x0)) = f(y(t)), y(0) = x0. (1.4)
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That is, we can shift x(t, t0, x0) to become a solution starting at 0. Thus,
by uniqueness, y(t) = x(t, 0, x0), that is, y = x(t+ t0, t0, x0) is the unique
solution of Eq. (1.1) with the initial data (0, x0). According to the stability
of ϕ = 0, |x0| ≤ δ(ε, 0) implies |y(t)| = |x(t, 0, x0)| ≤ ε for t ≥ 0. Thus
t0 ≥ 0 and |x0| ≤ δ(ε, 0) imply |x(t + t0, t0, x0)| ≤ ε for t ≥ 0. That is,
t0 ≥ 0 and |x0| ≤ δ(ε, 0) imply |x(t, t0, x0)| ≤ ε for t ≥ t0, proving the
uniform stability of ϕ = 0 because δ(ε, 0) is independent of t0.

Next, assume that ϕ = 0 is asymptotically stable. Then it is stable,
and hence uniformly stable according to what we have just proved. Using
the asymptotic stability of ϕ = 0, for t0 = 0, there exists r(0) > 0 such
that |x0| ≤ r(0) implies limt→∞ |x(t, 0, x0)| = 0. From the above, we see
that solutions starting at t0 can be shifted to become solutions starting at
0. Therefore, to prove the uniform asymptotic stability of ϕ = 0, we only
need to verify that for any ε > 0, there exists a T = T (ε) > 0 such that
{|x0| ≤ r(0), t ≥ T} imply |x(t, 0, x0)| ≤ ε. Suppose this is not true, then
there exists a small ε0 > 0, and a sequence xk and tk with |xk| ≤ r(0),
tk → ∞ as k → ∞, such that

|x(tk, 0, xk)| > ε0, k ≥ 1. (1.5)

From the stability of ϕ = 0, for the above ε0 > 0, there exists a
δ = δ(ε0, 0) > 0 such that |x0| ≤ δ(ε0, 0) implies |x(t, 0, x0)| ≤ ε0 for
t ≥ 0. Now, the sequence xk is bounded, thus it has a convergent subse-
quence. By using a subindex if necessary, we may denote this subsequence
by xk again, so that xk → x0, k → ∞, for some |x0| ≤ r(0). Therefore,
limt→∞ |x(t, 0, x0)| = 0 according to the asymptotic stability of ϕ = 0. For
the above δ(ε0, 0) > 0, there exists a T0 > 0 such that

|x(T0, 0, x0)| ≤
δ(ε0, 0)

2
.

Now recall from Chapter 2 that a solution is continuous with respect to
initial data on a finite interval, therefore, since xk → x0 as k → ∞, there is
a k0 > 0 such that |x(T0, 0, xk)| ≤ δ(ε0, 0), k ≥ k0.

Next, using the fact that the differential equation is autonomous again,
we can start a solution from x(T0, 0, xk). That is, we define y(t) = x(t +
T0, 0, xk), t ≥ 0, then y is a solution and y(t) = x(t, 0, x(T0, 0, xk))
by uniqueness. Therefore, as the initial value for y is such that |y(0)| =
|x(T0, 0, xk)| ≤ δ(ε0, 0), k ≥ k0, it follows from the definition of δ(ε0, 0)
that |y(t)| ≤ ε0 for t ≥ 0. This means that |x(t + T0, 0, xk)| ≤ ε0 for
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k ≥ k0, t ≥ 0. Thus we can find k ≥ k0 and choose t > 0 with t + T0 = tk
to derive

|x(tk, 0, xk)| ≤ ε0,

which contradicts (1.5), and hence completes the proof. ♠

This chapter is organized as follows: In Section 2, we use the results
from Chapter 3 to derive stability properties for general linear differential
equations, and prove that they are determined by the fundamental matrix
solutions. The results here include those derived in Chapter 5 for linear
differential equations with constant or periodic coefficients as special cases.
Stability properties of general linear differential equations with linear or
nonlinear perturbations are also studied using the variation of parameters
formula and Gronwall’s inequality. In Section 3, we introduce Liapunov’s
method for general (nonautonomous) differential equations and derive their
stability properties, which extends the study of stabilities in Chapter 5 for
autonomous differential equations.

Exercises 9.1

1. Examine the stabilities of the zero solution for the scalar differential
equation x′(t) = a(t)x(t).

2. Verify in the proof of Theorem 9.1.1 that to prove the uniform asymp-
totic stability of ϕ = 0, we only need to verify that for any ε > 0,
there exists a T = T (ε) > 0 such that {|x0| ≤ r(0), t ≥ T} imply
|x(t, 0, x0)| ≤ ε.

9.2 General Linear Differential Equations

Here, we study the linear differential equation

x′(t) = A(t)x(t) + f(t), x(t0) = x0, t ≥ t0 ≥ 0, x ∈ ℜn, (2.1)

where A(t) and f(t) are continuous on ℜ+ = [0,∞).
Using the results of Chapter 3, we know that the unique solution of Eq.

(2.1) is given by the variation of parameters formula

x(t) = U(t, t0)
[
x0 +

∫ t

t0
U−1(s, t0)f(s)ds

]
= U(t, t0)x0 +

∫ t

t0
U(t, s)f(s)ds, t ≥ t0, (2.2)



9.2. General Linear Differential Equations 447

where the matrix U(t, t0) is the fundamental matrix solution of Eq. (2.1)
when f = 0. The following “evolution system property” is also from Chapter
3: for t, t0, t1 ∈ ℜ+ = [0,∞),

U(t, t1)U
−1(t0, t1) = U(t, t0),

U−1(t0, t1) = U(t1, t0),
U(t, t1)U(t1, t0) = U(t, t0).

(2.3)

We first study the linear homogeneous differential equation

x′(t) = A(t)x(t), (2.4)

where the unique solution is given by

x(t) = U(t, t0)x0

for the initial data (t0, x0). Note that now ϕ = 0 is a solution of Eq. (2.4).
The following theorem generalizes the corresponding results for

autonomous linear differential equations given in Chapter 5.

Theorem 9.2.1 Assume that A(t) is continuous on ℜ+ and let U be the
fundamental matrix solution of Eq. (2.4). The zero solution ϕ = 0 of Eq.
(2.4) is

(A). stable if and only if there is an (independent or generic) constant C > 1
such that

|U(t, 0)| ≤ C, 0 ≤ t <∞. (2.5)

(B). uniformly stable if and only if there is an (independent or generic)
constant C > 1 such that

|U(t, s)| ≤ C, 0 ≤ s ≤ t <∞. (2.6)

(C). asymptotically stable if and only if

|U(t, 0)| → 0, t→ ∞. (2.7)

(D). uniformly asymptotically stable if and only if there are (independent or
generic) constants C > 1 and α > 0 such that

|U(t, s)| ≤ Ce−α(t−s), 0 ≤ s ≤ t <∞. (2.8)

(This case is also called exponentially stable.)
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Proof. (A): Suppose that ϕ = 0 is stable. Then for t0 = 0 and ε = 1,
there exists a δ = δ(ε, t0) = δ(1, 0) ∈ (0, 1) such that |x0| ≤ δ(1, 0) implies
|x(t, 0, x0)| = |U(t, 0)x0| ≤ ε = 1 for t ≥ 0. Now take x0 = δ(1, 0)ei, where
ei, 1, 2, · · · , n, form the standard unit basis for ℜn. Then |x0| = |δei| = δ
and hence |U(t, 0)δei| ≤ 1 or |U(t, 0)ei| ≤ 1

δ . But U(t, 0)ei is the ith column
of U(t, 0), therefore

|U(t, 0)| ≤ n
1

δ
def
= C, t ≥ 0.

This proves (2.5) because C > 1 is an independent constant.
Conversely, if (2.5) is true, then for any t0 ≥ 0, we have, from (2.3),

|x(t, t0, x0)| = |U(t, t0)x0| = |U(t, 0)U(0, t0)x0| ≤ C|U(0, t0)||x0|. Thus for
any t0 ≥ 0 and any ε > 0, we can choose δ(ε, t0) = ε

C|U(0,t0)| , so that

|x0| ≤ δ(ε, t0) implies |x(t, t0, x0)| ≤ C|U(0, t0)|δ(ε, t0) = ε, proving the
stability of ϕ = 0.

(B): Suppose that ϕ = 0 is uniformly stable. Then for ε = 1, there
exists a δ = δ(1) > 0, such that s ≥ 0 and |x0| ≤ δ(1) imply |x(t, s, x0)| =
|U(t, s)x0| ≤ 1 for t ≥ s ≥ 0. Now, similar to the proof of (A) given above,
there is a constant C > 1 such that |U(t, s)| ≤ C, 0 ≤ s ≤ t <∞.

Next, if (2.6) is true, then |x(t, t0, x0)| = |U(t, t0)x0| ≤ C|x0|, 0 ≤ t0 ≤
t < ∞. Thus for any ε > 0, we can choose δ = ε

C , such that t0 ≥ 0 and
|x0| ≤ δ imply |x(t, t0, x0)| = |U(t, t0)x0| ≤ C|x0| ≤ Cδ = ε. This proves
that ϕ = 0 is uniformly stable.

(C): Suppose that ϕ = 0 is asymptotically stable. Then for t0 = 0,
there exists an r(0) > 0 such that |x0| ≤ r(0) implies limt→∞ |x(t, 0, x0)| =
limt→∞ |U(t, 0)x0| = 0. Then similar to the proof of (A), we see that every
entry in U(t, 0) goes to zero, thus limt→∞ |U(t, 0)| = 0.

Now, assume that (2.7) is true. Then |U(t, 0)| is bounded and hence from
(A), ϕ = 0 is stable. Next, |x(t, t0, x0)| = |U(t, t0)x0| = |U(t, 0)U(0, t0)x0| ≤
|U(t, 0)||U(0, t0)||x0|. Thus for any t0 ≥ 0, we can choose r(t0) = 1 such that
|x0| ≤ r(t0) implies |x(t, t0, x0)| ≤ |U(t, 0)||U(0, t0)| → 0 as t → ∞ (since
|U(0, t0)| is fixed). This proves the asymptotic stability of ϕ = 0.

(D): Suppose that ϕ = 0 is uniformly asymptotically stable. Then it
is uniformly stable and in addition, there exists an independent constant
r > 0 such that for ε = r

2n , where n is the dimension of ℜn, there exists
a T = T (ε) = T (r) > 0 such that {t0 ≥ 0, |x0| ≤ r, t ≥ t0 + T} imply
|x(t, t0, x0)| = |U(t, t0)x0| ≤ ε. By letting x0 = rei, i = 1, 2, · · · , n, we see
that

|U(t, t0)| ≤ n
ε

r
=

1

2
, t0 ≥ 0, t ≥ t0 + T. (2.9)
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In particular, letting h = t0, t = t0 + T = h+ T , we obtain

|U(h+ T, h)| ≤ 1

2
, h ≥ 0. (2.10)

Using the uniform stability of ϕ = 0 and the result in (B) we have
just proved, there is an independent constant M > 1 such that |U(t, s)| ≤
M, 0 ≤ s ≤ t < ∞. For any t ≥ s ≥ 0, there is an integer k ≥ 0 such that
t = s+ kT + d, 0 ≤ d < T . Thus, from (2.3) and (2.10),

|U(t, s)| = |U(t, s+ T )U(s+ T, s)|
= |U(s+ kT + d, s+ kT )U(s+ kT, s+ (k − 1)T ) · · ·U(s+ T, s)|
≤ |U(s+ kT + d, s+ kT )| · · · |U(s+ T, s)|
≤ M |U(s+ kT, s+ (k − 1)T )| · · · |U(s+ 2T, s+ T )||U(s+ T, s)|

≤ M |U(s+ kT, s+ (k − 1)T )| · · · |U(s+ 2T, s+ T )|1
2

≤ M(
1

2
)k, 0 ≤ s ≤ t <∞. (2.11)

Now, there is an α = α(T ) = α(r) > 0 such that 1
2 = e−αT . Thus (2.11)

becomes, for 0 ≤ s ≤ t <∞,

|U(t, s)| ≤ M(
1

2
)k =Me−αkT =Me−α(t−s−d)

= Meαde−α(t−s) ≤MeαT e−α(t−s) def
= Ce−α(t−s), (2.12)

where α > 0 and C = MeαT > 1 are independent constants because they
are determined by the independent constant r.

Conversely, if (2.8) is true, then first, |U(t, s)| is bounded and hence
from (B), ϕ = 0 is uniformly stable. Next, |x(t, t0, x0)| = |U(t, t0)x0| ≤
|U(t, t0)||x0| ≤ Ce−α(t−t0)|x0|, 0 ≤ t0 ≤ t < ∞. Thus we may let r = 1;
and for any 0 < ε < C, solve T = T (ε) > 0 from Ce−αT = ε. Then
{t0 ≥ 0, |x0| ≤ r = 1, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ Ce−α(t−t0)|x0| ≤
Ce−αT = ε, proving the uniform asymptotic stability of ϕ = 0.

This completes the proof of the theorem. ♠

Example 9.2.2 Consider the scalar differential equation x′(t) = a(t)x(t)
with a(t) real and continuous on ℜ+. Then the fundamental (scalar) solution
is given by

U1(t, s) = exp
( ∫ t

s
a(h)dh

)
.
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Therefore, the stability properties of the zero solution ϕ = 0 are determined
by

∫ t
s a(h)dh. If there is a constant M > 0 such that

∫ t
0 a(h)dh ≤ M, 0 ≤

t <∞, then ϕ = 0 is stable. If
∫ t
s a(h)dh ≤M, 0 ≤ s ≤ t <∞, then ϕ = 0 is

uniformly stable. If
∫ t
0 a(h)dh → −∞, then ϕ = 0 is asymptotically stable.

Finally, if a(t) ≤ −α, t ≥ 0, for some constant α > 0, then ϕ = 0 is uniformly
asymptotically stable. (In an exercise, you are asked to construct an example
for which ϕ = 0 is asymptotically stable but not uniformly stable.) ♠

For the linear nonhomogeneous differential equation (2.1) with f ̸= 0,
the zero is not a solution of Eq. (2.1). So now we must look at stabilities
of nonzero solutions of Eq. (2.1). These stabilities can be reduced to those
of the zero solution of Eq. (2.4), due to the affine structure of Eq. (2.1).
Similar to Theorem 5.2.6 in Chapter 5, we have

Theorem 9.2.3 Assume that A(t) and f(t) are continuous on ℜ+. The zero
solution of Eq. (2.4) is stable if and only if every solution of Eq. (2.1) is
stable. The same statement is true for uniform stability, asymptotic stability,
and uniform asymptotic stability. ♠

Next, we use the variation of parameters formula and Gronwall’s inequal-
ity to derive stability properties for some perturbed differential equations.
These results are similar to those in Chapter 5.

Theorem 9.2.4 Assume that A(t) is continuous on ℜ+. If the zero solution
of Eq. (2.4) is uniformly stable, and if the n×n continuous matrix function
B(t) satisfies

∫∞
0 |B(t)|dt <∞, then the zero solution of

x′(t) = A(t)x(t) +B(t)x(t) = [A(t) +B(t)]x(t) (2.13)

is also uniformly stable.

Proof. First, since A(t) and B(t) are continuous, the existence and unique-
ness for Eq. (2.13) is guaranteed. Let x(t) be a solution of Eq. (2.13) and
treat B(t)x(t) as f(t) in Eq. (2.1), then x(t) is given by the variation of
parameters formula

x(t) = U(t, t0)x(t0) +

∫ t

t0
U(t, s)B(s)x(s)ds, t ≥ t0 ≥ 0, (2.14)

where U is the fundamental matrix solution of Eq. (2.4). From Theorem
9.2.1, the uniform stability of the zero solution of Eq. (2.4) implies that there
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is an (independent) constant C > 1 such that |U(t, t0)| ≤ C, 0 ≤ t0 ≤ t <∞.
Therefore, we have

|x(t)| ≤ C|x(t0)|+
∫ t

t0
C|B(s)||x(s)|ds, t ≥ t0 ≥ 0. (2.15)

Now, Gronwall’s inequality implies that

|x(t)| ≤ C|x(t0)| exp
( ∫ t

t0
C|B(s)|ds

)
≤

{
C exp

( ∫ ∞

0
C|B(s)|ds

)}
|x(t0)|

def
= C1|x(t0)|, t ≥ t0 ≥ 0, (2.16)

where C1 is an independent constant, from which we can derive the uniform
stability of the zero solution for Eq. (2.13). This completes the proof. ♠

Theorem 9.2.4.a Assume that A(t) is continuous on ℜ+. If the zero solu-
tion of Eq. (2.4) is uniformly stable, and if the continuous function f(t, x)
satisfies a weak Lipschitz condition in x and f(t, 0) = 0, which implies
|f(t, x)| ≤ k(t)|x|, where k(t) is from the weak Lipschitz condition. If∫∞
0 k(t)dt <∞, then the zero solution of

x′(t) = A(t)x(t) + f(t, x(t)) (2.17)

is also uniformly stable. ♠

When the zero solution of Eq. (2.4) is uniformly asymptotically stable,
the condition on B(t) in Theorem 9.2.4 can be relaxed.

Theorem 9.2.5 Assume that A(t) is continuous on ℜ+. If the zero solution
of Eq. (2.4) is uniformly asymptotically stable, and if the n× n continuous
matrix function B(t) satisfies∫ t

t0
|B(s)|ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0, (2.18)

for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the zero solution of Eq. (2.13) is also uniformly asymptotically
stable.

Proof. Similar to the beginning part in the proof of Theorem 9.2.4, any
solution of Eq. (2.13) is given by

x(t) = U(t, t0)x(t0) +

∫ t

t0
U(t, s)B(s)x(s)ds, t ≥ t0 ≥ 0. (2.19)
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From Theorem 9.2.1, the uniform asymptotic stability of the zero solution
of Eq. (2.4) implies that there are (independent) constants C > 1 and α > 0
such that |U(t, t0)| ≤ Ce−α(t−t0). Therefore, we have

|x(t)| ≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)|B(s)||x(s)|ds, t ≥ t0 ≥ 0, (2.20)

or

|x(t)|eαt ≤ Ceαt0 |x(t0)|+
∫ t

t0
Ceαs|B(s)||x(s)|ds, t ≥ t0 ≥ 0. (2.21)

Define u(t) = |x(t)|eαt, then u(t) satisfies

u(t) ≤ Cu(t0) +

∫ t

t0
C|B(s)|u(s)ds, t ≥ t0 ≥ 0, (2.22)

hence Gronwall’s inequality implies that

u(t) ≤ Cu(t0) exp
( ∫ t

t0
C|B(s)|ds

)
≤ Cu(t0) exp

(
C[m(t− t0) + r]

)
= Cu(t0)e

Cr exp
[
Cm(t− t0)

]
. (2.23)

This means

|x(t)| ≤ CeCr|x(t0)| exp
[
− (α− Cm)(t− t0)

]
. (2.24)

If we let m0 =
α
2C , then m ≤ m0 implies that

|x(t)| ≤ CeCr|x(t0)| exp
[
− 1

2
α(t− t0)

]
. (2.25)

This guarantees the uniform asymptotic stability of the zero solution for Eq.
(2.13), and completes the proof. ♠

Theorem 9.2.5.a Assume that A(t) is continuous on ℜ+. If the zero so-
lution of Eq. (2.4) is uniformly asymptotically stable, and if the continuous
function f(t, x) satisfies a weak Lipschitz condition in x and f(t, 0) = 0,
which implies |f(t, x)| ≤ k(t)|x|, where k(t) is from the weak Lipschitz con-
dition. If ∫ t

t0
|k(s)|ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0, (2.26)
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for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the zero solution of Eq. (2.17) is also uniformly asymptotically
stable. ♠

The following is another result concerning uniform asymptotic stability
with nonlinear perturbations.

Theorem 9.2.6 Assume that A(t) is continuous on ℜ+. If the zero solu-
tion of Eq. (2.4) is uniformly asymptotically stable, and if the continuous
function f(t, x) satisfies a Lipschitz condition (or weak or local Lipschitz)
with respect to x on D, and

lim
x→0

|f(t, x)|
|x|

= 0, uniformly for t ∈ [0,∞), (2.27)

then the zero solution of

x′(t) = A(t)x(t) + f(t, x(t)) (2.28)

is also uniformly asymptotically stable.

Proof. Now, the conditions guarantee the existence and uniqueness of so-
lutions, and they also imply that the zero is a solution of Eq. (2.28). Let
U be the fundamental matrix solution of Eq. (2.4). By the variation of
parameters formula, any solution of Eq. (2.28) is given by

x(t) = U(t, t0)x(t0) +

∫ t

t0
U(t, s)f(s, x(s))ds, t ≥ t0 ≥ 0. (2.29)

From Theorem 9.2.1, the uniform asymptotic stability of the zero solution
of Eq. (2.4) implies that there are (independent) constants C > 1 and α > 0
such that |U(t, t0)| ≤ Ce−α(t−t0). From (2.27), for any η with 0 < η < α

C ,
there is a ∆ = ∆(η) > 0 such that if |x| ≤ ∆, then |f(t, x)| ≤ η|x| uniformly
for t ≥ 0.

We first verify that if |x(t0)| ≤ ∆
C , then |x(t)| < ∆ for t ≥ t0. If this is

not true, then as C > 1 and |x(t0)| ≤ ∆
C < ∆, there is a t1 > t0 such that

|x(t)| < ∆ for t ∈ [t0, t1) and |x(t1)| = ∆. Then |f(t, x(t))| ≤ η|x(t)| for
t ∈ [t0, t1]. Thus, for t ∈ [t0, t1], we have, from (2.29),

|x(t)| ≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)|f(s, x(s))|ds

≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)η|x(s)|ds. (2.30)
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Similar to the final part of the proof of Theorem 9.2.5, we obtain

|x(t)| ≤ C|x(t0)| exp
[
− (α− Cη)(t− t0)

]
, t ∈ [t0, t1]. (2.31)

But then,

|x(t1)| ≤ C|x(t0)| exp
[
− (α− Cη)(t1 − t0)

]
≤ ∆exp

[
− (α− Cη)(t1 − t0)

]
< ∆,

contradicting |x(t1)| = ∆. Thus |x(t0)| ≤ ∆
C implies |x(t)| < ∆ for t ≥ t0.

Consequently, if |x(t0)| ≤ ∆
C , then for t ≥ t0, one has |f(t, x(t))| ≤ η|x(t)|.

Now, similar to (2.30) and (2.31), we have, for t ≥ t0 ≥ 0,

|x(t)| ≤ C|x(t0)| exp
[
− (α− Cη)(t− t0)

]
, if |x(t0)| ≤

∆

C
. (2.32)

Then, similar to the last part of the proof of Theorem 5.3.3 in Chapter
5, the zero solution of Eq. (2.28) is uniformly asymptotically stable. This
completes the proof. ♠

Theorem 9.2.6.a In Theorem 9.2.6, the condition (2.27) can be relaxed to
|f(t, x)| ≤ η|x| with 0 < η < α

C , where α and C are from Theorem 9.2.1(D).

♠

Exercises 9.2

1. Determine the stability properties of the zero solution for x′(t) =
A(t)x(t).

(a) A(t) =

 0 0 3
0 0 1
0 0 −2t

 ; (b) A(t) =

 0 1 3
0 0 1
0 0 −2t

 ;

(c) A(t) =

 1 1 3
0 −7 1
0 0 −2t

 .
2. Rewrite x(n)(t)+a1(t)x

(n−1)(t)+ · · ·+an−1(t)x
′(t)+an(t)x(t) = 0 as a

system and then state and prove a theorem similar to Theorem 9.2.1.

3. Determine the stability properties of the zero solution for
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(a) x′′ + 3x′ + 4tx = 0.

(b) x′′ − 3x′ − 4tx = 0.

(c) x(3) + 3x′′ + 4tx = 0.

(d) x(4) + 5x′′ − 2tx = 0.

4. In Example 9.2.2, construct a function a(t) such that ϕ = 0 is asymp-
totically stable but not uniformly stable. (See Example 10.2.2.)

5. Theorem 9.2.3 can be improved in the following way: If Eq. (2.1)
has a stable solution on [0,∞), then the zero solution of Eq. (2.4) is
stable. Prove this claim and extend it to uniform stability, asymptotic
stability and uniform asymptotic stability.

6. Assume that the fundamental matrix solution of x′(t) = A(t)x(t) sat-
isfies |U(t, t0)| ≤ Ce−α(t−t0) for some constants C > 1 and α > 0. If
B(t) is continuous and |B(t)| < α

C , then prove that the zero solution
of x′(t) = A(t)x(t) +B(t)x(t) is uniformly asymptotically stable.

7. Prove Theorem 9.2.4.a.

8. Prove Theorem 9.2.5.a.

9. Prove Theorem 9.2.6.a.

9.3 Liapunov’s Method for General Equations

In this section, we extend Liapunov’s method for autonomous differential
equations studied in Chapter 5 to the general differential equation

x′(t) = f(t, x(t)), (3.1)

and derive its stability properties. We assume that Eq. (3.1) is defined on
D = [0,∞)×Q where the domain Q ⊂ ℜn contains the zero vector, and that
for any (t0, x0) ∈ D, Eq. (3.1) has a unique solution x(t, t0, x0) existing on
[t0, ∞) with x(t0) = x0.

The treatment here is similar to that given in Chapter 5 for autonomous
differential equations. However, we will see that since f(t, x) now also de-
pends on the time variable t, some new definitions and conditions must be
imposed. Additional related results, remarks, and examples can be found in
some reference books, including Yoshizawa [1966] and Burton [1985].
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Definition 9.3.1 Consider Eq. (3.1). For a continuous function V : D =
[0,∞)×Q→ [0,∞) that is Lipschitz (or weak or local Lipschitz) with respect
to x on D, define

V ′
(3.1)(t, x)

def
= lim sup

h→0+

V (t+ h, x+ hf(t, x))− V (t, x)

h
, (t, x) ∈ D. (3.2)

Next, for a solution x(t) of Eq. (3.1), define

V ′(t, x(t))
def
= lim sup

h→0+

V (t+ h, x(t+ h))− V (t, x(t))

h
. (3.3)

A version of the following result was stated without proof for autonomous
differential equations in Chapter 5. Now we state and prove it for general
cases.

Lemma 9.3.2 Let x = x(t) be a solution of Eq. (3.1), then

V ′
(3.1)(t, x) = V ′(t, x(t)). (3.4)

Moreover, if V ′(t, x(t)) ≤ 0, then

V (b, x(b))− V (a, x(a)) ≤
∫ b

a
V ′(t, x(t))dt, 0 ≤ a ≤ b. (3.5)

Proof. First, as x = x(t) is a solution of Eq. (3.1), we have

x(t+ h) = x(t) + hf(t, x(t)) + o(h), (3.6)

where
|o(h)|
h

→ 0 as h→ 0.

Next, assume a Lipschitz condition for V with a Lipschitz constant k > 0,
then

−k|y1 − y2| ≤ V (s, y1)− V (s, y2) ≤ k|y1 − y2|, s ≥ 0, y1, y2 ∈ Q. (3.7)

(If we only assume a weak or local Lipschitz condition, then a small domain
can be found for the same proof to go through.) Then

V (t+ h, x(t+ h))− V (t, x(t))

= V (t+ h, x(t) + hf(t, x(t)) + o(h))− V (t, x(t))

≤ V (t+ h, x(t) + hf(t, x(t))) + k|o(h)| − V (t, x(t))

= V (t+ h, x+ hf(t, x)) + k|o(h)| − V (t, x), (3.8)
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therefore,

V ′(t, x(t)) = lim sup
h→0+

V (t+ h, x(t+ h))− V (t, x(t))

h

≤ lim sup
h→0+

V (t+ h, x+ hf(t, x)) + k|o(h)| − V (t, x)

h

= lim sup
h→0+

[V (t+ h, x+ hf(t, x))− V (t, x)

h
+
k|o(h)|
h

]
= lim sup

h→0+

V (t+ h, x+ hf(t, x))− V (t, x)

h

= V ′
(3.1)(t, x). (3.9)

On the other hand, we have

V (t+ h, x(t+ h))− V (t, x(t))

= V (t+ h, x(t) + hf(t, x(t)) + o(h))− V (t, x(t))

≥ V (t+ h, x(t) + hf(t, x(t)))− k|o(h)| − V (t, x(t))

= V (t+ h, x+ hf(t, x))− k|o(h)| − V (t, x), (3.10)

therefore,

V ′(t, x(t)) = lim sup
h→0+

V (t+ h, x(t+ h))− V (t, x(t))

h

≥ lim sup
h→0+

V (t+ h, x+ hf(t, x))− k|o(h)| − V (t, x)

h

= lim sup
h→0+

[V (t+ h, x+ hf(t, x))− V (t, x)

h
− k|o(h)|

h

]
= lim sup

h→0+

V (t+ h, x+ hf(t, x))− V (t, x)

h

= V ′
(3.1)(t, x). (3.11)

The inequality (3.5) is a standard result from advanced calculus. This
completes the proof. ♠

Lemma 9.3.2 says that the derivative of V with respect to Eq. (3.1)
defined by (3.2) is actually the derivative of V along a solution of Eq. (3.1)
defined by (3.3). That is, to find V ′

(3.1)(t, x), we can take a derivative of

V (t, x(t)) in t by plugging in the differential equation (3.1).
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Next we introduce some terminology that will be used in Liapunov’s
method.

Definition 9.3.3 (Wedge) A strictly increasing continuous function W :
[0,∞) → [0,∞) satisfying W (0) = 0 is called a wedge.

If we compare the treatment for autonomous differential equations, we
find that the notion of “wedge” is not needed for autonomous differential
equations. Recall that for x = [x1, x2, · · · , xn]T in ℜn, |x| =

∑n
i=1 |xi| is

equivalent to r(x) =
√
x21 + x22 + · · ·+ x2n.

Definition 9.3.4 Let Q be a domain in ℜn that contains the zero vector. A
continuous function V : D = [0,∞)×Q→ [0,∞) is said to be

(a). Positive definite (or bounded below by a wedge) if there is a wedgeW1

such that W1(|x|) ≤ V (t, x), (t, x) ∈ D; or equivalently, W ⋆
1 (r(x)) ≤

V (t, x), (t, x) ∈ D, for a wedge W ⋆
1 .

(b). Decrescent (or bounded above by a wedge) if there is a wedge W2

such that V (t, x) ≤ W2(|x|), (t, x) ∈ D; or equivalently, V (t, x) ≤
W ⋆

2 (r(x)), (t, x) ∈ D, for a wedge W ⋆
2 .

This definition is also different from the one for autonomous differential
equations, because now the function V (t, x) is dependent on the variable
t, thus, “positive definite” and “decrescent” in Definition 9.3.4 are used to
reduce the dependence of V (t, x) on the variable t.

Definition 9.3.5 (Liapunov function) Let Q be a domain in ℜn that
contains the zero vector. A function V : D = [0,∞) × Q → [0,∞) is
called a Liapunov function if V (t, 0) = 0, t ≥ 0, V is positive definite and
has continuous first partial derivatives.

Example 9.3.6 Based on V (t) = 1
2 [x

2
1(t) + x22(t)] in the proof of Theorem

4.3.1(a) in Chapter 4, if we define

V (t, x) =
1

2
[x21 + x22], t ≥ 0, x = [x1, x2]

T ∈ ℜ2,

then

V (t, x) =
1

2
[x21 + x22] =

1

2

(√
x21 + x22

)2
=

1

2
[r(x)]2

def
= W (r(x)), (3.12)
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where W (r) = 1
2r

2 is a wedge. Therefore, V (t, x) is positive definite and
decrescent. Moreover, in the proof of Theorem 4.3.1(a) in Chapter 4,

V ′(t, x(t)) ≤ −
[−α

2

(
x21(t) + x22(t)

)]
= −

[−α
2

(√
x21(t) + x22(t)

)2 ]
def
= −W3(r(x(t))),

where W3(r) =
−α
2 r

2 is a wedge, since α < 0. Thus −V ′(t, x) is also positive
definite. ♠

The following theorems utilize Liapunov functions and wedges to derive
stability properties for general differential equations. Without loss of gener-
ality, we assume in the following proofs that |x| ≤ 1 implies x ∈ Q, also, the
parameters used in the proofs, such as ε and δ, are assumed to be less than
or equal to 1.

Theorem 9.3.7 Let Q be a domain in ℜn that contains the zero vector.
Consider Eq. (3.1) on [0,∞)×Q with f(t, 0) = 0 so that ϕ = 0 is a solution
of Eq. (3.1). Assume that V is a Liapunov function. If V ′

(3.1)(t, x) ≤ 0, then
ϕ = 0 is stable.

Proof. Let t0 ≥ 0 and let x(t) = x(t, t0, x0) be a solution of Eq. (3.1).
Now we have V ′(t, x(t)) ≤ 0, t ≥ t0; and there is a wedge W1 such that
W1(|x(t)|) ≤ V (t, x(t)). For any ε > 0, we must find a δ = δ(ε, t0) > 0
such that {|x0| ≤ δ(ε, t0), t ≥ t0} imply |x(t, t0, x0)| ≤ ε. As V (t, x(t)) is
decreasing, one has W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0), t ≥ t0. Now, if we
can control V (t0, x0) byW1 at some value, then |x(t)| can be controlled since
W1 is strictly increasing. To this end, we observe that V (t0, x) is continuous
in x and V (t0, 0) = 0, thus there is a δ(ε, t0) > 0 such that |x| ≤ δ(ε, t0)
implies V (t0, x) ≤W1(ε). Therefore, if |x0| ≤ δ(ε, t0) and t ≥ t0, then

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0) ≤W1(ε), (3.13)

which implies |x(t)| ≤ ε since W1 is strictly increasing. This verifies the
stability of ϕ = 0 and completes the proof. ♠

In the proof of Theorem 9.3.7, δ is determined from the continuity of
V (t0, x), thus δ is dependent on t0 and we only get the stability of the zero
solution. To obtain the uniform stability of the zero solution, we need an
additional condition which can remove the dependence of δ on t0.
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Theorem 9.3.8 Let Q be a domain in ℜn that contains the zero vector.
Consider Eq. (3.1) on [0,∞)×Q with f(t, 0) = 0 so that ϕ = 0 is a solution
of Eq. (3.1). Assume that V is a Liapunov function and is decrescent. If
V ′
(3.1)(t, x) ≤ 0, then ϕ = 0 is uniformly stable.

Proof. In this case, for x(t) = x(t, t0, x0), there are wedges W1 and W2

such that W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0) ≤ W2(|x0|), t ≥ t0. Now, let’s
control W2(|x0|) by W1 at some value so as to control |x(t)|. For any ε > 0,
we choose δ = δ(ε) > 0 such that W2(δ) ≤ W1(ε). Then for |x0| ≤ δ(ε) and
t ≥ t0,

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0) ≤W2(|x0|) ≤W2(δ) ≤W1(ε), (3.14)

therefore, |x(t, t0, x0)| ≤ ε since W1 is strictly increasing, proving the uni-
form stability of ϕ = 0. ♠

In the above, the condition of V ′
(3.1)(t, x) ≤ 0 is used to guarantee that

V (t, x(t)) is not increasing, which means roughly that the solution is not
increasing. Therefore, stability and uniform stability are obtained. To de-
rive asymptotic and uniform asymptotic stabilities, we need to “drag” so-
lutions to the zero. Thus we require solutions to be decreasing, or require
V ′
(3.1)(t, x) < 0, see the following.

Theorem 9.3.9 Let Q be a domain in ℜn that contains the zero vector.
Consider Eq. (3.1) on [0,∞)×Q with f(t, 0) = 0 so that ϕ = 0 is a solution
of Eq. (3.1). Assume that V is a Liapunov function. If −V ′

(3.1)(t, x) is

positive definite, and if f(t, x) is bounded for x bounded, then ϕ = 0 is
asymptotically stable.

Proof. From Theorem 9.3.7, ϕ = 0 is stable. Suppose that ϕ = 0 is not
asymptotically stable. Then there is a t′0 ≥ 0 such that the r(t′0) > 0 in the
definition of asymptotic stability cannot be found. Now, from the stability
of the zero solution, for the given t′0 and ε = 1, there exists a δ = δ(ε, t′0) =
δ(t′0) > 0 such that |x0| ≤ δ(t′0) implies |x(t)| = |x(t, t′0, x0)| ≤ ε = 1 for
t ≥ t′0. Since δ(t

′
0) cannot be used as the r(t′0) in the definition of asymptotic

stability, there is an x∗ such that |x∗| ≤ δ(t′0) but |x(t, t′0, x∗)| ̸→ 0, t→ ∞.
Therefore there exists an ε0 > 0 and tm → ∞ such that |x(tm, t′0, x∗)| ≥
ε0. Now, |x∗| ≤ δ(t′0) implies |x(t)| = |x(t, t′0, x∗)| ≤ 1 for t ≥ t′0, or
x(t) = x(t, t′0, x

∗) is bounded. From the assumption, f(t, x) is bounded for
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x bounded, thus, for x(t) = x(t, t′0, x
∗),

| d
dt
x(t)| = |f(t, x(t))| ≤ K

n
, (3.15)

for some constantK > 0 (n is the dimension of ℜn). By taking a subsequence
of tm if necessary, we may assume that the intervals[

tm − ε0
2K

, tm +
ε0
2K

]
, m ≥ 1, (3.16)

are disjoint and t1 − ε0
2K > t′0. Now, for t in (3.16), we can examine every

component of x(t) and apply the mean value theorem and then use (3.15)

to obtain, for t ∈
[
tm − ε0

2K , tm + ε0
2K

]
,

|x(t)− x(tm)| ≤ n
K

n
|t− tm| ≤ K

ε0
2K

=
ε0
2
.

Hence, as

ε0 ≤ |x(tm)| ≤ |x(tm)− x(t)|+ |x(t)| ≤ ε0
2

+ |x(t)|,

we have

|x(t)| = |x(t, t′0, x∗)| ≥
ε0
2

for t in (3.16).

From the assumption, there is a wedge W2 such that V ′(t, x(t)) ≤
−W2(|x(t)|). Then V ′(t, x(t)) ≤ −W2(

ε0
2 ) on the intervals given in (3.16)

and V ′(t, x(t)) ≤ 0 elsewhere. Therefore

V (tm +
ε0
2K

, x(tm +
ε0
2K

)) ≤ V (t′0, x
∗) +

∫ tm+
ε0
2K

t′0

V ′(t, x(t))dt

≤ V (t′0, x
∗)−W2(

ε0
2
)
ε0
K
m→ −∞, m→ ∞,

which contradicts V (t, x(t)) ≥ 0. Thus ϕ = 0 is asymptotically stable. This
completes the proof. ♠

In the proof of Theorem 9.3.9, the stability of the zero solution is used, or
δ(t′0) is used, thus the uniform asymptotic stability is not expected. Similar
to Theorem 9.3.8, an additional condition is needed to remove the depen-
dence of δ on t0.
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Theorem 9.3.10 Let Q be a domain in ℜn that contains the zero vector.
Consider Eq. (3.1) on [0,∞)×Q with f(t, 0) = 0 so that ϕ = 0 is a solution
of Eq. (3.1). Assume that V is a Liapunov function and is decrescent.
If −V ′

(3.1)(t, x) is positive definite, then ϕ = 0 is uniformly asymptotically
stable.

Proof. From Theorem 9.3.8, ϕ = 0 is uniformly stable. Next, take r = 1.
Then for any ε > 0, we need to find T = T (ε) > 0 such that {|x0| ≤ 1, t0 ≥
0, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ ε. Now, there are wedges W1 and W2

such that for t ≥ s ≥ 0, one has W1(|x(t)|) ≤ V (t, x(t)) ≤ V (s, x(s)) ≤
W2(|x(s)|). Thus to control W2(|x(s)|) by W1 at some value so as to control
|x(t)|, we choose γ = γ(ε) > 0 such that W2(γ) ≤ W1(ε). For any solution
x(t) = x(t, t0, x0) with |x0| ≤ 1 and t0 ≥ 0, as long as |x(t)| > γ for t ≥ t0,
then, as V ′(t, x(t)) ≤ −W3(|x(t)|) for some wedge W3, we have

0 ≤ V (t, x(t)) ≤ V (t0, x0)−
∫ t

t0
W3(|x(s)|)ds

< W2(|x0|)−W3(γ)(t− t0)

≤ W2(1)−W3(γ)(t− t0), (3.17)

which fails when W2(1)−W3(γ)(t− t0) = 0, or when

t = t0 +
W2(1)

W3(γ)
def
= t0 + T,

(
T =

W2(1)

W3(γ)

)
(3.18)

where T = T (γ) = T (ε). Therefore, there is a t0 ∈ [t0, t0 + T ] such that
|x(t0, t0, x0)| ≤ γ. Then for t ≥ t0,

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x(t0)) ≤W2(|x(t0)|) ≤W2(γ) ≤W1(ε),

hence, |x(t)| ≤ ε for t ≥ t0. Therefore, {|x0| ≤ 1, t0 ≥ 0, t ≥ t0 + T} imply
|x(t, t0, x0)| ≤ ε since t0 + T ≥ t0, thus ϕ = 0 is uniformly asymptotically
stable. This completes the proof. ♠

So far, we have seen that the notion of wedge as defined in Definition
9.3.3 has made the above proofs concerning stabilities possible. However,
we will see from some examples that in practice, it is not easy to construct
these kind of wedges.

Example 9.3.11 Consider the scalar differential equation

u′′ + (1− e−2t)h(u′)g(u) = 0,
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where the functions h and g are continuous, ug(u) > 0 for u ̸= 0, and h is
positive on ℜ. We note that u = 0 is a solution and write the equation as a
system {

x′1 = x2,
x′2 = −(1− e−2t)h(x2)g(x1).

(3.19)

Now try, for x = (x1, x2) ∈ ℜ2,

V (t, x) = (1− e−t)−1
∫ x2

0

s

h(s)
ds+ (1 + e−t)

∫ x1

0
g(s)ds. (3.20)

For t ≥ 1, we have∫ x2

0

s

h(s)
ds+

∫ x1

0
g(s)ds ≤ V (t, x) ≤ (1− e−1)−1

∫ x2

0

s

h(s)
ds+ 2

∫ x1

0
g(s)ds.

Therefore, if we define

W1(x) =

∫ x2

0

s

h(s)
ds+

∫ x1

0
g(s)ds,

and

W2(x) = (1− e−1)−1
∫ x2

0

s

h(s)
ds+ 2

∫ x1

0
g(s)ds,

then, for t ≥ 1, we have

W1(x) ≤ V (t, x) ≤W2(x). (3.21)

Moreover, from the assumptions,Wi(0) = 0 andWi(x) > 0 for x ̸= 0, i =
1, 2.

However, if you look at Wi carefully, you will find that Wi, i = 1, 2, are
defined on ℜ2, and without further assumptions on the functions h and g it
is not easy to construct scalar wedges as defined in Definition 9.3.3 from
Wi. (Try it to see why.) ♠

Thus, we conclude that scalar wedges as defined in Definition 9.3.3 have
made theoretical proofs easy but practical examples hard. Therefore, based
on Example 9.3.11, we ask if scalar wedges as defined in Definition 9.3.3 can
be constructed when we have two functions Wi, i = 1, 2, defined on ℜn, such
thatWi(0) = 0,Wi(x) > 0 for x ̸= 0, and (3.21) is satisfied for some function
V (t, x) defined on ℜ× ℜn.
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The following construction from Burton [1985] shows a way to construct
a scalar wedge on the left-hand side of (3.21), which is related to “positive
definiteness.” Assume that W : {x ∈ ℜn : |x| ≤ 1} → [0,∞), W (0) =
0, W (x) > 0 for x ̸= 0, and W (x) ≤ V (t, x) for some function V (t, x).
Define

α(r) = min
r≤|x|≤1

W (x),

so that α : [0, 1] → [0,∞) is nondecreasing. Then define

ω1(r) =

∫ r

0
α(s)ds, r ∈ [0, 1],

so that ω1(0) = 0 and ω′
1(r) = α(r) > 0, r > 0. Therefore, ω1 is strictly

increasing, hence ω1 is a scalar wedge as defined in Definition 9.3.3. Using
the mean value theorem for integration, ω1(r) ≤ rα(r) ≤ α(r) for r ≤ 1.
Thus, if |x| ≤ 1, then

V (t, x) ≥W (x) ≥ min
|x|≤|p|≤1

W (p) = α(|x|) ≥ ω1(|x|),

or V (t, x) is positive definite if we only consider |x| ≤ 1, which is good
enough for stabilities of the zero solution.

Based on this construction, we next extend the idea and come up with
the following construction of a scalar wedge on the right-hand side of (3.21),
which is related to “decrescentness.” Assume thatW : ℜn → [0,∞), W (0) =
0, W (x) > 0 for x ̸= 0, and V (t, x) ≤W (x) for some function V (t, x). Define

β(r) = max
0≤|x|≤r

W (x), r ≥ 0,

then β : [0,∞) → [0,∞) is nondecreasing. Next define

ω2(r) = β(r) + r, r ∈ ℜ+,

so that ω2(0) = 0 and ω2 is strictly increasing on ℜ+. Therefore, ω2 is a
scalar wedge as defined in Definition 9.3.3. Moreover,

V (t, x) ≤W (x) ≤ max
0≤|p|≤|x|

W (p) = β(|x|) ≤ ω2(|x|),

or V (t, x) is decrescent on [0,∞)×ℜn.
According to the above constructions, we find that if (3.21) is satisfied,

then the corresponding scalar wedges as defined in Definition 9.3.3 can be
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constructed. Therefore, we can weaken the conditions required in Definition
9.3.3. That is, instead of requiring wedges to be scalar wedges defined on
[0,∞), we can simply ask that wedges are defined on a domain Q ⊂ ℜn

containing the zero vector. This will make things easier to check for the
examples where wedges need to be constructed.

Consequently, we can make the following definition.

Definition 9.3.12 (ℜn-Wedge) Let Q be a domain in ℜn containing the
zero vector. A continuous function W : Q→ [0,∞) satisfying W (0) = 0 and
W (x) > 0 for x ̸= 0 is called a ℜn-wedge.

The corresponding definitions concerning “positive definiteness” and “de-
crescentness” can also be revised.

Definition 9.3.13 Let Q be a domain in ℜn containing the zero vector. A
continuous function V : D = [0,∞)×Q→ [0,∞) is said to be

(a). ℜn-positive definite (or bounded below by a ℜn-wedge) if there is a
ℜn-wedge W1 such that W1(x) ≤ V (t, x), (t, x) ∈ D.

(b). ℜn-decrescent (or bounded above by a ℜn-wedge) if there is a ℜn-
wedge W2 such that V (t, x) ≤W2(x), (t, x) ∈ D.

After these discussions, we restate Theorems 9.3.7–9.3.10 using ℜn-wedges,
which will be much easier to use in applications.

Theorem 9.3.14 Let Q be a domain in ℜn containing the zero vector. Con-
sider Eq. (3.1) on [0,∞) × Q with f(t, 0) = 0 so that ϕ = 0 is a solution
of Eq. (3.1). Assume that V is a Liapunov function where the wedge is
replaced by a ℜn-wedge, that is, W1(x) ≤ V (t, x) for some ℜn-wedge W1. If
V ′
(3.1)(t, x) ≤ 0, then ϕ = 0 is stable. ♠

Theorem 9.3.15 Let Q be a domain in ℜn containing the zero vector. Con-
sider Eq. (3.1) on [0,∞)×Q with f(t, 0) = 0 so that ϕ = 0 is a solution of
Eq. (3.1). Assume that V is a Liapunov function and is decrescent where
the wedges are replaced by ℜn-wedges, that is, W1(x) ≤ V (t, x) ≤W2(x) for
some ℜn-wedges W1 and W2. If V ′

(3.1)(t, x) ≤ 0, then ϕ = 0 is uniformly
stable. ♠

Theorem 9.3.16 Let Q be a domain in ℜn containing the zero vector. Con-
sider Eq. (3.1) on [0,∞) × Q with f(t, 0) = 0 so that ϕ = 0 is a solution
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of Eq. (3.1). Assume that V is a Liapunov function where the wedge is
replaced by a ℜn-wedge. If −V ′

(3.1)(t, x) is ℜ
n-positive definite, and if f(t, x)

is bounded for x bounded, then ϕ = 0 is asymptotically stable. ♠

Theorem 9.3.17 Let Q be a domain in ℜn containing the zero vector. Con-
sider Eq. (3.1) on [0,∞)×Q with f(t, 0) = 0 so that ϕ = 0 is a solution of
Eq. (3.1). Assume that V is a Liapunov function and is decrescent where
the wedges are replaced by ℜn-wedges. If −V ′

(3.1)(t, x) is ℜ
n-positive definite,

then ϕ = 0 is uniformly asymptotically stable. ♠

Example 9.3.18 Let’s revisit Example 9.3.11,

u′′ + (1− e−2t)h(u′)g(u) = 0, (3.22)

where the functions h and g are continuous, ug(u) > 0 for u ̸= 0, and h is
positive on ℜ. From the function V given in (3.20), we know from (3.21)
that V (t, x) is ℜn-positive definite and ℜn-decrescent for t ≥ 1. Next, from
(3.19),

d

dt
V (t, x) = −(1− e−t)−2e−t

∫ x2

0

s

h(s)
ds− e−t

∫ x1

0
g(s)ds

+(1 + e−t)g(x1)x2 − (1− e−t)−1 x2
h(x2)

(1− e−2t)h(x2)g(x1)

= −(1− e−t)−2e−t
∫ x2

0

s

h(s)
ds− e−t

∫ x1

0
g(s)ds ≤ 0. (3.23)

Therefore, using Theorem 9.3.15, the solution ϕ = 0 of Eq. (3.22) is uni-
formly stable. ♠

Compare the corresponding results in Chapter 5. We now see that the
Liapunov theory concerning stabilities of autonomous differential equations
are special cases of theorems 9.3.15 and 9.3.17.

The above is a brief coverage of the Liapunov theory concerning stability
properties for general differential equations. Roughly speaking, it reduces
the study of stability properties to the problem of constructing appropriate
Liapunov functions. However, constructing appropriate Liapunov functions
is difficult. See Chapter 5 for some constructions for autonomous differential
equations, and refer to Yoshizawa [1966] and Burton [1985] for treatment of
certain nonautonomous differential equations.

Finally, we close this section by introducing some results concerning the
converse of stabilities. That is, we now know that the existence of Li-
apunov functions imply certain stabilities; the converse of stabilities asks
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if stabilities imply the existence of certain Liapunov functions. Here, we
provide a result for the linear differential equation

x′(t) = Ax(t), (3.24)

where A is an n×n constant matrix. See Yoshizawa [1966] for related results
for general differential equations.

Theorem 9.3.19 Assume that the zero solution of Eq. (3.24) is uniformly
asymptotically stable, then there exists a Liapunov function V : ℜn → [0,∞)
such that V is decrescent and −V ′

(3.24)(x) is positive definite.

Proof. From Theorem 5.2.1(B) in Chapter 5, there are (independent or
generic) constants C > 1 and α > 0 such that

|etA| ≤ Ce−αt, 0 ≤ t <∞. (3.25)

Define an n× n matrix

B =

∫ ∞

0
eA

T teAtdt,

(where T means the transpose). Because of (3.25), the matrix B is well
defined. Moreover,

BT =

∫ ∞

0

[
eA

T teAt
]T
dt =

∫ ∞

0

[
eAt

]T [
eA

T t
]T
dt

=

∫ ∞

0
eA

T teAtdt = B, (3.26)

thus B is symmetric. Define

V (x) = xTBx, x ∈ ℜn,

then V : ℜn → ℜ, and

V (x) = xTBx =

∫ ∞

0
xT eA

T teAtxdt

=

∫ ∞

0

[
eAtx

]T [
eAtx

]
dt ≥ 0, (3.27)

and V (x) > 0 for x ̸= 0. Thus, V itself is a ℜn-wedge, hence V is positive
definite and decrescent, therefore V is a Liapunov function. Next, for a
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solution x = x(t),

d

dt
V (x(t)) = (xT )′Bx+ xTBx′ = xTATBx+ xTBAx

= xT [ATB +BA]x = xT
[ ∫ ∞

0
AT eA

T teAtdt+

∫ ∞

0
eA

T teAtAdt
]
x

= xT
[ ∫ ∞

0

d

dt

(
eA

T teAt
)
dt
]
x

= xT
[(
eA

T teAt
)
|∞0

]
x = −xTx,

therefore, −V ′
(3.24)(x) is positive definite since xTx is a ℜn-wedge. This

completes the proof. ♠

Note that Theorem 9.3.19 is the converse of Theorem 9.3.17 for linear
cases.

Exercises 9.3

1. Determine if V : [0,∞) × Q → [0,∞) is positive definite and/or de-
crescent on some domain Q containing the zero vector.

(a) V (t, x) = x2 + cos(tx).

(b) V (t, x) = x2 + cos2(tx).

(c) V (t, x1, x2) = x21 + t2x42.

(d) V (t, x1, x2) = x21 + (1 + t4)x22.

(e) V (t, x1, x2) = x21 +
2

1+t4
x22.

(f) V (t, x1, x2) = t[x41 + x22].

(g) V (t, x1, x2) = x21 + (2 + sin4 t)x22.

(h) V (t, x1, x2) = x21 + (sin4 t)x22.

(i) V (t, x1, x2, x3) = x21 + tx22 + t2x43.

(j) V (t, x1, x2, x3) = x21 + x22 − tx43.

(k) V (t, x1, x2, x3) = x21 + x22 + x23 + x1x2 sin tx3.

2. Prove Theorem 9.3.14.

3. Prove Theorem 9.3.15.

4. Prove Theorem 9.3.16.



9.3. Liapunov’s Method for General Equations 469

5. Prove Theorem 9.3.17.

6. Verify in Example 9.3.11 that u = 0 is a solution.

7. Let b be a constant and let a(t), c(t) be continuous functions on ℜ+

such that a(t) ≤ d, c(t) ≤ d for some negative constant d. Use
V (t, x1, x2) = x21 + x22 to prove that the zero solution of{

x′1(t) = a(t)x1(t)− bx2(t),
x′2(t) = bx1(t) + c(t)x2(t),

is uniformly asymptotically stable.

8. Let a(t), b, c(t) be the same as above and let fi(t, x1, x2) be such that
fi(t,x1,x2)√

x2
1+x2

2

→ 0 as x21+x22 → 0. Use V (t, x1, x2) = x21+x22 to prove that

the zero solution of{
x′1(t) = a(t)x1(t)− bx2(t) + f1(t, x1, x2),
x′2(t) = bx1(t) + c(t)x2(t) + f2(t, x1, x2),

is uniformly asymptotically stable.

9. Consider the second-order equation x′′(t) = f(t, x). Assume that on
(t, x) ∈ [0,∞) × ℜ, xft(t, x) ≥ 0; f(t, x) ≤ k(x) < 0 if x > 0 and
f(t, x) ≥ k(x) > 0 if x < 0 for some continuous function k(x). Write

the equation as a system and use V (t, x1, x2) =
x2
2
2 −

∫ x1
0 f(t, s)ds to

prove that the zero solution is stable.

10. Discuss the stability properties of the zero solution for x′′(t) = a(t)x4

where a(t) is a continuous function.

11. Discuss the stability properties of the zero solution for x′′(t) = a(t)b(x)
where a(t) and b(x) are continuous functions.

12. Discuss the stability properties of the zero solution for x′′ + a(t)x′ + x
= 0 where a(t) is a continuous function and a(t) ≥ d on ℜ+ for some
positive constant d.

13. Discuss the stability properties of the zero solution for x′′ + a(t)x′ +
f(x) = 0 where a(t) is the same as above and f is continuously differ-
entiable with xf(x) > 0 for x ̸= 0.

14. In the proof of Theorem 9.3.19, verify that the matrix B is well defined,
and V (x) > 0 for x ̸= 0.



Chapter 10

Bounded Solutions

10.1 Introduction

We have studied stability properties in chapters 5 and 9, where we can
determine if a small change in the initial data for a system will cause a
small change of the behavior for future time. Another notion that is very
closely related to the notion of stability is the notion of “boundedness,”
which in applications indicates whether the future behavior of a system can
be controlled when initial values are being controlled. See Chapter 1 for a
brief discussion of boundedness for scalar differential equations.

Now, we study boundedness for general differential equations. We assume
that f(t, x) in

x′(t) = f(t, x(t)) (1.1)

is defined on D = [0,∞) × ℜn in order to allow solutions to become large.
This is different from the study of the stabilities of the zero solution, where
we look at the solutions that are close to the zero, in which case the set Q in
D = [0,∞) × Q could be a small domain containing the zero vector in ℜn.
Next, since boundedness is a “long-term” behavior of solutions for “future
time,” we will assume that for any (t0, x0) ∈ [0,∞) × ℜn, Eq. (1.1) has a
unique solution x(t, t0, x0) existing on [t0, ∞) with x(t0) = x0.

Now, we make the following definitions.

470
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Definition 10.1.1 Consider Eq. (1.1) on D = [0,∞)×ℜn.

(a). A solution x(t, t0, x0) of Eq. (1.1) is said to be bounded if there
exists a B(t0, x0) > 0 such that |x(t, t0, x0)| ≤ B(t0, x0) for t ≥ t0.

(b). The solutions of Eq. (1.1) are said to be equi-bounded if for any
t0 ≥ 0 and any B1 > 0, there exists a B2 = B2(t0, B1) > 0 such that
{|x0| ≤ B1, t ≥ t0} imply |x(t, t0, x0)| ≤ B2.

(c). The solutions of Eq. (1.1) are said to be uniformly bounded if the
B2 in the definition of equi-boundedness can be chosen to be indepen-
dent of t0 ≥ 0. That is, for any B1 > 0, there exists a B2 = B2(B1) > 0
such that {|x0| ≤ B1, t0 ≥ 0, t ≥ t0} imply |x(t, t0, x0)| ≤ B2.

(d). The solutions of Eq. (1.1) are said to be equi-ultimately bounded
if there is an (independent or generic) constant B > 0 such that for
any t0 ≥ 0 and any B1 > 0, there exists a T = T (t0, B1) > 0 such that
{|x0| ≤ B1, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ B.

(e). The solutions of Eq. (1.1) are said to be uniformly ultimately
bounded if the T in the definition of equi-ultimate boundedness can be
chosen to be independent of t0 ≥ 0. That is, there is an (independent
or generic) constant B > 0 such that for any B1 > 0, there exists
a T = T (B1) > 0 such that {|x0| ≤ B1, t0 ≥ 0, t ≥ t0 + T} imply
|x(t, t0, x0)| ≤ B.

Definition 10.1.1(a) is concerned with a single solution, while all other
cases in Definition 10.1.1 are for a set of solutions. Notice the difference
between boundedness and ultimate boundedness. For boundedness, initial
values of the solutions are confined in a bounded set, then a bound is selected
to control the solutions. For ultimate boundedness, however, a bound is
specified first and initial values of the solutions are free, thus in general the
specified bound cannot be used to control the solutions. Therefore, ultimate
boundedness asks for a sufficiently large t value after which the solutions
are controlled by the specified bound. The graphs showing the ideas and
differences are given in Figure 10.1.

Recall from Chapter 2 that on a finite interval, a solution is continuous
with respect to initial data. Therefore, we have the following result.

Theorem 10.1.2 Assume that f(t, x) is continuous and satisfies a weak
Lipschitz condition with respect to x on D = [0,∞)×ℜn. If the solutions of
Eq. (1.1) are equi-ultimately bounded, then they are equi-bounded.
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Figure 10.1: Different types of boundedness properties according to Defi-
nition 10.1.1
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Proof. Let B > 0 be the bound in the definition of equi-ultimate bounded-
ness, then for any t0 ≥ 0 and any B1 > 0, there is a T = T (t0, B1) > 0 such
that {|x0| ≤ B1, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ B. Next, on the interval
[t0, t0 + T ], an argument similar to the proof of Theorem 2.3.3 in Chapter 2
shows that, for t ∈ [t0, t0 + T ],

|x(t, t0, x0)− x(t, t0, y0)| ≤ |y0 − x0|e
∫ t

t0
k(s)ds ≤ |y0 − x0|e

∫ t0+T

t0
k(s)ds

, (1.2)

where y0 is any fixed vector in ℜn and k(·) is from the weak Lipschitz con-
dition. This implies, for t ∈ [t0, t0 + T ] and |x0| ≤ B1,

|x(t, t0, x0)| ≤ |x(t, t0, x0)− x(t, t0, y0)|+ |x(t, t0, y0)|

≤ |y0 − x0|e
∫ t0+T

t0
k(s)ds

+ |x(t, t0, y0)|

≤ |x(t, t0, y0)|+ (|y0|+B1)e

∫ t0+T

t0
k(s)ds

. (1.3)

As x(t, t0, y0) is a fixed solution on [t0, t0+T ], the inequality (1.3) implies
that for |x0| ≤ B1, the solutions x(t, t0, x0) are bounded on [t0, t0+T ]. That
is, there is a B2 = B2(t0, B1, T ) = B2(t0, B1) > 0 such that |x(t, t0, x0)| ≤
B2(t0, B1) for t ∈ [t0, t0+T ] and |x0| ≤ B1. Now, we see that {|x0| ≤ B1, t ≥
t0} imply |x(t, t0, x0)| ≤ max{B2, B}, which verifies the equi-boundedness
and completes the proof. ♠

In the above proof, the equi-ultimate boundedness is used to control
solutions for large t, and the weak Lipschitz condition together with that
fixed solution x(t, t0, y0) are used to control solutions on [t0, t0 + T ]. To
extend this to the uniform boundedness, the argument in the above proof
should be independent of t0. If the solutions of Eq. (1.1) are uniformly
ultimately bounded, then the time T in the above proof can be chosen to be
independent of t0, and then

∫ t0+T
t0

k(s)ds is bounded independently of t0 if
a (global) Lipschitz condition is assumed. But in general, |x(t, t0, y0)| in the
above proof may not be bounded independently of t0. Therefore, from the
proof of Theorem 10.1.2 and the previous remarks, we have the following
result.

Theorem 10.1.3 Assume that f(t, x) is continuous and satisfies a Lipschitz
condition with respect to x on D = [0,∞)×ℜn, and that the solutions of Eq.
(1.1) are uniformly ultimately bounded. If there is a y0 ∈ ℜn such that for
any T > 0, x(t, t0, y0) is bounded on [t0, t0 + T ] independently of t0 ≥ 0 (for
example, when the zero or some constants are solutions), then the solutions
are uniformly bounded. ♠
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Theorem 10.1.3 says that uniform ultimate boundedness implies uniform
boundedness under certain conditions, including a (global) Lipschitz condi-
tion. Later, we will see that when those conditions are not satisfied, we do
not have the same conclusion.

This chapter is organized as follows: In Section 2, we derive bounded-
ness results for general linear differential equations by using the results from
Chapter 9. It will be seen that stability and boundedness are almost equiva-
lent for linear homogeneous differential equations, and they are determined
by the fundamental matrix solutions. For nonlinear differential equations,
examples will be given to show that the concepts of stability and bounded-
ness are not equivalent. In Section 3, we look at the case when the coefficient
matrix is a constant matrix, and verify that the eigenvalues of the coefficient
matrix determine boundedness properties. In Section 4, the case of a peri-
odic coefficient matrix is treated. The Floquet theory from Chapter 3 is used
to transform the equation with a periodic coefficient matrix into an equation
with a constant coefficient matrix. Therefore, the results from Section 3 can
be applied. In Section 5, we use Liapunov’s method to study boundedness
properties for general nonlinear differential equations.

Exercises 10.1

1. Prove Theorem 10.1.3.

2. Determine the boundedness properties for the scalar differential equa-
tion x′(t) = a(t)x(t).

10.2 General Linear Differential Equations

Here, we study the linear differential equation

x′(t) = A(t)x(t) + f(t), x(t0) = x0, t ≥ t0 ≥ 0, x ∈ ℜn, (2.1)

where A(t) and f(t) are continuous on ℜ+ = [0,∞).
Using the results from Chapter 3, we know that the unique solution of

Eq. (2.1) for the initial data (t0, x0) is given by the variation of parameters
formula

x(t) = U(t, t0)
[
x0 +

∫ t

t0
U−1(s, t0)f(s)ds

]
= U(t, t0)x0 +

∫ t

t0
U(t, s)f(s)ds, t ≥ t0. (2.2)
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We first study the linear homogeneous differential equation

x′(t) = A(t)x(t), (2.3)

where the unique solution is given by x(t) = U(t, t0)x0 for the initial data
(t0, x0). Based on Theorem 9.2.1 in Chapter 9, the following result says that
for linear homogeneous differential equations, stability properties and bound-
edness properties are almost equivalent. For nonlinear differential equations,
examples will be given to show that the concepts are not equivalent.

Theorem 10.2.1 Assume that A(t) is continuous on ℜ+. Then for Eq.
(2.3),

(A). the following statements are equivalent:

(1). The solutions are equi-bounded;

(2). ϕ = 0 is stable;

(3). There is an (independent or generic) constant C > 1 such that

|U(t, 0)| ≤ C, 0 ≤ t <∞. (2.4)

(B). the following statements are equivalent:

(1). The solutions are uniformly bounded;

(2). ϕ = 0 is uniformly stable;

(3). There is an (independent or generic) constant C > 1 such that

|U(t, s)| ≤ C, 0 ≤ s ≤ t <∞. (2.5)

(C). the following statements are equivalent:

(1). The solutions are equi-ultimately bounded;

(2). ϕ = 0 is asymptotically stable;

(3). |U(t, 0)| → 0, t→ ∞.

(D). If ϕ = 0 is uniformly asymptotically stable, then the solutions are
uniformly ultimately bounded. If, on the other hand, the solutions are
uniformly ultimately bounded, then under some additional conditions,
such as when A(t) is bounded on ℜ+, ϕ = 0 is uniformly asymptotically
stable.
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Proof. (A): Suppose that ϕ = 0 is stable. Then from Theorem 9.2.1 in
Chapter 9, there is an independent constant C > 1 such that |U(t, 0)| ≤
C, t ≥ 0. Now, the solutions satisfy

|x(t, t0, x0)| = |U(t, t0)x0| = |U(t, 0)U(0, t0)x0| ≤ C|U(0, t0)||x0|.

For any t0 ≥ 0 and B1 > 0, we can choose B2 = B2(t0, B1) = C|U(0, t0)|B1,
such that {t ≥ t0, |x0| ≤ B1} imply |x(t, t0, x0)| ≤ B2. This proves the
equi-boundedness.

Conversely, if the solutions are equi-bounded, then for t0 = 0 and B1 = 1,
there exists a B2 = B2(t0, B1) = B2(0, 1) > 0 such that {|x0| ≤ 1, t ≥ 0}
imply |U(t, 0)x0| = |x(t, 0, x0)| ≤ B2. Then similar to the proof of Theorem
9.2.1, |U(t, 0)| ≤ C for some independent constant C > 1.

(B): Suppose that ϕ = 0 is uniformly stable. Then from Theorem 9.2.1,
|U(t, t0)| ≤ C, 0 ≤ t0 ≤ t <∞, for some independent constant C > 1. Now,
the solutions satisfy |x(t, t0, x0)| = |U(t, t0)x0| ≤ C|x0|, which implies the
uniform boundedness.

Next, if the solutions are uniformly bounded, then for t0 ≥ 0 and B1 = 1,
there exists a B2 = B2(B1) = B2(1) > 0 such that {|x0| ≤ 1, t ≥ t0} imply
|U(t, t0)x0| = |x(t, t0, x0)| ≤ B2. Similar to the proof of Theorem 9.2.1,
|U(t, t0)| ≤ C for some independent constant C > 1.

(C): Suppose that ϕ = 0 is asymptotically stable. Then from Theorem
9.2.1, |U(t, 0)| → 0, t → ∞. Hence for any t0 ≥ 0 and B1 > 0, we can find
T = T (t0, B1) > 0 such that t ≥ t0 + T implies |U(t, 0)| ≤ 1

|U(0,t0)|B1
. Let

B = 1. Then {|x0| ≤ B1, t ≥ t0 + T} imply

|x(t, t0, x0)| = |U(t, t0)x0| = |U(t, 0)U(0, t0)x0|
≤ |U(t, 0)||U(0, t0)|B1 ≤ 1 = B,

proving the equi-ultimate boundedness.
Conversely, if the solutions are equi-ultimately bounded, then there is

a constant B > 0, such that for t0 = 0 and any B1 > 0, there exists a
T = T (0, B1) = T (B1) > 0 such that {|x0| ≤ B1, t ≥ t0 + T = T} imply
|U(t, 0)x0| = |x(t, 0, x0)| ≤ B. Similar to the proof of Theorem 9.2.1, this
implies that for any B1 > 0, there is a T = T (0, B1) = T (B1) > 0 such that
|U(t, 0)| ≤ nB

B1
for t ≥ T, (n is the dimension of ℜn). Now, for any ε > 0,

choose B1 = nB
ε , then there is a T = T (B1) = T (ε) > 0 such that t ≥ T

implies |U(t, 0)| ≤ nB
B1

= ε. Thus |U(t, 0)| → 0, t→ ∞.
(D): Suppose that ϕ = 0 is uniformly asymptotically stable. Then from

Theorem 9.2.1, |x(t, t0, x0)| = |U(t, t0)x0| ≤ |U(t, t0)||x0| ≤ Ce−α(t−t0)|x0|
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for some independent constants C > 1, α > 0. Now let B = 1 and, for any
B1 > 1, solve T = T (B1) > 0 from CB1e

−αT = 1. Then {t0 ≥ 0, |x0| ≤
B1, t ≥ t0 + T} imply

|x(t, t0, x0)| = |U(t, t0)x0| ≤ Ce−α(t−t0)|x0| ≤ CB1e
−αT = 1 = B,

proving the uniform ultimate boundedness.
On the other hand, assume that the solutions are uniformly ultimately

bounded and that A(t) is bounded on ℜ+. Then Eq. (2.3) satisfies a Lip-
schitz condition and ϕ = 0 is a solution, hence from Theorem 10.1.3, the
solutions of Eq. (2.3) are uniformly bounded. Therefore, from part (B) we
just proved, ϕ = 0 is uniformly stable. Next, from the uniform ultimate
boundedness, there is a constant B > 0, such that for any t0 ≥ 0 and any
B1 > 0, there exists a T = T (B1) > 0 such that {|x0| ≤ B1, t ≥ t0 + T}
imply |U(t, t0)x0| = |x(t, t0, x0)| ≤ B. Similar to the proof of Theorem 9.2.1,
this implies that for any t0 ≥ 0 and B1 = 2nB (n is the dimension of ℜn),
there is a T = T (B1) = T (B) > 0 such that

|U(t, t0)| ≤
nB

B1
=

1

2
, t0 ≥ 0, t ≥ t0 + T. (2.6)

As ϕ = 0 is uniformly stable, the same proof of part (D) in Theorem
9.2.1 can be used to show that

|U(t, s)| ≤ Ce−α(t−s), 0 ≤ s ≤ t <∞, (2.7)

for some independent constants α > 0, C > 1. Thus ϕ = 0 is uniformly
asymptotically stable. This completes the proof. ♠

From Theorem 10.2.1, we find that for Eq. (2.3), most stability and
boundedness properties are equivalent. The exception is uniform asymptotic
stability and uniform ultimate boundedness, where an additional condition
that A(t) being bounded on ℜ+ is used.

Next, we provide an example where A(t) is unbounded on ℜ+ and the
result in Theorem 10.2.1(D) is not true; that is, the solutions are uniformly
ultimately bounded, but ϕ = 0 is not uniformly stable (hence not uniformly
asymptotically stable).

Example 10.2.2 Consider the scalar linear differential equation

x′(t) = a(t)x(t),

where a(t) is given in Figure 10.2 and is continuous, and for i = 0, 1, 2, · · · ,
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(a). a(i) = 0; a(t) > 0 for t ∈ (2i, 2i+1); a(t) < 0 for t ∈ (2i+1, 2i+2).

(b).
∫ 2i+1
2i a(s)ds = i+ 1;

∫ 2i+2
2i+1 a(s)ds = −(2i+ 3).

a(t)

0 1

1

2

2

3

3 t

Figure 10.2: The function a(t)

This example is formulated from an exercise in Burton [1985] where no
solution is given. Since several cases should be considered, we provide a
detailed analysis here. Now, the solutions are given by

x(t, t0, x0) = x0 exp[

∫ t

t0
a(s)ds], t ≥ t0.

To get the uniform ultimate boundedness, we let B = 1 and need to
show that for any B1 > 0, there exists a T = T (B1) > 0 such that {|x0| ≤
B1, t0 ≥ 0, t ≥ t0 + T} imply

|x(t, t0, x0)| = |x0 exp[
∫ t

t0
a(s)ds]| ≤ B1 exp[

∫ t

t0
a(s)ds] ≤ 1 = B,

or equivalently, ∫ t

t0
a(s)ds ≤ ln

1

B1
, t0 ≥ 0, t ≥ t0 + T. (2.8)

To this end, observe from the condition (b) that,∫ 2i+3

2i
a(s)ds =

∫ 2i+1

2i
a(s)ds+

∫ 2i+2

2i+1
a(s)ds+

∫ 2i+3

2i+2
a(s)ds

= (i+ 1)− (2i+ 3) + (i+ 1 + 1) = 0, (2.9)
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and ∫ 2k+3

2k+1
a(s)ds =

∫ 2k+2

2k+1
a(s)ds+

∫ 2k+3

2k+2
a(s)ds

= −(2k + 3) + (k + 1 + 1) = −(k + 1). (2.10)

Then, from (2.9) and (2.10),∫ 2i+2m+1

2i
a(s)ds =

∫ 2i+3

2i
a(s)ds+

∫ 2i+5

2i+3
a(s)ds+ · · ·+

∫ 2i+2m+1

2i+2m−1
a(s)ds

= 0 +

∫ 2(i+1)+3

2(i+1)+1
a(s)ds+ · · ·+

∫ 2(i+m−1)+3

2(i+m−1)+1
a(s)ds

= −(i+ 1 + 1)− (i+ 2 + 1)− · · · − (i+m− 1 + 1)

= −(i+ 2)− (i+ 3)− · · · − (i+m). (2.11)

Thus, for any B1 > 0, we choose N = N(B1) > 3 such that

−2− 3− · · · −N ≤ ln
1

B1
,

and define T = T (N) = T (B1) = 2N + 1. Then for t0 ≥ 0 and t ≥ t0 + T
we have t0 ∈ [2i, 2i + 1) or t0 ∈ [2i + 1, 2i + 2) for some i = 0, 1, 2, · · · , and
t ∈ [2s, 2s+ 1) or t ∈ [2s+ 1, 2s+ 2) for some s = 0, 1, 2, · · · .

Case 1: t0 ∈ [2i+1, 2i+2), t ∈ [2s+1, 2s+2) for some i ≥ 0 and s ≥ 0.
Now, from the condition (a),∫ t

t0
a(s)ds ≤

∫ 2s+1

2i+2
a(s)ds. (2.12)

Since t−t0 ≥ T = 2N+1, one has (2s+2)−(2i+1) ≥ t−t0 ≥ T = 2N+1,
or s− i ≥ N . Then from (2.11) and (2.12), we obtain∫ t

t0
a(s)ds ≤

∫ 2s+1

2i+2
a(s)ds =

∫ 2(i+1)+2(s−i−1)+1

2(i+1)
a(s)ds

= −(i+ 1 + 2)− (i+ 1 + 3)− · · · − (i+ 1 + s− i− 1)

≤ −(i+ 1 + 2)− (i+ 1 + 3)− · · · − (i+ 1 +N − 1)

≤ −2− 3− · · · −N ≤ ln
1

B1
, (2.13)

therefore, (2.8) is true.
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Case 2: t0 ∈ [2i, 2i+1), t ∈ [2s, 2s+1) for some i ≥ 0 and s ≥ 0. Now,
from the condition (a),∫ t

t0
a(s)ds ≤

∫ 2s+1

2i
a(s)ds. (2.14)

Since t− t0 ≥ T = 2N +1, one has (2s+1)− (2i) ≥ t− t0 ≥ T = 2N +1,
or s− i ≥ N . Then, as

∫ t
2k+1 a(s)ds ≤ 0 for t ≥ 2k+1, we have, from (2.11)

and (2.14),∫ t

t0
a(s)ds ≤

∫ 2s+1

2i
a(s)ds =

∫ 2i+2N+1

2i
a(s)ds+

∫ 2s+1

2i+2N+1
a(s)ds

≤
∫ 2i+2N+1

2i
a(s)ds = −(i+ 2)− (i+ 3)− · · · − (i+N)

≤ −2− 3− · · · −N ≤ ln
1

B1
. (2.15)

Case 3: t0 ∈ [2i + 1, 2i + 2), t ∈ [2s, 2s + 1) for some i ≥ 0 and s ≥ 0.
Now, from the condition (a),∫ t

t0
a(s)ds ≤

∫ 2s+1

2i+2
a(s)ds. (2.16)

Since t−t0 ≥ T = 2N+1, one has (2s+1)−(2i+1) ≥ t−t0 ≥ T = 2N+1,
or s− i ≥ N + 1

2 . As s− i is an integer, we must have s− i ≥ N + 1. From
(2.11) and (2.16),∫ t

t0
a(s)ds ≤

∫ 2s+1

2i+2
a(s)ds =

∫ 2(i+1)+2(s−i−1)+1

2(i+1)
a(s)ds

= −(i+ 1 + 2)− (i+ 1 + 3)− · · · − (i+ 1 + s− i− 1)

≤ −(i+ 1 + 2)− (i+ 1 + 3)− · · · − (i+ 1 +N)

≤ −2− 3− · · · −N ≤ ln
1

B1
. (2.17)

Case 4: t0 ∈ [2i, 2i + 1), t ∈ [2s + 1, 2s + 2) for some i ≥ 0 and s ≥ 0.
This case is similar to Case 3 and is left as an exercise.

From the above, we see that (2.8) is true for all cases, thus we have the
uniform ultimate boundedness. To see that ϕ = 0 is not uniformly stable,
we only need to note that

lim
i→∞

exp[

∫ 2i+1

2i
a(s)ds] = ∞. ♠ (2.18)
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Remark 10.2.3 According to Theorem 10.2.1(B), the solutions in Exam-
ple 10.2.2 are not uniformly bounded since the zero solution is not uniformly
stable. Therefore, Example 10.2.2 is also an example where the solutions
are uniformly ultimately bounded, but not uniformly bounded. Compare
this case with Theorem 10.1.3 (which says that if a Lipschitz condition is
satisfied and if the zero or some constants are solutions, then uniform ul-
timate boundedness implies uniform boundedness). We find for Example
10.2.2 that the zero is indeed a solution, but a weak Lipschitz condition,
rather than a Lipschitz condition, is satisfied, which is the reason why the
solutions are not uniformly bounded. Example 10.2.2 also indicates that in
general, the Lipschitz condition in Theorem 10.1.3 cannot be reduced to a
weak Lipschitz condition.

Remark 10.2.4 The second conclusion in Theorem 10.2.1(D) reveals the
relationship between uniform ultimate boundedness and uniform asymptotic
stability for linear homogeneous differential equations. Moreover, from Ex-
ample 10.2.2, uniform ultimate boundedness does not imply uniform asymp-
totic stability if A(t) is unbounded. Therefore, the condition that A(t) being
bounded in Theorem 10.2.1(D) is probably the best condition.

Next, we illustrate that for nonlinear differential equations, boundedness
and stability are not equivalent concepts.

Example 10.2.5 Consider the scalar nonlinear differential equation

x′ = −x+ x2,

which is given as Example 5.3.5 in Chapter 5, from where we know that
ϕ = 0 is uniformly asymptotically stable, but for x0 > 1, x(t, 0, x0) → ∞
as t ↗ ln[x0/(x0 − 1)]. Therefore the solutions of x′ = −x + x2 are not
equi-bounded. See Figure 10.3.

Next, consider the scalar nonlinear differential equation

x′ = x(1− x)(1 + x).

First, x = −1, x = 0, x = 1 are three constant solutions. For x > 1, x′ =
x(1−x)(1+x) < 0, thus the solutions are decreasing when x(0) > 1. Similar
observation can be made for x ∈ (0, 1), x ∈ (−1, 0), and x < −1 to come up
with the following solutions in Figure 10.4.

Now we find that the solutions are equi-bounded, but ϕ = 0 is not stable.
♠
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Figure 10.3: The solutions of Example 10.2.5 are not equi-bounded

Similar to the study of stabilities, the results concerning the boundedness
of equations with linear or nonlinear perturbations can also be derived.

Theorem 10.2.6 Assume that A(t) is continuous on ℜ+. If the solutions
of Eq. (2.3) are uniformly bounded, and if the continuous function f(t)
satisfies

∫∞
0 |f(t)|dt <∞, then the solutions of

x′(t) = A(t)x(t) + f(t) (2.19)

are also uniformly bounded.

Proof. First, since A(t) and f(t) are continuous, existence and uniqueness
of the solutions for Eq. (2.19) is guaranteed. Then, for U being the funda-
mental matrix solution of Eq. (2.3), the solutions of Eq. (2.19) are given by
the variation of parameters formula

x(t) = U(t, t0)x(t0) +

∫ t

t0
U(t, s)f(s)ds, t ≥ t0 ≥ 0. (2.20)

From Theorem 10.2.1, uniform boundedness of the solutions of Eq. (2.3)
implies that there is an (independent) constant C > 1 such that |U(t, t0)| ≤
C, 0 ≤ t0 ≤ t <∞. Therefore, we have

|x(t)| ≤ C|x(t0)|+
∫ t

t0
C|f(s)|ds
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Figure 10.4: The solutions of x′ = x(1− x)(1 + x)

≤ C|x(t0)|+ C

∫ ∞

0
|f(s)|ds, t ≥ t0 ≥ 0. (2.21)

Now, for any B1 > 0, we can choose B2 = CB1+C
∫∞
0 |f(s)|ds = B2(B1),

such that {|x(t0)| ≤ B1, t ≥ t0 ≥ 0} imply |x(t)| ≤ B2. Thus the solutions
of Eq. (2.19) are uniformly bounded. This completes the proof. ♠

The proofs of the following results are left as exercises.

Theorem 10.2.7 Assume that A(t) is continuous on ℜ+. If the solutions
of Eq. (2.3) are uniformly bounded, and if the n × n continuous matrix
function B(t) satisfies

∫∞
0 |B(t)|dt <∞, then the solutions of

x′(t) = A(t)x(t) +B(t)x(t) = [A(t) +B(t)]x(t) (2.22)

are also uniformly bounded. ♠

Theorem 10.2.7.a Assume that A(t) is continuous on ℜ+. If the so-
lutions of Eq. (2.3) are uniformly bounded, and if the continuous function
f(t, x) satisfies a weak Lipschitz condition in x and |f(t, x)| ≤ b(t)|x|, where
b(t) ≥ 0 satisfies

∫∞
0 b(t)dt <∞, then the solutions of

x′(t) = A(t)x(t) + f(t, x(t)) (2.23)

are also uniformly bounded. ♠
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The previous statements concern uniform boundedness. For uniform
ultimate boundedness, we have

Theorem 10.2.8 Assume that A(t) is continuous on ℜ+. If the zero so-
lution of Eq. (2.3) is uniformly asymptotically stable, (or if the solutions
of Eq. (2.3) are uniformly ultimately bounded and A(t) is bounded on ℜ+;
see Theorem 10.2.1(D)), and if the n × n continuous matrix function B(t)
satisfies ∫ t

t0
|B(s)|ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0, (2.24)

for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the solutions of Eq. (2.22) are uniformly ultimately bounded.

♠

Theorem 10.2.8.a Assume that A(t) is continuous on ℜ+. If the zero
solution of Eq. (2.3) is uniformly asymptotically stable, (or if the solutions
of Eq. (2.3) are uniformly ultimately bounded and A(t) is bounded on ℜ+;
see Theorem 10.2.1(D)), and if the continuous function f(t, x) satisfies a
weak Lipschitz condition in x and |f(t, x)| ≤ b(t)|x|, where b(t) ≥ 0 satisfies
(2.24), that is ∫ t

t0
b(s)ds ≤ m(t− t0) + r, t ≥ t0 ≥ 0,

for some positive constants m and r, then there is an m0 > 0 such that if
m ≤ m0, then the solutions of Eq. (2.23) are uniformly ultimately bounded.

♠

The following is a result concerning uniform boundedness and uniform
ultimate boundedness for nonlinear perturbations.

Theorem 10.2.9 Assume that A(t) is continuous on ℜ+. If the zero solu-
tion of Eq. (2.3) is uniformly asymptotically stable, (or if the solutions of
Eq. (2.3) are uniformly ultimately bounded and A(t) is bounded on ℜ+; see
Theorem 10.2.1(D)), and if the continuous function f(t, x) satisfies a weak
Lipschitz condition in x and |f(t, x)| ≤ M for some constant M > 0, then
the solutions of Eq. (2.23) are uniformly bounded and uniformly ultimately
bounded.
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Proof. The solutions of Eq. (2.23) are given by

x(t) = U(t, t0)x(t0) +

∫ t

t0
U(t, s)f(s, x(s))ds, t ≥ t0 ≥ 0. (2.25)

From Theorem 9.2.1 in Chapter 9, uniform asymptotic stability of the
zero solution of Eq. (2.3) implies that there are (independent) constants
C > 1 and α > 0 such that |U(t, t0)| ≤ Ce−α(t−t0). Then,

|x(t)| ≤ Ce−α(t−t0)|x(t0)|+
∫ t

t0
Ce−α(t−s)|f(s, x(s))|ds

≤ Ce−α(t−t0)|x(t0)|+
∫ t

0
Ce−α(t−s)Mds

≤ Ce−α(t−t0)|x(t0)|+
CM

α
, t ≥ t0 ≥ 0. (2.26)

Now, we can let B = 1 + CM
α , such that for any B1 > 1, we choose

T = T (B1) > 0 from Ce−αTB1 = 1. Then {|x(t0)| ≤ B1, t0 ≥ 0, t ≥ t0 + T}
imply

|x(t)| ≤ Ce−αTB1 +
CM

α
= 1 +

CM

α
= B.

This verifies uniform ultimate boundedness. The inequality (2.26) also im-
plies uniform boundedness. This completes the proof. ♠

Exercises 10.2

1. Give the details for Case 4 in Example 10.2.2.

2. In Example 10.2.2, provide some details why ϕ = 0 is not uniformly
stable.

3. Derive Figure 10.4.

4. Prove Theorem 10.2.7.

5. Prove Theorem 10.2.7.a.

6. Prove Theorem 10.2.8.

7. Prove Theorem 10.2.8.a.
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10.3 Linear Equations with Constant Coefficients

In this section, we study the linear differential equation with constant coef-
ficients,

x′(t) = Ax(t) + f(t), x(t0) = x0, t ≥ t0 ≥ 0, x ∈ ℜn, (3.1)

where f(t) is continuous on ℜ+ = [0,∞).

Using the results from Chapter 3, we know that the unique solution of
Eq. (3.1) is given by the variation of parameters formula

x(t) = e(t−t0)A
[
x0 +

∫ t

t0
{e(s−t0)A}−1f(s)ds

]
= e(t−t0)Ax0 +

∫ t

t0
e(t−s)Af(s)ds, t ≥ t0, (3.2)

with the fundamental matrix solution of Eq. (3.1) (when f = 0) given by
U(t, t0) = e(t−t0)A.

First we study the linear homogeneous differential equation

x′(t) = Ax(t), (3.3)

where the unique solution is given by x(t) = e(t−t0)Ax0 for the initial data
(t0, x0).

Now, A is a constant matrix and hence is bounded, therefore, based on
Theorem 10.2.1(D), we have the following result.

Theorem 10.3.1 For Eq. (3.3), the solutions are uniformly ultimately
bounded if and only if ϕ = 0 is uniformly asymptotically stable.

With Theorem 10.3.1, we conclude that boundedness properties and sta-
bility properties are equivalent for linear homogeneous and autonomous dif-
ferential equations. Therefore, we can use the eigenvalues of matrix A to
determine the boundedness properties.

Theorem 10.3.2 Let λ be a complex number and denote by R(λ) the real
part of λ. Then for Eq. (3.3),

(A). the following statements are equivalent:

(1). The solutions are equi-bounded or uniformly bounded;
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(2). For each eigenvalue λ of the matrix A, either R(λ) < 0, or R(λ) =
0 but in this case λ appears only in matrices Ji (in the Jordan
canonical form for A) such that Ji is a 1× 1 matrix;

(3). There is an (independent or generic) constant M > 1 such that

|etA| ≤M, 0 ≤ t <∞. (3.4)

(B). the following statements are equivalent:

(1). The solutions are equi-ultimately bounded or uniformly ultimately
bounded;

(2). Each eigenvalue of the matrix A has a negative real part;

(3). There are (independent or generic) constants M > 1 and α > 0
such that

|etA| ≤Me−αt, 0 ≤ t <∞. (3.5)

Example 10.3.3 Let’s revisit Example 5.2.2 in Chapter 5 and look at the
boundedness properties for the equations with the following matrices

A1 =

[
0 0
0 0

]
, A2 =

[
0 1
0 0

]
, A3 =

[
−1 1
0 −1

]
, A4 =

[
−1 0
0 −1

]
.

The matrix A1 has a repeated eigenvalue 0, and the corresponding J0
in the Jordan canonical form are two 1 × 1 matrices, thus the solutions of
the linear equation with the coefficient matrix A1 are uniformly bounded.
The matrix A2 has a repeated eigenvalue 0, and the corresponding J0 in
the Jordan canonical form is A2 itself, a 2 × 2 matrix, thus the solutions
are not equi-bounded. For the matrix A3 or A4, the solutions are uniformly
bounded and uniformly ultimately bounded because the eigenvalues are all
negative. ♠

Exercises 10.3

1. If every solution of x′(t) = Ax(t) is bounded and if f(t) is continuous
and

∫∞
0 |f(t)|dt <∞, then show that every solution of x′(t) = Ax(t)+

f(t) is also bounded.

2. If every solution of x′(t) = Ax(t) is bounded and if B(t) is continuous
and

∫∞
0 |B(t)|dt <∞, then show that every solution of x′(t) = Ax(t)+

B(t)x(t) is also bounded.
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3. In x′(t) = Ax(t) + f(t), if |f(t)| ≤ Meat, t ≥ t0, for some M ≥ 0 and
a ∈ ℜ, then show that for some M1 ≥ 0 and a1 ∈ ℜ,

|x(t)|, |x′(t)| ≤M1e
a1t, t ≥ t0.

4. In x(n)(t) + b1x
(n−1)(t) + · · ·+ anx(t) = f(t) ∈ ℜ, if |f(t)| ≤Meat, t ≥

t0, for someM ≥ 0 and a ∈ ℜ, show that for someM1 ≥ 0 and a1 ∈ ℜ,

|x(i)(t)| ≤M1e
a1t, i = 0, 1, · · · , n, t ≥ t0.

5. For the linear differential equations with constant coefficients, derive
the boundedness results with linear or nonlinear perturbations.

10.4 Linear Equations with Periodic Coefficients

In this section, we study the linear differential equation

x′(t) = A(t)x(t) + f(t), x(t0) = x0, t ≥ t0 ≥ 0, x ∈ ℜn, (4.1)

where A(t), f(t) are continuous on ℜ+ = [0,∞), and A(t + T ) = A(t), t ∈
ℜ+, for some constant T > 0.

We first study the linear homogeneous equation

x′(t) = A(t)x(t). (4.2)

From the Floquet theory in Chapter 3, we know that a constant matrix
C and a nonsingular continuous T -periodic matrix P (t) exist, such that
x(t) = P (t)y(t) transforms Eq. (4.2) into

y′(t) = Cy(t). (4.3)

Since P (t) is periodic and continuous, P (t) is bounded. Thus the trans-
formation x(t) = P (t)y(t) will reduce the boundedness properties of Eq.
(4.2) to those of Eq. (4.3), for which the results from the previous section
can be applied. Therefore we have the following results based on Theorem
10.3.2.

Theorem 10.4.1 Let λ be a complex number and denote by R(λ) the real
part of λ. Then for Eq. (4.2),

(A). the following statements are equivalent:
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(1). The solutions are equi-bounded or uniformly bounded;

(2). For each eigenvalue λ of the matrix C, either R(λ) < 0, or R(λ) =
0 but in this case λ appears only in matrices Ji (in the Jordan
canonical form for C) such that Ji is a 1× 1 matrix;

(3). There is an (independent or generic) constant M > 1 such that

|etC | ≤M, 0 ≤ t <∞.

(B). the following statements are equivalent:

(1). The solutions are equi-ultimately bounded or uniformly ultimately
bounded;

(2). Each eigenvalue of the matrix C has a negative real part;

(3). There are (independent or generic) constants M > 1 and α > 0
such that

|etC | ≤Me−αt, 0 ≤ t <∞. ♠ (4.4)

These results can also be stated using characteristic exponents and char-
acteristic multipliers, which are the eigenvalues of the matrices C and eTC

respectively. See the related results in Chapter 3.

Exercises 10.4

1. For the linear differential equations with periodic coefficients, derive
the boundedness results with linear or nonlinear perturbations.

10.5 Liapunov’s Method for General Equations

In this section, we study boundedness of solutions for the nonlinear differ-
ential equation

x′(t) = f(t, x(t)) (5.1)

in D = [0,∞) × ℜn. We assume that for any (t0, x0) ∈ [0,∞) × ℜn, Eq.
(5.1) has a unique solution x(t, t0, x0) existing on [t0, ∞) with x(t0) = x0.

Note that to derive boundedness, we only need to control the solutions
when they become large, so we will see that in most cases, the conditions
on the wedges and on the Liapunov functions are only imposed for |x| ≥M ,
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where M > 0 may be a big number. Of course, if those conditions are
satisfied for all x ∈ ℜn, then they are automatically satisfied for |x| ≥ M
with any M > 0. Let

H = {x ∈ ℜn : |x| ≥M},

where M > 0 is a constant, and let Wi be the scalar wedges as defined in
Chapter 9.

Theorem 10.5.1 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(|x|) ≤ V (t, x) with W1(r) → ∞ as r → ∞, and

(b). V ′
(5.1)(t, x) ≤ 0.

If there is a constant P > 0 such that V (t, x) ≤ P for |x| = M and t ≥ 0
(M is from the definition of the set H), then every solution of Eq. (5.1) is
bounded.

Proof. Let x(t) = x(t, t0, x0) be any given solution, then we need to prove
that x(t) is bounded. Now, V (t0, x0) is fixed and hence, asW1(r) → ∞, r →
∞, there is an r > 0 such that V (t0, x0) ≤ W1(r). If |x(t)| ≤ M for t ≥ t0,
then x(t) is bounded. If |x(t)| ≥ M for t ≥ t0, then the conditions (a) and
(b) are satisfied, so we obtain

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0) ≤W1(r), (5.2)

where W1 is monotone, hence x(t) is bounded because |x(t)| ≤ r for t ≥ t0.
Finally, if there is an interval [t1, T ] such that |x(t1)| = M and |x(t)| ≥ M
on [t1, T ], then on this interval, the conditions (a) and (b) imply

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t1, x(t1)) ≤ P, (5.3)

therefore |x(t)| ≤ W−1
1 (P ) on [t1, T ]. This argument can be repeated on

any such interval [t1, T ], therefore, x(t) is also bounded in this case. This
completes the proof. ♠

Theorem 10.5.1 is a result for a single solution. When the set H in
Theorem 10.5.1 is replaced by ℜn, we have the following result for a set of
solutions.
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Theorem 10.5.2 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×ℜn,

(a). W1(|x|) ≤ V (t, x) with W1(r) → ∞ as r → ∞, and

(b). V ′
(5.1)(t, x) ≤ 0.

Then the solutions of Eq. (5.1) are equi-bounded.

Proof. For any t0 ≥ 0 and any B1 > 0, we need to find a B2 = B2(t0, B1) >
0 such that {|x0| ≤ B1, t ≥ t0} imply |x(t, t0, x0)| ≤ B2. As V (t0, x)
is continuous in x, there is a K(t0, B1) > 0 such that |x| ≤ B1 implies
V (t0, x) ≤ K(t0, B1). Now, we can find B2 = B2(t0, B1) ≥ B1 such that
K(t0, B1) ≤W1(B2). Then for t ≥ t0 and |x0| ≤ B1,

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0) ≤ K(t0, B1) ≤W1(B2), (5.4)

hence |x(t, t0, x0)| ≤ B2 for t ≥ t0 and |x0| ≤ B1, this verifies equi-
boundedness and completes the proof. ♠

Similar to the results in Chapter 9, to get uniform boundedness, an
additional condition is needed to reduce the dependence on t0.

Theorem 10.5.3 Assume there is a function V (t, x) that is continuous and
satisfies a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(|x|) ≤ V (t, x) ≤W2(|x|) with W1(r) → ∞ as r → ∞, and

(b). V ′
(5.1)(t, x) ≤ 0.

Then the solutions of Eq. (5.1) are uniformly bounded.

Proof. For any B1 ≥ M (M is from the definition of the set H), we
need to find a B2 = B2(B1) > 0 such that {|x0| ≤ B1, t ≥ t0 ≥ 0} imply
|x(t, t0, x0)| ≤ B2. Now, we can find a B2 = B2(B1) ≥ B1 such that
W2(B1) ≤ W1(B2). Let t0 ≥ 0 and |x0| ≤ B1. If |x(t, t0, x0)| ≤ B1 for
t ≥ t0, then |x(t, t0, x0)| ≤ B2 for t ≥ t0. Next, if there is an interval [t1, T ]
such that |x(t1)| = B1 and |x(t)| ≥ B1 on [t1, T ], then on this interval,
|x(t)| ≥ B1 ≥M , thus the conditions (a) and (b) imply

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t1, x(t1)) ≤W2(|x(t1)|) =W2(B1) ≤W1(B2),
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hence |x(t, t0, x0)| ≤ B2 for t ∈ [t1, T ]. This argument can be repeated on
any such interval [t1, T ], therefore, |x(t)| ≤ B2 for t ≥ t0 and |x0| ≤ B1, this
verifies uniform boundedness and completes the proof. ♠

To obtain ultimate boundedness, the condition V ′
(5.1)(t, x) ≤ 0 will be

replaced by some stronger conditions.

Theorem 10.5.4 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and,

(a). W1(|x|) ≤ V (t, x) is satisfied on [0,∞) × H, with W1(r) → ∞ as
r → ∞, and

(b). V ′
(5.1)(t, x) ≤ −cV (t, x) is satisfied on [0,∞) × ℜn, where c > 0 a

constant.

Then the solutions of Eq. (5.1) are equi-ultimately bounded.

Proof. Choose B =M (M is from the definition of the set H). We need to
show that for any t0 ≥ 0 and any B1 > 0, there exists a T = T (t0, B1) > 0
such that {|x0| ≤ B1, t ≥ t0+T} imply |x(t, t0, x0)| ≤ B. Now let t0 ≥ 0 and
|x0| ≤ B1. As V (t0, x) is continuous in x, there is a K(t0, B1) > W1(B) > 0
such that |x| ≤ B1 implies V (t0, x) ≤ K(t0, B1). From the condition (b), it
follows that

V (t, x(t)) ≤ V (t0, x0)e
−c(t−t0) ≤ K(t0, B1)e

−c(t−t0).

Solve T = T (t0, B1) > 0 from K(t0, B1)e
−cT =W1(B), that is, let

T =
1

c
ln
K(t0, B1)

W1(B)
.

Now, if |x(t∗, t0, x0)| > B for some t∗ ≥ t0 + T , then there is an interval
[t1, T1] with t1 > t0+T such that |x(t)| = |x(t, t0, x0)| > B =M on [t1, T1].
Then on this interval, the conditions (a) and (b) imply

W1(B) <W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t0, x0)e
−c(t−t0) ≤ K(t0, B1)e

−c(t−t0)

< K(t0, B1)e
−cT =W1(B), (5.5)

which is a contradiction. Therefore, |x(t, t0, x0)| ≤ B for t ≥ t0 + T and
|x0| ≤ B1, this verifies equi-ultimate boundedness and completes the proof.

♠

Finally, let’s use an additional condition to reduce the dependence on t0.
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Theorem 10.5.5 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(|x|) ≤ V (t, x) ≤W2(|x|) with W1(r) → ∞ as r → ∞, and

(b). V ′
(5.1)(t, x) ≤ −W3(|x|).

Then the solutions of Eq. (5.1) are uniformly bounded and uniformly ulti-
mately bounded.

Proof. First, we have uniform boundedness from Theorem 10.5.3. Next,
we need to find a constant B > 0 such that for any B1 ≥ M (M is from
the definition of the set H), there exists a T = T (B1) > 0 such that {|x0| ≤
B1, t0 ≥ 0, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ B. The following is similar to
the proof of a corresponding result in Chapter 9. For any solution x(t) =
x(t, t0, x0) with |x0| ≤ B1 and t0 ≥ 0, as long as |x(t)| > M for t ≥ t0, then,
as V ′(t, x(t)) ≤ −W3(|x(t)|) for some wedge W3, we have

0 ≤ V (t, x(t)) ≤ V (t0, x0)−
∫ t

t0
W3(|x(s)|)ds

< W2(|x0|)−W3(M)(t− t0)

≤ W2(B1)−W3(M)(t− t0), (5.6)

which leads to a contradiction when W2(B1)−W3(M)(t− t0) = 0, or when

t = t0 +
W2(B1)

W3(M)
def
= t0 + T,

(
T =

W2(B1)

W3(M)

)
(5.7)

where T = T (B1). Therefore, there is a t ∈ [t0, t0 + T ] such that |x(t)| =
|x(t, t0, x0)| ≤ M . Now, we choose a constant B > M such that W2(M) ≤
W1(B), and claim that {|x0| ≤ B1, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ B. If
this is not true, then there is a t∗ ≥ t0 + T with |x(t∗)| > B > M . As
|x(t)| ≤ M, t ≤ t0 + T ≤ t∗, and t ̸= t∗, there is a t1, t ≤ t1 < t∗, such that
|x(t1)| =M and |x(t)| ≥M on [t1, t

∗]. Now, on this interval, the conditions
(a) and (b) imply, for t ∈ [t1, t

∗],

W1(|x(t)|) ≤ V (t, x(t)) ≤ V (t1, x(t1)) ≤W2(|x(t1)|) =W2(M) ≤W1(B).

In particular, W1(B) < W1(|x(t∗)|) ≤ W1(B), a contradiction. Therefore,
{|x0| ≤ B1, t0 ≥ 0, t ≥ t0 + T} imply |x(t, t0, x0)| ≤ B, which verifies
uniform ultimate boundedness and completes the proof. ♠
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Remark 10.5.6 Note that W1(|x|) ≤ V (t, x) and V ′
(5.1)(t, x) ≤ −cV (t, x)

imply V ′
(5.1)(t, x) ≤ −cW1(|x|), and cW1 is a scalar wedge when c > 0.

Thus the conditions in Theorem 10.5.4 are stronger than the conditions that
V (t, x) and −V ′

(5.1)(t, x) are positive definite.

Finally, we look at how to use Liapunov’s method to derive boundedness.
Note the difference that for the stabilities of the zero solution, we construct
Liapunov functions for small |x|; while for boundedness, we construct Lia-
punov functions for large |x|.

Example 10.5.7 We modify Example 5.6.7 in Chapter 5 and consider the
scalar differential equation

u′′ + u′ + g(u) = f(t), (5.8)

for a continuous and bounded function f(t). As we did in Example 5.6.7,
we still try the Liapunov function

V (t, x1, x2) =
1

2
x22 +

1

2
[x1 + x2]

2 + 2

∫ x1

0
g(s)ds, (5.9)

where x1 = u and x2 = u′. This example is similar to Example 9.3.11 in
Chapter 9 since it is not easy to construct the scalar wedges as defined there
without further conditions on the function g. ♠

Accordingly, we ask whether the constructions of scalar wedges from
functions defined on ℜn (as given in Chapter 9 for stabilities) can also be
extended here for boundedness. Note that for the stabilities of the zero
solution, the wedges for |x| ≤ 1 are good enough. However, for boundedness,
we need to construct wedges for |x| ≥M , whereM > 0 may be a big number.
Thus, the method of constructing a wedge in Chapter 9 related to positive
definiteness is no longer valid for boundedness.

Let’s make the following modification: Assume that W : {x ∈ ℜn :
|x| ≥ M} → [0,∞), where M > 0 is a constant, W (x) > 0 for x ̸= 0,
lim|x|→∞W (x) = ∞, and W (x) ≤ V (t, x) for some function V (t, x). Define

α(r) = min
r≤|x|

W (x), (5.10)

such that α : [M,∞) → (0,∞) is nondecreasing, and limr→∞ α(r) = ∞.
Then, (see an exercise), a function ω1(r) can be constructed on [M,∞) →
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(0,∞) in such a way that ω1(r) ≤ α(r) and ω1 is continuous and strictly
increasing. Thus, if |x| ≥M , then

V (t, x) ≥W (x) ≥ min
|x|≤|p|

W (p) = α(|x|) ≥ ω1(|x|).

Moreover, if necessary, ω1(r) can be defined on [0,∞) with ω1(0) = 0, and
hence bocomes a scalar wedge. Note that the method of constructing a
wedge in Chapter 9 related to decrescentness is still valid for boundedness
because the function is defined on ℜ+.

Consequently, we can weaken the conditions in Theorems 10.5.1–10.5.5
by replacing the scalar wedges with the ℜn-wedges as defined in Chapter 9.
That is, in the following theorems, we can let Wi be the ℜn-wedges. We still
denote H = {x ∈ ℜn : |x| ≥M} for a constant M > 0.

Theorem 10.5.8 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(x) ≤ V (t, x) with W1(x) → ∞ as |x| → ∞, and

(b). V ′
(5.1)(t, x) ≤ 0.

If there is a constant P > 0 such that V (t, x) ≤ P for |x| = M and t ≥ 0,
then every solution of Eq. (5.1) is bounded. ♠

Theorem 10.5.9 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×ℜn,

(a). W1(x) ≤ V (t, x) with W1(x) → ∞ as |x| → ∞, and

(b). V ′
(5.1)(t, x) ≤ 0.

Then the solutions of Eq. (5.1) are equi-bounded. ♠

Theorem 10.5.10 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(x) ≤ V (t, x) ≤W2(x) with W1(x) → ∞ as |x| → ∞, and

(b). V ′
(5.1)(t, x) ≤ 0.

Then the solutions of Eq. (5.1) are uniformly bounded. ♠
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Theorem 10.5.11 Assume there exists a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and,

(a). W1(x) ≤ V (t, x) is satisfied on [0,∞)×H, with W1(x) → ∞ as |x| →
∞, and

(b). V ′
(5.1)(t, x) ≤ −cV (t, x) is satisfied on [0,∞) × ℜn, where c > 0 a

constant.

Then the solutions of Eq. (5.1) are equi-ultimately bounded. ♠

Theorem 10.5.12 Assume there is a function V (t, x) that is continuous
and satisfies a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(x) ≤ V (t, x) ≤W2(x) with W1(x) → ∞ as |x| → ∞, and

(b). V ′
(5.1)(t, x) ≤ −W3(x).

Then the solutions of Eq. (5.1) are uniformly bounded and uniformly ulti-
mately bounded. ♠

Example 10.5.13 Let’s revisit Example 10.5.7, and consider

V (t, x) = V (t, x1, x2) =
1

2
x22 +

1

2
[x1 + x2]

2 + 2

∫ x1

0
g(s)ds, (5.11)

where x = (x1, x2) ∈ ℜ2. Now, if we define

W (x) =W (x1, x2) =
1

2
x22 +

1

2
[x1 + x2]

2 + 2

∫ x1

0
g(s)ds, (5.12)

then W (0) = 0, W (x) > 0 for x ̸= 0, and W (x) → ∞ as |x| → ∞. Thus
V (t, x) is ℜ2-positive definite and ℜ2-decrescent. Next, we have

V ′
(5.8)(t, x) = x2x

′
2 + [x1 + x2][x

′
1 + x′2] + 2g(x1)x

′
1

= x2[−x2 − g(x1) + f(t)] + [x1 + x2]x2

+[x1 + x2][−x2 − g(x1) + f(t)] + 2g(x1)x2

= −x22 − x1g(x1) + (x1 + 2x2)f(t). (5.13)

Now, the function f is bounded, thus to get an ℜ2-wedge for V ′
(5.8)(t, x),

we assume further that

lim
x1→∞

g(x1) > 2max
t∈ℜ

|f(t)|.
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Then,

lim
x2
1+x2

2→∞

|(x1 + 2x2)f(t)|
x1g(x1) + x22

≤ lim
x2
1+x2

2→∞

|x1f(t)|
x1g(x1) + x22

+ lim
x2
1+x2

2→∞

|2x2f(t)|
x1g(x1) + x22

≤ 1

2
. (5.14)

Therefore, there is anM > 0 such that |(x1+2x2)f(t)| ≤ 1
2 [x1g(x1)+x

2
2]

when |x| ≥M . Hence, if |x| ≥M , then

V ′
(5.8)(t, x) ≤ −x22 − x1g(x1) + (x1 + 2x2)f(t)

≤ −1

2
[x1g(x1) + x22], (5.15)

where W1(x) =
1
2 [x1g(x1) + x22] is an ℜ2-wedge. Thus, Theorem 10.5.12 can

be applied to derive uniform boundedness and uniform ultimate bounded-
ness. ♠

The uniform boundedness and uniform ultimate boundedness in Example
10.5.13 is derived under the condition that limx1→∞ g(x1) > 2maxt∈ℜ |f(t)|.
However, the same conclusions can also be derived if we assume

lim
x1→∞

g(x1) > max
t∈ℜ

|f(t)|. (5.16)

See an exercise. Next, if we compare Eq. (5.8) in Example 10.5.7 (or Ex-
ample 10.5.13) with the general second-order differential equation (2.8) in
Chapter 1 derived using Newton’s second law of motion, we find for Eq. (5.8)
that the function f(t) is the externally applied force. Thus, the interpreta-
tion in physics for the condition (5.16) and the result in Example 10.5.13
is that if the restoring force, in terms of the function g, is greater than the
externally applied force, then the solutions will be uniformly bounded and
uniformly ultimately bounded.

Exercises 10.5

1. Verify that α(r) defined in (5.10) satisfies limr→∞ α(r) = ∞.

2. Verify that for α(r) defined in (5.10), a function ω1(r) can be con-
structed on [M,∞) → (0,∞) in such a way that ω1(r) ≤ α(r) and ω1

is continuous and strictly increasing.
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3. Prove Theorem 10.5.8.

4. Prove Theorem 10.5.9.

5. Prove Theorem 10.5.10.

6. Prove Theorem 10.5.11.

7. Prove Theorem 10.5.12.

8. For V (t, x) given in (5.11), one has

V (t, x1, x2) ≥
1

2
x22 +

1

2
[x21 + 2x1x2 + x22] =

1

2
x21 + x1x2 + x22. (5.17)

From 2|AB| ≤ A2 + B2 and let A =
√
rx1, B = x2√

r
for r > 0, one

obtains 2|x1x2| ≤ rx21 +
x2
2
r , or x1x2 ≥ − r

2x
2
1 − 1

2rx
2
2. Then,

V (t, x1, x2) ≥
1

2
x21 + x1x2 + x22 ≥ (

1

2
− r

2
)x21 + (1− 1

2r
)x22. (5.18)

Select r such that V is positive definite with a scalar wedge.

9. Verify that for the W (x) defined in (5.12), one has W (0) = 0, W (x) >
0 for x ̸= 0, and W (x) → ∞ as |x| → ∞.

10. Prove in Example 10.5.13 that

lim
x2
1+x2

2→∞

|(x1 + 2x2)f(t)|
x1g(x1) + x22

≤ 1

2
.

11. In Example 10.5.13, derive uniform boundedness and uniform ultimate
boundedness under the condition that limx1→∞ g(x1) > maxt∈ℜ |f(t)|.

12. When the function V is autonomous, state and prove the correspond-
ing results concerning boundedness properties without using the no-
tion of wedges. (Look at the corresponding results in Chapter 5 as a
reference.)



Chapter 11

Periodic Solutions

11.1 Introduction

So far, we have already seen some discussions about periodic solutions. For
example, for planar autonomous differential equations, when the origin is a
center, there are periodic orbits around the origin. These periodic orbits are
periodic solutions for planar autonomous differential equations. Examples
in applications include an undamped simple pendulum, where the pendulum
keeps “oscillating” indefinitely (that is, periodically) around the equilibrium
after being perturbed. Other models include radio circuits, temperature
distribution, or chemical and biological oscillations. Therefore, the study
of periodic solutions and their applications is a very important subject in
differential equations.

The importance of periodic solutions can also be seen from the Poincaré-
Bendixson theorem and the Lorenz system. That is, if there are some stable
periodic solutions, then typically other solutions will pile up at these stable
periodic solutions, such that the system will behave in an orderly fashion,
as stated in the Poincaré-Bendixson theorem. Otherwise, if a system has
bounded solutions but has no stable periodic solutions, then it is an indi-
cation that these bounded solutions may behave in a strange and chaotic
fashion. This can be seen from the Lorenz system.

Now, we study periodic solutions for the general differential equation

x′(t) = f(t, x(t)), t ≥ 0, (1.1)

499
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in D = [0,∞)×ℜn, where f(t, x) is continuous and satisfies at least a local
Lipschitz condition with respect to x on D. We assume, for simplicity, that
solutions start from t0 = 0. We also assume that for any x0 ∈ ℜn, Eq. (1.1)
has a unique solution x(t, 0, x0) existing on [0,∞) with x(0, 0, x0) = x0. In
order to obtain periodic solutions, it is also necessary to assume that the
function f is periodic in t, that is, there is a constant T > 0 such that

f(t+ T, x) = f(t, x),

for (t, x) ∈ D. Note that this includes the case when f is autonomous,
for which we may obtain periodic solutions with periods that are not pre-
determined. For example, for the planar autonomous differential equations
in Chapter 4, the solutions for Case (IIIb) are given by a1 cosβt+ a2 sinβt,
hence they are periodic of periods 2π

β , which are determined by β. Another
example of autonomous differential equations is an undamped simple pen-
dulum, where the period is determined by how far the pendulum is moved
away initially from the equilibrium.

To begin, we first give some basic results concerning the search of periodic
solutions.

Lemma 11.1.1 Assume that for a constant T > 0, f(t+T, x) = f(t, x) for
(t, x) ∈ D.

(a). If x(t) is a solution of Eq. (1.1), then so is x(t+ T ), t ≥ 0.

(b). Let x(t, 0, x0) be a solution of Eq. (1.1) with x(0, 0, x0) = x0. Then
x(t, 0, x0) is T -periodic if and only if x(T, 0, x0) = x0.

Proof. (a): Let y(t) = x(t+ T ), t ≥ 0. Then for t ≥ 0,

y′(t) = x′(t+ T ) = f(t+ T, x(t+ T )) = f(t, x(t+ T )) = f(t, y(t)),

thus x(t+ T ) is also a solution of Eq. (1.1).
(b): If x(t, 0, x0) is a T -periodic solution of Eq. (1.1), then x(T, 0, x0) =

x(0, 0, x0) = x0. On the other hand, if x(T, 0, x0) = x0, then, from (a), y(t) =
x(t + T, 0, x0) is also a solution of Eq. (1.1) with y(0) = x(T, 0, x0) = x0.
By uniqueness, y(t) = x(t, 0, x0), or x(t + T, 0, x0) = x(t, 0, x0), t ≥ 0, thus
x(t, 0, x0) is T -periodic. This completes the proof. ♠

Recall from Chapter 2 that a continuous function x(t, 0, x0) is a solution
of Eq. (1.1) if and only if

x(t) = x0 +

∫ t

0
f(s, x(s))ds, t ≥ 0. (1.2)
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Accordingly, we can define a mapping P : ℜn → ℜn such that for x0 ∈ ℜn

and for the unique solution x(t) = x(t, 0, x0) with x(0, 0, x0) = x0, define

P (x0) = x(T ) = x0 +

∫ T

0
f(s, x(s))ds, (1.3)

see Figure 11.1.

x
0

P(x
0
) x(T)

x

tT

x(t,0,x
0
)

Figure 11.1: The mapping P

Now, Lemma 11.1.1(b) indicates that Eq. (1.1) has a T -periodic solution
if and only if there exists an x0 ∈ ℜn such that P (x0) = x0; that is, the
mapping P has a fixed point. We formulate this as follows.

Lemma 11.1.2 Assume that for a constant T > 0, f(t + T, x) = f(t, x)
for (t, x) ∈ D. Then Eq. (1.1) has a T -periodic solution if and only if the
mapping P : ℜn → ℜn defined in (1.3) has a fixed point. ♠

Lemma 11.1.2 provides a very useful approach for deriving periodic solu-
tions since it reduces the search of periodic solutions to that of fixed points
of the mapping P , for which some well-known fixed point theorems from
functional analysis can be applied.

This chapter is organized as follows: In Section 2, we derive the existence
of periodic solutions for general linear differential equations. First, we derive
periodic solutions using the eigenvalues of U(T, 0), where U(t, s) is the fun-
damental matrix solution of linear homogeneous differential equations. Then
we derive periodic solutions from the bounded solutions. Periodic solutions
of linear differential equations with linear and nonlinear perturbations are
also given. In Section 3, we look at general nonlinear differential equations.



502 Chapter 11. Periodic Solutions

Since using eigenvalues is not applicable now, we extend the idea of deriving
periodic solutions using the boundedness. First, we present some Massera-
type results for one-dimensional and two-dimensional differential equations,
whose proofs are generally not extendible to higher dimensional cases. Then,
for general n-dimensional differential equations, we apply Horn’s fixed point
theorem to the mapping P defined by (1.3) and obtain fixed points, and
hence periodic solutions, under the assumption that the solutions are equi-
ultimate bounded.

Exercises 11.1

1. Prove Lemma 11.1.2.

2. Let P be a mapping. Prove that if for some positive integer m, the
mapping Pm has a unique fixed point, then P has a fixed point.

11.2 Linear Differential Equations

Here, we study the linear differential equation

x′(t) = A(t)x(t) + f(t), t ≥ 0, x ∈ ℜn, (2.1)

where A(t), f(t) are continuous on ℜ+ = [0,∞), and A(t+T ) = A(t), f(t+
T ) = f(t), t ≥ 0, for some constant T > 0.

Using the results from Chapter 3, we know that the unique solution of
Eq. (2.1) for the initial data (0, x0) is given by the variation of parameters
formula

x(t) = U(t, 0)
[
x0 +

∫ t

0
U−1(s, 0)f(s)ds

]
= U(t, 0)x0 +

∫ t

0
U(t, s)f(s)ds, t ≥ 0. (2.2)

First we study the linear homogeneous differential equation

x′(t) = A(t)x(t), (2.3)

where the unique solution is given by x(t) = U(t, 0)x0 for the initial data
(0, x0). Now, for the mapping P defined by (1.3) to have a fixed point x0,
we need

x0 = U(T, 0)x0, or [E − U(T, 0)]x0 = 0, (2.4)
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where E is the n × n identity or unit matrix. Thus we have the following
result, whose proof is left as an exercise.

Theorem 11.2.1 Let A(t) be continuous and T -periodic. Then Eq. (2.3)
has a nonzero T -periodic solution if and only if 1 is an eigenvalue of U(T, 0).

♠

For the nonhomogeneous differential equation (2.1), note that the zero
is not a solution when f ̸= 0. Therefore, any periodic solution of Eq. (2.1)
will be nonzero when f ̸= 0. Now, the mapping P has a fixed point x0 if
and only if

x0 = U(T, 0)x0 +

∫ T

0
U(T, s)f(s)ds, (2.5)

or

[E − U(T, 0)]x0 =

∫ T

0
U(T, s)f(s)ds. (2.6)

Accordingly, we have the following result.

Theorem 11.2.2 Let A(t) be continuous and T -periodic. Then Eq. (2.1)
has a T -periodic solution for any continuous and T -periodic function f if
and only if 1 is not an eigenvalue of U(T, 0).

Proof. If 1 is not an eigenvalue of U(T, 0), then the matrix [E −U(T, 0)] is
nonsingular. Hence for any continuous and T -periodic function f , (2.6) has
a unique solution x0, which is a fixed point of the mapping P . Therefore,
Lemma 11.1.2 can be applied to derive a periodic solution of Eq. (2.1).

On the other hand, assume that Eq. (2.1) has a T -periodic solution for
any continuous and T -periodic function f . For every y ∈ ℜn, let f(s) =
U(s, 0)yg(s) for s ∈ [0, T ], where g : [0, T ] → ℜ is continuous such that
g(0) = g(T ) = 0, and ∫ T

0
g(s)ds = 1.

Then f can be extended to become a T -periodic continuous function on ℜ
which we still denote by f . Now, Eq. (2.1) has a T -periodic solution for this
f , thus (2.6) has a solution x0 for this f . Therefore,

[E − U(T, 0)]x0 =

∫ T

0
U(T, s)f(s)ds
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=

∫ T

0
U(T, s)U(s, 0)yg(s)ds

=

∫ T

0
U(T, 0)yg(s)ds

= U(T, 0)y

∫ T

0
g(s)ds

= U(T, 0)y. (2.7)

Since U(T, 0) is nonsingular and y ∈ ℜn is arbitrary, the right-hand side
of (2.7) covers the whole ℜn when y takes all vectors in ℜn as values. Thus
the range of [E−U(T, 0)] is ℜn; therefore, [E−U(T, 0)] is nonsingular, hence
1 is not an eigenvalue of U(T, 0). This completes the proof. ♠

From the above proof we see that the periodic solution in Theorem 11.2.2
is uniquely determined, and we state it as follows.

Theorem 11.2.2.a Let A(t) be continuous and T -periodic. Then Eq. (2.1)
has a unique T -periodic solution for any continuous and T -periodic function
f if and only if 1 is not an eigenvalue of U(T, 0). ♠

Consequently, we have

Theorem 11.2.2.aa Let A(t) be continuous and T -periodic. Then the fol-
lowing statements are equivalent.

1. 1 is not an eigenvalue of U(T, 0).

2. Eq. (2.1) has a unique T -periodic solution for any continuous and
T -periodic function f .

3. Eq. (2.1) has a T -periodic solution for any continuous and T -periodic
function f . ♠

Next, we look at Eq. (2.3) with linear or nonlinear perturbations,

x′(t) = A(t)x(t) + f(t, x(t)), t ≥ 0, x ∈ ℜn, (2.8)

where f(t, x) is also T -periodic in t. To derive periodic solutions for Eq.
(2.8), or for general nonlinear differential equations, we should use some fixed
point theorems from functional analysis that are listed in the Appendix.
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Theorem 11.2.3 Assume that Eq. (2.8) is T -periodic in t and that f(t, x)
is continuous on [0,∞) × ℜn and satisfies a weak Lipschitz condition with
respect to x. If 1 is not an eigenvalue of U(T, 0) and if |f(t, x)| ≤ C, (t, x) ∈
[0,∞) × ℜn, for some constant C > 0, then Eq. (2.8) has a T -periodic
solution.

Proof. First, the conditions guarantee that solutions of Eq. (2.8) exist on
[0,∞) and are uniquely determined. Next, since 1 is not an eigenvalue of
U(T, 0), we can define a mapping F : ℜn → ℜn by

F (x0) = [E − U(T, 0)]−1{x(T, 0, x0)− U(T, 0)x0}, x0 ∈ ℜn, (2.9)

where x is the unique solution through (0, x0) given by

x(t) = x(t, 0, x0) = U(t, 0)x0 +

∫ t

0
U(t, s)f(s, x(s))ds, t ≥ 0. (2.10)

Consequently,

x(T, 0, x0)− U(T, 0)x0 =

∫ T

0
U(T, s)f(s, x(s))ds,

and then from (2.9) we obtain

|F (x0)| ≤ |[E − U(T, 0)]−1||x(T, 0, x0)− U(T, 0)x0|

≤ |[E − U(T, 0)]−1|
∫ T

0
|U(T, s)f(s, x(s))|ds

≤ |[E − U(T, 0)]−1|CT max
s∈[0,T ]

|U(T, s)|

def
= M, (2.11)

where M > 0 is a constant. Now, B = {x ∈ ℜn : |x| ≤ M} is nonempty,
convex, and compact. Also, we have F : B → B and F is continuous. Thus
Brouwer’s fixed point theorem (see the Appendix) can be applied to the
mapping F on B to get a fixed point x0 = F (x0). Hence,

x0 = [E − U(T, 0)]−1{x(T, 0, x0)− U(T, 0)x0}, (2.12)

which implies

[E − U(T, 0)]x0 = x(T, 0, x0)− U(T, 0)x0, (2.13)
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or,

x0 = x(T, 0, x0).

Therefore, from Lemma 11.1.2, Eq. (2.8) has a T -periodic solution. This
completes the proof. ♠

The following is a generalization of Theorem 11.2.3, see Amann [1990].

Theorem 11.2.4 Assume that Eq. (2.8) is T -periodic in t and that f(t, x)
is continuous on [0,∞) × ℜn and satisfies a weak Lipschitz condition with
respect to x. If 1 is not an eigenvalue of U(T, 0) and if

lim
|x|→∞

|f(t, x)|
|x|

= 0 uniformly for t ∈ [0, T ], (2.14)

then Eq. (2.8) has a T -periodic solution.

Proof. Similar to the proof of Theorem 11.2.3, we will find a set to apply
Brouwer’s fixed point theorem to the mapping F defined in (2.9). Define

α = max{|U(t, s)| : 0 ≤ s ≤ t ≤ T}

and let ε ∈ (0, 1) be arbitrary. From (2.14), there exists a β = β(ε) > 0 such
that

|f(t, x)| ≤ β + ε|x|, (t, x) ∈ [0, T ]×ℜn. (2.15)

Then, from (2.10), we obtain

|x(t, 0, x0)| ≤ α|x0|+ αβT + εα

∫ t

0
|x(s)|ds, 0 ≤ t ≤ T, (2.16)

hence by Gronwall’s inequality we get

|x(t, 0, x0)| ≤ [α|x0|+ αβT ] exp(εαT ), 0 ≤ t ≤ T. (2.17)

Then, using (2.10) and (2.15) again, we obtain

|x(T, 0, x0)− U(T, 0)x0| ≤ |
∫ T

0
U(T, s)f(s, x(s))ds|

≤ αT
[
β + ε

(
[α|x0|+ αβT ] exp(εαT )

)]
,
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hence

lim sup
|x0|→∞

|x(T, 0, x0)− U(T, 0)x0|
|x0|

≤ αTεα exp(εαT ). (2.18)

Now, ε > 0 is arbitrary, so we have

lim
|x0|→∞

|x(T, 0, x0)− U(T, 0)x0|
|x0|

= 0, (2.19)

which implies

lim
|x0|→∞

|F (x0)|
|x0|

= 0, (2.20)

where F is the mapping defined in (2.9). Consequently, there exists a ρ > 0
such that

|F (x)| ≤ ρ+
|x|
2
, x ∈ ℜn.

Therefore, solving k from ρ+ k
2 = k, we find that F maps the set {x ∈ ℜn :

|x| ≤ 2ρ} into itself, hence Brouwer’s fixed point theorem can be applied to
the mapping F to obtain a fixed point. This completes the proof. ♠

When A(t) = A is a constant matrix, U(T, 0) = eTA. Thus the corre-
sponding results can be stated by using the matrix eTA. Moreover, for the
set of all eigenvalues of eTA, denoted by σ(eTA), we have, from the spectral
mapping theorem 3.3.14 in Chapter 3,

σ(eTA) = {eTλ : λ ∈ σ(A)}. (2.21)

Now, note that 1 = eTλ implies Tλ = 2πki or λ = 2πki
T , k = 0,±1,±2, · · · ,

(i =
√
−1). Thus from (2.21), we obtain the following result concerning the

eigenvalues of the matrix eTA.

Lemma 11.2.5 1 is not an eigenvalue of eTA if and only if

σ(A) ∩ {2πki
T

: k = 0,±1,±2, · · ·} = Ø (empty set). ♠ (2.22)

Therefore, periodic solutions for

x′(t) = Ax(t) + f(t) (2.23)
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and

x′(t) = Ax(t) + f(t, x(t)) (2.24)

can be obtained by checking the condition (2.22). We list them below.

Theorem 11.2.6 The following statements are equivalent.

(a). σ(A) ∩ {2πki
T : k = 0,±1,±2, · · ·} = Ø.

(b). Eq. (2.23) has a unique T -periodic solution for any continuous and
T -periodic function f .

(c). Eq. (2.23) has a T -periodic solution for any continuous and T -periodic
function f . ♠

Theorem 11.2.7 Assume that f(t, x) is T -periodic in t, continuous on
[0,∞) × ℜn and satisfies a weak Lipschitz condition with respect to x, and
satisfies (2.14), or |f(t, x)| ≤ C, (t, x) ∈ [0,∞) × ℜn, for some constant
C > 0. If σ(A) ∩ {2πki

T : k = 0,±1,±2, · · ·} = Ø, then Eq. (2.24) has a
T -periodic solution. ♠

The above represents some results of deriving periodic solutions using
the eigenvalues of U(T, 0) (or of eTA).

Another approach to derive periodic solutions is using the boundedness
of solutions.

Theorem 11.2.8 Let A(t), f(t) be continuous and T -periodic. Then Eq.
(2.1) has a T -periodic solution if and only if Eq. (2.1) has a solution that
is bounded on [0,∞).

Proof. If Eq. (2.1) has a T -periodic solution, then it is bounded on [0,∞).
On the other hand, if Eq. (2.1) has a solution that is bounded on [0,∞),

then let’s prove that Eq. (2.1) has a T -periodic solution. Suppose that Eq.
(2.1) has no T -periodic solution, then there is no x0 ∈ ℜn such that

x0 = x(T, 0, x0) = U(T, 0)x0 +

∫ T

0
U(T, s)f(s)ds, (2.25)

or, for y0 =
∫ T
0 U(T, s)f(s)ds,

[E − U(T, 0)]x0 = y0 (2.26)
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has no solution x0 in ℜn. Moreover, if Eq. (2.1) has no T -periodic solution,
then from Theorem 11.2.2, we find that 1 is an eigenvalue of U(T, 0), and
hence of U(T, 0)tr (here, because we used T for the period, so we use tr
for the transpose). Therefore, from the Fredholm theorem in linear algebra,
there is an eigenvector w of U(T, 0)tr corresponding to the eigenvalue 1 of
U(T, 0)tr such that ytr0 w ̸= 0. That is, there is a w ∈ ℜn such that

U(T, 0)trw = w, ytr0 w ̸= 0. (2.27)

Let x(t) = x(t, 0, x0) be any solution of Eq. (2.1). If we can prove that
x(t) is unbounded on [0,∞), then it will contradict the assumption that
Eq. (2.1) has a solution that is bounded on [0,∞), and hence completes the
proof. To this end, let’s define xk(t) = x(t+ kT ), k = 1, 2, · · · , t ≥ 0. Then
from Lemma 11.1.1(a), xk(t) is a solution of Eq. (2.1) with xk(0) = x(kT ).
Therefore,

x((k + 1)T ) = xk(T ) = U(T, 0)x(kT ) +

∫ T

0
U(T, s)f(s)ds

= U(T, 0)x(kT ) + y0, (2.28)

then an induction using (2.28) shows that

xk(T ) = x((k + 1)T ) = [U(T, 0)]k+1x0 +
k∑

i=0

[U(T, 0)]iy0. (2.29)

Now, from (2.27) and (2.29), we have

wtrx((k + 1)T ) = wtr[U(T, 0)]k+1x0 +
k∑

i=0

wtr[U(T, 0)]iy0

= xtr0 {[U(T, 0)]k+1}trw +
k∑

i=0

ytr0 {[U(T, 0)]i}trw

= xtr0 [U(T, 0)tr]k+1w +
k∑

i=0

ytr0 [U(T, 0)tr]iw

= xtr0 w +
k∑

i=0

ytr0 w

= xtr0 w + (k + 1)ytr0 w. (2.30)

Since ytr0 w ̸= 0, the right-hand side of (2.30) goes to ∞ as k → ∞.
Therefore, |x((k + 1)T )| goes to ∞ as k → ∞; that is, x(t) = x(t, 0, x0) is
unbounded on [0,∞). This completes the proof. ♠



510 Chapter 11. Periodic Solutions

Note that if f(t) is continuous and T -periodic, then |f(t)| ≤M for some
constant M > 0. Now, from Theorem 10.2.9 in Chapter 10 concerning the
boundedness, we have

Theorem 11.2.9 Let A(t), f(t) be continuous and T -periodic. If the zero
solution of Eq. (2.3) is uniformly asymptotically stable, (or if the solutions
of Eq. (2.3) are uniformly ultimately bounded and A(t) is bounded on ℜ+;
see Theorem 10.2.1(D)), then Eq. (2.1) has a T -periodic solution. ♠

When A(t) = A is a constant matrix, using results in Chapter 10 we
derive the following.

Theorem 11.2.9.a Let f(t) be continuous and T -periodic. If the zero
solution of x′(t) = Ax(t) is asymptotically stable, or if the solutions of
x′(t) = Ax(t) are equi-ultimately bounded, or if each eigenvalue of the ma-
trix A has a negative real part, then the equation x′(t) = Ax(t) + f(t) has a
T -periodic solution. ♠

Exercises 11.2

1. Let A(t) = A(t + T ) for some constant T > 0 and let A(t) be odd,
that is, A(−t) = −A(t). Use an induction to prove that the functions
{xm(t, 0, x0)}m≥1 in Picard’s approximations of x′ = A(t)x are even
and T -periodic. Then show that all solutions x(t, 0, x0) are even and
T -periodic.

2. Prove Theorem 11.2.1.

3. Prove Theorem 11.2.2.a.

4. Prove Theorem 11.2.2.aa.

5. In the proof of Theorem 11.2.3, verify that B = {x ∈ ℜn : |x| ≤M} is
nonempty, compact, and convex, F : B → B, and F is continuous.

6. Prove Lemma 11.2.5.

7. Prove Theorem 11.2.6.

8. Prove Theorem 11.2.7.

9. Use an induction to verify (2.29).
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10. Prove Theorem 11.2.9.

11. Prove Theorem 11.2.9.a.

11.3 Nonlinear Differential Equations

In the above, we derived periodic solutions for linear differential equations
using two approaches: the eigenvalues and the boundedness. For general
nonlinear differential equations, the notion of “eigenvalues” is not applicable.
Thus, for nonlinear equations, we will try to extend the idea of deriving
periodic solutions from the boundedness. First we present a result of Massera
[1950] for scalar equations.

Theorem 11.3.1 (Massera) Assume that Eq. (1.1) is T -periodic in t and
that f(t, x) is continuous on [0,∞)×ℜn and satisfies a weak Lipschitz con-
dition with respect to x. If n = 1 (that is, Eq. (1.1) is a scalar equation)
and if Eq. (1.1) has a solution that is bounded on [0,∞), then Eq. (1.1) has
a T -periodic solution.

Proof. Let x(t) be the bounded solution on [0,∞) with |x(t)| ≤ C for some

constant C > 0. Then from Lemma 11.1.1(a), for m = 1, 2, · · · , xm(t)
def
=

x(t + mT ) is also a solution on [0,∞), and |xm(t)| ≤ C. If x1(0) = x(0),
then from Lemma 11.1.1(b), x(t) is T -periodic. If x1(0) ̸= x(0), then, since
x ∈ ℜ, we may assume x1(0) > x(0), (the case for x1(0) < x(0) is similar).
Now, by uniqueness, x1(t) > x(t), t ≥ 0. Plugging in t = mT , we obtain
xm+1(0) = x((m + 1)T ) = x1(mT ) > x(mT ) = xm(0). By uniqueness
again, xm+1(t) > xm(t), t ≥ 0. Thus, for each t ≥ 0 fixed, {xm(t)}m≥1 is
an increasing bounded sequence of numbers, hence {xm(t)}m≥1 converges
to some y(t) as m → ∞. Next, f is T -periodic in t, then |f(t, x)| ≤ C1 (a
constant) for t ≥ 0 and |x| ≤ C. Thus

|x′m(t)| = |f(t, xm(t))| ≤ C1,

and then the mean value theorem implies

|xm(t)− xm(s)| ≤ C1|t− s|, t, s ≥ 0, m ≥ 1.

Accordingly, on any compact t-interval in [0,∞), the sequence of func-
tions {xm(t)}m≥1 is uniformly bounded and equi-continuous. Then from
Arzela-Ascoli’s theorem (see the Appendix), {xm(t)}m≥1 has a uniformly
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convergent subsequence. But since {xm(t)}m≥1 is monotone, it is itself uni-
formly convergent to y(t) on any compact interval. Consequently, y(t) is
continuous on [0,∞). Next, for any fixed t ≥ 0, we can use the weak Lips-
chitz condition to obtain

|
∫ t

0
f(s, xm(s))ds−

∫ t

0
f(s, y(s))ds|

≤
∫ t

0
|f(s, xm(s))− f(s, y(s))|ds

≤
∫ t

0
k(s)|xm(s)− y(s)|ds

≤ t max
s∈[0,t]

k(s)|xm(s)− y(s)| → 0, m→ ∞, (3.1)

(where k(s) is from the weak Lipschitz condition). Now, from Chapter 2,

xm(t) = xm(0) +

∫ t

0
f(s, xm(s))ds, t ≥ 0. (3.2)

Thus, if we let m→ ∞ in (3.2), then (3.1) implies, for each t ≥ 0,

y(t) = y(0) +

∫ t

0
f(s, y(s))ds, (3.3)

which implies that y(t) is a solution of Eq. (1.1). Finally, observe that

y(T ) = lim
m→∞

xm(T ) = lim
m→∞

x(T +mT ) = lim
m→∞

xm+1(0) = y(0), (3.4)

therefore y(t) is a T -periodic solution of Eq. (1.1). This completes the proof.
♠

Note that the above proof depends on the condition that n = 1, or
x ∈ ℜ, because the argument that “if x1(0) ̸= x(0), then x1(0) > x(0) or
x1(0) < x(0)” is used. Massera has a similar result for n = 2.

Theorem 11.3.2 (Massera) Assume that Eq. (1.1) is T -periodic in t and
that f(t, x) is continuous on [0,∞)×ℜn and satisfies a weak Lipschitz con-
dition with respect to x. If n = 2 and if Eq. (1.1) has a solution that is
bounded on [0,∞), then Eq. (1.1) has a T -periodic solution. ♠

For Theorem 11.3.2, the proof depends on the geometry in ℜ2 and in
general, cannot be extended to higher dimensional cases.
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These indicate that in order to obtain periodic solutions for differential
equations in general ℜn, n ≥ 1, other ideas that are dimension-independent
must be exploited. To this end, note that if x0 is in some set, then P (x0) =
x(T, 0, x0) may not be in the same set. Therefore, many fixed point theo-
rems in functional analysis are not applicable. However, Horn’s fixed point
theorem (see the Appendix) can be used very well here.

Theorem 11.3.3 (Horn’s fixed point theorem) Let E0 ⊂ E1 ⊂ E2 be
convex subsets of a Banach space Z, with E0 and E2 compact subsets and
E1 open relative to E2. Let P : E2 → Z be a continuous mapping such that
for some integer m, one has

P j(E1) ⊂ E2, 1 ≤ j ≤ m− 1, (3.5)

P j(E1) ⊂ E0, m ≤ j ≤ 2m− 1, (3.6)

then P has a fixed point in E2. ♠

Horn’s fixed point theorem is also called “Horn’s asymptotic fixed point
theorem” since it uses the idea that if P k has a unique fixed point for some
positive integer k, then P itself has a fixed point. If we analyze conditions
(3.5) and (3.6), we find that (3.5) is related to the boundedness, and (3.6)
is related to the ultimate boundedness studied in Chapter 10. Therefore,
we will see that Horn’s fixed point theorem allows us to derive periodic
solutions from the boundedness properties for general (linear or nonlinear)
n-dimensional differential equations, n ≥ 1.

Theorem 11.3.4 Assume that Eq. (1.1) is T -periodic in t and that f(t, x)
is continuous on [0,∞) × ℜn and satisfies a weak Lipschitz condition with
respect to x. If the solutions of Eq. (1.1) are equi-ultimately bounded, then
Eq. (1.1) has a T -periodic solution.

Proof. Using the weak Lipschitz condition, we know from Theorem 10.1.2
in Chapter 10 that the solutions of Eq. (1.1) are also equi-bounded.

Let B be the bound in the definition of the equi-ultimate boundedness,
then by the equi-boundedness, there is a B1 > B such that |x0| ≤ B im-
plies |x(t, 0, x0)| ≤ B1, t ≥ 0. Furthermore, there is a B2 > B1 such that
|x0| ≤ B1 implies |x(t, 0, x0)| ≤ B2, t ≥ 0. Now, using the equi-ultimate
boundedness, there is a positive integer m = m(B1) such that |x0| ≤ B1

implies |x(t, 0, x0)| ≤ B for t ≥ mT .
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Now, let

E0 = {x ∈ ℜn : |x| ≤ B}, (3.7)

E1 = {x ∈ ℜn : |x| < B1}, (3.8)

E2 = {x ∈ ℜn : |x| ≤ B2}, (3.9)

and define a mapping P : E2 → ℜn by

P (x0) = x0 +

∫ T

0
f(s, x(s))ds = x(T, 0, x0), (3.10)

where x(t) = x(t, 0, x0) is the unique solution of Eq. (1.1) with x(0) = x0.
We first note that P is continuous in x0, because, from Chapter 2, a solution
is continuous with respect to initial data on any finite t-interval.

Next, let’s compare w1(t) = x(t, 0, x(T, 0, x0)) and w2(t) = x(t+T, 0, x0).
We have

w1(0) = x(0, 0, x(T, 0, x0)) = x(T, 0, x0),

w2(0) = x(T, 0, x0),

and, since f is T -periodic,

w′
1(t) =

d

dt
x(t, 0, x(T, 0, x0)) = f(t, x(t, 0, x(T, 0, x0))) = f(t, w1(t)),

w′
2(t) =

d

dt
x(t+ T, 0, x0) = f(t+ T, x(t+ T, 0, x0)) = f(t, x(t+ T, 0, x0))

= f(t, w2(t)).

Therefore, both w1 and w2 are solutions of Eq. (1.1) with the same ini-
tial data (0, x(T, 0, x0)), thus, using uniqueness, w1(t) = w2(t), t ≥ 0. In
particular, w1(T ) = w2(T ), or

P 2x0 = x(2T, 0, x0).

Similarly, we have (see an exercise)

Pmx0 = x(mT, 0, x0), m = 1, 2, · · · . (3.11)

Then we obtain

|P jx0| = |x(jT, 0, x0)| ≤ B2, j ≥ 1, |x0| ≤ B1, (3.12)

|P jx0| = |x(jT, 0, x0)| ≤ B, j ≥ m, |x0| ≤ B1, (3.13)
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or,

P j(E1) ⊂ E2, j ≥ 1, (3.14)

P j(E1) ⊂ E0, j ≥ m. (3.15)

Next, observe that E0, E1, and E2 are convex subsets of ℜn with E0 and
E2 compact subsets and E1 = E1 ∩ E2 open relative to E2, and E0 ⊂ E1 ⊂
E2. Consequently, Horn’s fixed point theorem can be applied to obtain a
fixed point x∗ for the mapping P , that is, P (x∗) = x∗. Now, Lemma 11.1.2
implies that Eq. (1.1) has a periodic solution. This completes the proof. ♠

Remark 11.3.5 Theorem 11.3.4 is similar to a result in Yoshizawa [1966]
where Browder’s fixed point theorem (see the Appendix) is used. They
both improve a result in Burton [1985], where the existence of mT -periodic
solutions (m ≥ 1 is an integer) is proved under the assumption that the
solutions are uniformly ultimately bounded. The existence of T -periodic
solutions is proved in Burton [1985] under the assumption that the solutions
are uniformly bounded and uniformly ultimately bounded. ♠

Next, note from Chapter 10 that Liapunov’s method can be used to
obtain the boundedness, thus, from Theorem 11.3.4, Liapunov’s method can
also be used to obtain periodic solutions.

Theorem 11.3.6 Assume that Eq. (1.1) is T -periodic in t and that f(t, x)
is continuous on [0,∞) × ℜn and satisfies a weak Lipschitz condition with
respect to x. Let H = {x ∈ ℜn : |x| ≥ M} where M > 0 is a constant, and
let Wi be the ℜn-wedges.

(A). Assume there exists a function V (t, x) that is continuous and satisfies
a Lipschitz condition in x, and

(a). W1(x) ≤ V (t, x) is satisfied on [0,∞) ×H, with W1(x) → ∞ as
|x| → ∞, and

(b). V ′
(1.1)(t, x) ≤ −cV (t, x) is satisfied on [0,∞)×ℜn, where c > 0 a

constant.

Then Eq. (1.1) has a T -periodic solution.

(B). Assume there exists a function V (t, x) that is continuous and satisfies
a Lipschitz condition in x, and, on [0,∞)×H,

(a). W1(x) ≤ V (t, x) ≤W2(x) with W1(x) → ∞ as |x| → ∞, and
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(b). V ′
(1.1)(t, x) ≤ −W3(x).

Then Eq. (1.1) has a T -periodic solution. ♠

In the above, we used ultimate boundedness and Horn’s fixed point the-
orem to derive periodic solutions where the ultimate boundedness is used to
eventually bring solutions back such that Horn’s fixed point theorem can be
applied. Accordingly, we have the following definition.

Definition 11.3.7 Assume that Eq. (1.1) is T -periodic in t. The solutions
of Eq. (1.1) are said to be T -strictly bounded if there is a B > 0 such
that |x0| ≤ B implies |x(T, 0, x0)| ≤ B. See Figure 11.2.

x

tT

x(t,0,x
0
)

B

0

Figure 11.2: The solutions are T -strictly bounded

When the solutions of Eq. (1.1) are T -strictly bounded, Brouwer’s fixed
point theorem can be applied to the mapping x0 → x(T, 0, x0) on {x ∈ ℜn :
|x| ≤ B} to get a fixed point x0 = x(T, 0, x0), which gives rise to a T -periodic
solution. We formulate this as follows.

Theorem 11.3.8 Assume that Eq. (1.1) is T -periodic in t and that f(t, x)
is continuous on [0,∞) × ℜn and satisfies a weak Lipschitz condition with
respect to x. If the solutions of Eq. (1.1) are T -strictly bounded, then Eq.
(1.1) has a T -periodic solution. ♠

The condition of strictly boundedness is satisfied for a system when, for
example, the solutions are nonincreasing, that is, when |x(t)| are nonincreas-
ing in t.
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Next, we look at some examples.

Example 11.3.9 Modify Example 10.5.7 in Chapter 10 and consider the
scalar equation

u′′ + u′ + g(u) = f(t), (3.16)

where f(t) is continuous and T -periodic. Now, f is bounded, thus it
is shown in Example 10.5.7 that the solutions of Eq. (3.16) are uniformly
bounded and uniformly ultimately bounded. Therefore, according to The-
orem 11.3.4, Eq. (3.16) has a T -periodic solution. The periodic solution is
nonzero when f ̸= 0. ♠

Example 11.3.10 Consider

x′(t) = A(t)x(t) + f(t, x(t)), t ≥ 0, x ∈ ℜn, (3.17)

where A(t) and f(t, x) are continuous and are T -periodic in t, f is weak
Lipschitz in x, and |f(t, x)| ≤ M for some constant M . Assume further
that all solutions of y′ = A(t)y go to zero as t → ∞. Then the solutions
of Eq. (3.17) are equi-ultimately bounded, and hence from Theorem 11.3.4,
Eq. (3.17) has a T -periodic solution.

We will provide several ways to verify this claim. First, we verify directly
that the solutions of Eq. (3.17) are equi-ultimately bounded. We only
consider the case when t0 = 0, because the same argument can be used for
an arbitrary t0. From the Floquet theory in Chapter 3, there is a constant
matrix C and a nonsingular T -periodic matrix P (t) such that P (t)etC is the
fundamental matrix solution of y′ = A(t)y. If all solutions of y′ = A(t)y go
to zero as t→ ∞, then so do the solutions of z′ = Cz. Thus all eigenvalues
of C have negative real parts. Then, from Chapter 3, |etC | ≤ M1e

−αt for
some positive constants M1 and α. Now, the solution x(t) = x(t, 0, x0) of
Eq. (3.17) is given by the variation of parameters formula

x(t) = P (t)etCx0 +

∫ t

0
P (t)e(t−s)CP−1(s)f(s, x(s))ds. (3.18)

Hence,

|x(t)| ≤ |P (t)|M1e
−αt|x0|

+

∫ t

0

(
max
t∈[0,T ]

|P (t)|
)
M1e

−α(t−s)
(
max
t∈[0,T ]

|P−1(t)|
)
Mds

≤ |P (t)|M1e
−αt|x0|+K

∫ t

0
e−α(t−s)ds

≤ |P (t)|M1e
−αt|x0|+

K

α
, t ≥ 0, (3.19)
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where K = MM1max |P (t)|max |P−1(t)| is a constant. Now, note that
for |x0| bounded, |P (t)|M1e

−αt|x0| ≤ 1 for large t (here t depends on x0).
Thus the solutions of Eq. (3.17) are equi-ultimately bounded with the bound
B = 1 + K

α , hence Eq. (3.17) has a T -periodic solution.

Another way to see why Eq. (3.17) has a T -periodic solution in this case
is as follows: If all solutions of x′ = A(t)x go to zero as t → ∞, then from
Theorem 11.2.1, we find that 1 is not an eigenvalue of U(T, 0). Thus from
Theorem 11.2.3, Eq. (3.17) has a T -periodic solution.

One more way to see this is given below: If all solutions of x′ = A(t)x
go to zero as t → ∞, then from Chapter 9, the zero solution of x′ = A(t)x
is asymptotically stable. Hence, from Chapter 9, the zero solution is also
uniformly asymptotically stable because the equation is periodic. Now, The-
orem 10.2.9 in Chapter 10 implies that the solutions of Eq. (3.17) are uni-
formly bounded and uniformly ultimately bounded, hence Eq. (3.17) has a
T -periodic solution. ♠

Example 11.3.11 In Example 11.3.10, if we replace |f(t, x)| ≤M by |f(t, x)|
≤ η|x| with

ηM1max |P (t)|max |P−1(t)| < α,

where P (t),M1, and α are from Example 11.3.10, then the same conclusion
holds. Because now we have

|x(t)| ≤ |P (t)|M1e
−αt|x0|

+

∫ t

0

(
max
t∈[0,T ]

|P (t)|
)
M1e

−α(t−s)
(
max
t∈[0,T ]

|P−1(t)|
)
η|x(s)|ds

≤ |P (t)|M1e
−αt|x0|+K1

∫ t

0
e−α(t−s)|x(s)|ds

≤ K2M1e
−αt|x0|+K1

∫ t

0
e−α(t−s)|x(s)|ds, t ≥ 0, (3.20)

where K1 = ηM1max |P (t)|max |P−1(t)| and K2 = max |P (t)| are con-
stants. Let u(t) = x(t)eαt, then

|u(t)| ≤ K2M1|x0|+K1

∫ t

0
|u(s)|ds, t ≥ 0. (3.21)

Now, Gronwall’s inequality implies

|u(t)| ≤
(
K2M1|x0|

)
eK1t, t ≥ 0, (3.22)
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or,

|x(t)| ≤
(
K2M1|x0|

)
e−(α−K1)t, t ≥ 0, (3.23)

with α − K1 = α − ηM1max |P (t)|max |P−1(t)| > 0. Now, we can take
the bound B = 1 to see that the solutions of Eq. (3.17) are equi-ultimately
bounded, hence Eq. (3.17) has a T -periodic solution. ♠

This completes a brief account of deriving periodic solutions from the
boundedness properties for general differential equations.

Exercises 11.3

1. In Theorem 11.3.1, prove for the case when x1(0) < x(0).

2. Assume that f(t, x) in

x′(t) = f(t, x(t)), x(0) = x0, t ≥ 0, x ∈ ℜn,

is T -periodic in t, where the existence and uniqueness are also assumed.
Define a mapping P such that Px0 = x(T, 0, x0), where x(t, 0, x0) is the
unique solution of the equation with x(0, 0, x0) = x0. Use an induction
to prove that Pmx0 = x(mT, 0, x0), m = 1, 2, 3, · · ·.

3. Prove Theorem 11.3.6.

4. Prove Theorem 11.3.8.

5. Generalize the result in Example 11.3.10 when f satisfies (2.14).



Chapter 12

Some New Types
of Equations

12.1 Introduction

In the previous chapters, we have studied some properties of the differential
equation

x′(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, x(t) ∈ ℜn, (1.1)

where the fundamental assumption used when modeling a system using a
differential equation is that the time rate at time t, given as x′(t), depends
only on the current status at time t, given as f(t, x(t)). Moreover, the initial
condition is given in the form of x(t0) = x0. In applications, this assumption
and the initial condition should be improved so we can model the situations
more accurately and therefore derive better results.

One improvement of Eq. (1.1) is to assume that the time rate depends
not only on the current status, but also on the status in the past; that is,
the past history will contribute to the future development, or, there is a
time-delay effect. For example, for a university, its current population will
affect its population growth, however, its population in the past may also
affect its population growth.

In fact, in his study of predator-prey models, Volterra [1928] had inves-
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tigated the equation{
x′(t) = x(t)[a− by(t)−

∫ 0
−r F1(s)y(t+ s)ds],

y′(t) = y(t)[−a+ cx(t) +
∫ 0
−r F2(s)x(t+ s)ds],

(1.2)

where x and y are the number of preys and predators, respectively, and all
constants and functions are nonnegative and r is a positive constant. In∫ 0
−r F1(s)y(t+ s)ds, the variable s varies in the interval [−r, 0], thus y(t+ s)
is a function defined on the interval [t − r, t]. This says that for Eq. (1.2),
the time rate at t, [x′(t), y′(t)]T , depends not only on the status of x(t) and
y(t) at t, but also on the past status of x(t+ s) and y(t+ s) defined on the
interval [t− r, t]. That is, the history on the interval [t− r, t] will affect the
growth rates of the preys and predators at time t.

For similar models, Wangersky and Cunningham [1957] also used the
equation  x′(t) = ax(t)

[
m−x(t)

m

]
− bx(t)y(t),

y′(t) = −cy(t) + kx(t− r)y(t− r),

for the predator-prey models, where r is a positive constant. Here, the
assumption is that the current status at t and the past status at t − r will
affect the population growth.

In the study of the van der Pol equation, Rubanik [1969] encountered

x′′(t) + ax′(t)− f(x(t− r))x′(t− r) + x(t) = 0,

when taking into account the transmission time in the triode oscillator.

Other physical procedures that possess such time-delay properties in-
clude blood moving through arteries, relaxation of materials with memory
from bending (e.g., metal), and signals traveling through mediums (e.g.,
nerves). Differential equations incorporating delay effect, or using informa-
tion from the past, are called “delay differential equations.” They include
finite delay differential equations, infinite delay differential equations, and
integrodifferential equations. Refer to Hale and Verduyn Lunel [1993] for
additional results.

Another improvement of Eq. (1.1) is to allow the system to undergo
some abrupt perturbations (such as due to harvesting, diseases, wars, etc.)
whose duration can be negligible in comparison with the duration of the
process. Therefore, we assume in this case that a solution x of the system
may have jump discontinuities, or impulses, at times t1 < t2 < · · ·, given
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in the form of

x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, 2, · · · , (1.3)

where “+” and “−” denote the right and the left limit respectively, and
Ii, i = 1, 2, · · ·, are some given functions. (Of course, Ii may be identically
zero, in which case there are no impulses.)

For example, Freedman, Liu, and Wu [1991] studied models of single
species growth with impulsive effects; Zavalishchin [1994] studied impulsive
dynamic systems for mathematical economics. Differential equations with
impulsive effects are called “impulsive differential equations.” Refer to
Lakshmikantham, Bainov, and Simeonov [1989] for additional details.

One more improvement of Eq. (1.1) we want to introduce here is the
so-called “equations with nonlocal conditions.” That is, we extend the
initial condition (also called the “local condition”)

x(t0) = x0

to the following nonlocal condition

x(t0) + g(x(·)) = x0, (1.4)

where x(·) denotes a solution (that is, x(·) is a function) and g is a mapping
defined on some space consisting of certain functions. (Of course, g may
be identically zero, in which case it reduces to the local condition or initial
condition x(t0) = x0.) The advantage of using nonlocal conditions is that
measurements at more places can be incorporated to get better models.

For example, g(x(·)) may be given by

g(x(·)) =
q∑

i=1

cix(si), (1.5)

where ci, i = 1, · · · , q, are given constants and t0 < s1 < s2 < · · · < sq.
In this case, (1.5) allows the additional measurements at si, i = 1, 2, · · · , q.
A formula similar to (1.5) is also used in Deng [1993] to describe the dif-
fusion phenomenon of a small amount of gas in a transparent tube. Refer
to Byszewski and Lakshmikantham [1990] for additional studies of nonlocal
conditions.

Having discussed the impulsive differential equations and differential
equations with nonlocal conditions, it is natural to combine them together to
obtain “impulsive differential equations with nonlocal conditions.”
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For example, if a sound wave travels through a nonuniform rod (where
nonlocal conditions can be applied), and if the sound wave’s amplitude or
frequency changes in an impulsive fashion, then the vibration in the rod will
also experience impulsive effects. So the merging of nonlocal and impulsive
conditions would be helpful in modeling this system.

Finally, we point out that when we model some situations arising from
physics and other applied sciences, we typically end up with partial dif-
ferential equations. We can formally formulate these partial differential
equations as differential equations we have seen so far. For example, for a
one-dimensional heat equation{

ut(t, x) = uxx(t, x), t ≥ 0, x ∈ [0, 1],
u(t, 0) = u(t, 1) = 0, u(0, x) = ϕ(x),

(1.6)

in L2([0, 1],ℜ) (space of square integrable functions from [0, 1] to ℜ), we
can define y0 = ϕ and y(t) = u(t, ·), that is, for each fixed t, y(t) is a

function in x, given as u(t, ·) or u(t, x). Next, define an operator A = ∂2

∂x2

with the domain D(A) = W 1,2
0 [0, 1] ∩W 2,2[0, 1] (a Sobolev space; consult a

text on applied functional analysis, such as Pazy [1983]) which is dense in
L2([0, 1],ℜ), then we can rewrite Eq. (1.6) as the differential equation

y′(t) = Ay(t), y(0) = y0. (1.7)

Formally, Eq. (1.7) looks exactly the same as a linear differential equa-
tion with a constant matrix A studied in Chapter 3. However, now y(t) in
Eq. (1.7) is no longer a vector in ℜn and A in Eq. (1.7) is no longer a matrix
of numbers; instead, y(t) is an element in the infinite-dimensional function
space L2([0, 1],ℜ), and A is an operator acting on the infinite-dimensional
space L2([0, 1],ℜ) and is unbounded. Thus, we call the differential equations
in function spaces, or in general, abstract spaces, such as Eq. (1.7), as “ab-
stract differential equations.” For abstract differential equations, if the
operators, such as A in Eq. (1.7), are nondensely defined, then we get “ab-
stract differential equations with nondensely defined operators.”
For example, in Eq. (1.6), if we change L2([0, 1],ℜ) to C([0, 1],ℜ) with the
sup-norm, then the domain D(A) = {ϕ ∈ C2([0, 1],ℜ) : ϕ(0) = ϕ(1) = 0} is
not dense in C([0, 1],ℜ) with the sup-norm.

Next, for abstract differential equations, delay effect, impulsive, and non-
local conditions can also be imposed in the same way as we mentioned above;
thus we obtain “abstract differential equations with delay, impulsive,
and/or nonlocal conditions.”
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Most properties of x′(t) = f(t, x(t)) in ℜn have been extended to the
new types of differential equations introduced above. Refer to Pazy [1983],
Burton [1985], Lakshmikantham, Bainov, and Simeonov [1989], Gripenberg,
Londen, and Staffans [1990], Hino, Murakami, and Naito [1991], and Hale
and Verduyn Lunel [1993] for additional details.

There are still so many important and interesting properties of x′(t) =
f(t, x(t)) in ℜn that are yet to be extended to the more advanced settings.
This makes the research in differential equations an active, exciting, and
fruitful area where it is full of opportunities for making contributions. New
ideas, new methods, and even new research areas can also be discovered in
such a process of advancement.

In the following sections, we briefly describe some important features for
each new type of differential equations introduced above. You may use these
remarks and references to access some frontline research, and perhaps even
start your own research and make contributions in this area.

12.2 Finite Delay Differential Equations

Here, we assume that the time rate of a system at t depends on the status
at t and also on the status in the past on a finite interval [t− r, t], where
r > 0 is a constant. For example, the population growth of a university may
depend on the current population and also on the population in the past five
years.

We first introduce some notations in order to set up the equations. For
a fixed t ∈ ℜ and a function x on the interval [t− r, t], we define xt(·) to be
a function on the interval [−r, 0] such that

xt(s) = x(t+ s), s ∈ [−r, 0],

and we denote by C([−r, 0],ℜn) the Banach space of all continuous functions
on the interval [−r, 0] with the sup-norm

∥ϕ∥C = sup
−r≤s≤0

|ϕ(s)|, ϕ ∈ C([−r, 0],ℜn).

And we let f be a continuous function from ℜ× C([−r, 0],ℜn) to ℜn.

Now, we are ready to set up the finite delay differential equations

x′(t) = f(t, xt), xt0 = ϕ ∈ C([−r, 0],ℜn), t ≥ t0, x(t) ∈ ℜn. (2.1)
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Definition 12.2.1 A function x(t) : [t0− r, t0+T ] → ℜn, where T > 0 is a
constant, is said to be a solution of Eq. (2.1) on [t0 − r, t0 + T ] if xt0 = ϕ,
x(t) is differentiable on [t0, t0+T ], and satisfies Eq. (2.1) for t ∈ [t0, t0+T ].
See Figure 12.1.

t0-r t0+Tt0

x(t) = x(t,t0,φ)

φ
φ

t

Figure 12.1: A solution of Eq. (2.1)

That is, the initial “value” for a finite delay differential equation is a
function ϕ in the Banach space C([−r, 0],ℜn), and the time rate at t de-
pends on the status at time t and also on the status on the interval [t− r, t].
Therefore, to study the finite delay differential equation (2.1), some knowl-
edge of functional analysis is needed, because now we have to deal with the
function space C([−r, 0],ℜn), instead of ℜn used for differential equations
without delay.

Similar to a result in Chapter 2, we note that a continuous function x is
a solution of Eq. (2.1) if and only if

x(t) = ϕ(0) +

∫ t

t0
f(s, xs)ds, t ≥ t0, xt0 = ϕ. (2.2)

Now, (2.2) leads us naturally to the following mapping P , such that for
x ∈ C([t0 − r, t0 + T ], ℜn) with xt0 = ϕ, define (Px)(s) = ϕ(s − t0), s ∈
[t0 − r, t0], and define

(Px)(t) = ϕ(0) +

∫ t

t0
f(s, xs)ds, t ∈ [t0, t0 + T ]. (2.3)

Therefore, given some conditions, such as Lipschitz conditions, a fixed
point approach similar to those in Chapter 2 can be carried out here to
derive existence, uniqueness, and other properties. See Hale and Verduyn
Lunel [1993] for additional details.
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12.3 Infinite Delay Differential Equations

Here, the assumption is that the time rate of a system at t depends on
the status at t and also on the status in the past on the infinite interval
(−∞, t]. For example, the population growth of a country may depend on
the current population and also on the population in the whole history.

Now, for a fixed t ∈ ℜ and a function x on the interval (−∞, t], we define
xt(·) to be a function on the interval (−∞, 0] such that

xt(s) = x(t+ s), s ∈ (−∞, 0]. (3.1)

Accordingly, we can set up the infinite delay differential equations

x′(t) = f(t, xt), xt0 = ϕ, t ≥ t0, x(t) ∈ ℜn. (3.2)

Definition 12.3.1 A function x(t) : (−∞, t0 + T ] → ℜn, where T > 0 is a
constant, is said to be a solution of Eq. (3.2) on (−∞, t0 + T ] if xt0 = ϕ,
x(t) is differentiable on [t0, t0+T ], and satisfies Eq. (3.2) for t ∈ [t0, t0+T ].
See Figure 12.2.

t0+Tt0

x(t) = x(t,t0,φ)

φ

φ

t

Figure 12.2: A solution of Eq. (3.2)

Note that for the finite delay differential equation (2.1), the initial func-
tion ϕ is in C([−r, 0],ℜn) with the sup-norm ∥ϕ∥C = sup−r≤s≤0 |ϕ(s)|. Now,
(3.1) indicates that for the infinite delay differential equation (3.2), the ini-
tial function ϕ must be defined on the interval (−∞, 0]. However, assigning
norms to functions on (−∞, 0] is not completely clear, which makes the
choice of a space for initial functions, also called a phase space in most
references, a complex matter. A commonly used phase space is

Cg = {ϕ ∈ C((−∞, 0],ℜn) : ∥ϕ∥g <∞},
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where

∥ϕ∥g
def
= sup{|ϕ(s)|

g(s)
: −∞ < s ≤ 0},

and g is a continuous positive function on (−∞, 0]. To derive additional
properties, you can also use the following phase spaces,

UCg = {ϕ ∈ Cg :
ϕ

g
is uniformly continuous on (−∞, 0]},

LCg = {ϕ ∈ Cg : lim
s→−∞

ϕ(s)

g(s)
exists in ℜn},

LC0
g = {ϕ ∈ Cg : lim

s→−∞

ϕ(s)

g(s)
= 0}.

The function g in the above may be a positive constant, thus the phase
spaces mentioned above include, respectively, the usual spaces of bounded
continuous functions, of bounded uniformly continuous functions, and of
bounded continuous functions such that the limits, as s→ −∞, exist.

An important thing to note is that for the finite delay differential equation
(2.1), the initial function ϕ on [−r, 0] may not be differentiable, but the
corresponding solution x(t) has derivatives for t ≥ t0. Therefore, for h ≥
t0 + r, since xh(·) is a function defined on [h − r, h] ⊂ [t0, ∞), xh(·) is
differentiable. That is, for Eq. (2.1), one may start with a “bad” initial
function ϕ in C([−r, 0],ℜn), but after a while (h ≥ t0 + r), one gets a
“good” function xh in C([−r, 0],ℜn). Therefore, we say that “Eq. (2.1) will
smooth things out.” See Figure 12.3.

However, for the infinite delay differential equation (3.2), the initial func-
tion ϕ on (−∞, 0] will be carried to xh(s) = x(h + s) for any h ≥ t0. That
is, for s ∈ (−∞, 0], one has h+ s ∈ (−∞, h], hence

xh(s) = x(h+ s) = ϕ(h+ s− t0)

when h+ s− t0 ≤ 0, or when s ≤ −(h− t0). Thus, if ϕ has certain property,
then xh(·) must have the same property because ϕ is a segment of xh(·).
In particular, if ϕ is not differentiable, then xh cannot be differentiable.
Therefore, we say that “Eq. (3.2) will not smooth things out.” See Figure
12.4.

To overcome this difficulty and other difficulties associated with the infi-
nite delay, and also to include more general cases, an abstract and axiomatic
approach was considered. For example, to keep certain continuity properties
of solutions, the following two axioms are imposed for a general phase space
B of functions from (−∞, 0] to ℜn with a seminorm ∥ · ∥B.
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bad φ good x
h

-r t

x

h-r h(>r)0

Figure 12.3: Eq. (2.1) will smooth things out

(A1). There is a positive constant H and functions K, M : ℜ+ → ℜ+, with
K continuous and M locally bounded, such that for any t0 ∈ ℜ and
T > 0, if x : (−∞, t0 + T ] → ℜn, xt0 ∈ B, and x is continuous on
[t0, t0+T ], then for every t ∈ [t0, t0+T ], the following conditions hold:

a. xt ∈ B,

b. |x(t)| ≤ H∥xt∥B,
c. ∥xt∥B ≤ K(t− t0) supt0≤s≤t |x(s)|+M(t− t0)∥xt0∥B.

(A2). For the function x in (A1), xt is a B-valued continuous function for
t ∈ [t0, t0 + T ].

Under these assumptions, some fundamental results concerning exis-
tence, uniqueness, and other properties have been derived. Refer to Hale
and Kato [1978], Hino, Murakami, and Naito [1991], and Hale and Verduyn
Lunel [1993] for additional details. Compared to finite delay differential
equations, many questions for infinite delay differential equations are still
open and under investigation.

12.4 Integrodifferential Equations

Here, to simplify the notation, we let t0 = 0 and consider, for t ≥ 0,

x′(t) = Ax(t) +

∫ t

0
B(t− s)x(s)ds+ f(t), x(0) = x0 ∈ ℜn, (4.1)
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Figure 12.4: Eq. (3.2) will not smooth things out

and

x′(t) = Ax(t) +

∫ t

−∞
B(t− s)x(s)ds+ f(t), x(s) = ϕ(s), s ≤ 0, (4.2)

where A, B(·) are n × n matrices. Since eqs. (4.1) and (4.2) contain both
integral and derivative, they are called “integrodifferential equations.”

Eq. (4.1) describes a system where solutions start at t = 0 and the
time rate at t is determined by the status at t and also by the status on
the interval [0, t]. Since t ≥ 0 is a variable, the size of [0, t] is not fixed
and is not infinite, thus this case is different from the finite delay or infinite
delay differential equations mentioned in the previous sections. However,
for Eq. (4.2), the time rate at t is determined by the status on the interval
(−∞, t], thus Eq. (4.2) can be regarded as a special case of the infinite delay
differential equations described in the previous section.

To study Eq. (4.1), one method is to use an idea of Miller [1975] (see
also Desch, Grimmer, and Schappacher [1988]) and reformulate integrodif-
ferential equations into differential equations.

Let F be a space of functions from [0,∞) to ℜn and consider the product
space ℜn × F . We have

d

dt
x(t+ h) = Ax(t+ h) +

∫ t+h

0
B(t+ h− s)x(s)ds+ f(t+ h)

= Ax(t+ h) +

∫ t

0
B(t+ h− s)x(s)ds+ f(t+ h)
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+

∫ t+h

t
B(t+ h− s)x(s)ds+ f(t+ h)

= Ax(t+ h) +

∫ h

0
B(h− s)x(s+ t)ds+ g(t)(h), (4.3)

where g(t)(h) =
∫ t
0 B(t+ h− s)x(s)ds+ f(t+ h). For h = 0, we get

d

dt
x(t) = Ax(t) + g(t)(0), (4.4)

and

d

dt
g(t)(h) = B(h)x(t) +

∫ t

0

[ d
dt
B(t+ h− s)x(s)

]
ds+

d

dt
f(t+ h)

= B(h)x(t) +

∫ t

0

[ d
dh
B(t+ h− s)x(s)

]
ds+

d

dh
f(t+ h)

= B(h)x(t) +
d

dh
g(t)(h). (4.5)

Then, as shown in Miller [1975], a solution x of Eq. (4.1) is the first
component of a solution of the differential equation

d

dt

[
x(t)
g(t)(·)

]
=

[
Ax(t) + g(t)(0)(

Bx(t)
)
(·) + d

dhg(t)(·)

]
(4.6)

in the product space ℜn × F , where B is an operator ℜn → F such that for
x ∈ ℜn and h ≥ 0, (Bx)(h) = B(h)x.

Therefore, we can formulate the following differential equation in the
product space ℜn × F ,

d

dt

[
x(t)
g(t)(·)

]
=

[
A δ0
B d

dh

] [
x(t)
g(t)(·)

]
, (4.7)

where δ0ϕ = ϕ(0) and d
dhϕ = ϕ′ for ϕ ∈ F that is differentiable. Now, if we

let

y(t) =

[
x(t)
g(t)(·)

]
∈ ℜn × F, y0 =

[
x0
f(·)

]
∈ ℜn × F, A =

[
A δ0
B d

dh

]
,

then Eq. (4.7) becomes

y′(t) = Ay(t), y(0) = y0. (4.8)
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Thus, the study of abstract differential equations (see Section 12.8) can
be applied to treat eqs. (4.7) and (4.8), which in turn will give the corre-
sponding results for the integrodifferential equation (4.1).

For Eq. (4.2), one approach is to assume that x is known on the interval
(−∞, 0], thus Eq. (4.2) can be reduced to Eq. (4.1). But other cases can also
be considered. See Desch, Grimmer, and Schappacher [1988], and Grimmer
and Liu [1994](1)(2) for additional related results.

12.5 Impulsive Differential Equations

Here, we consider the differential equation
x′(t) = f(t, x(t)), 0 ≤ t ≤ T, t ̸= ti, x ∈ ℜn,
x(0) = x0,

∆x(ti) = Ii(x(ti)), i = 1, 2, · · · , p, 0 < t1 < t2 < · · · < tp < T,
(5.1)

where ∆x(ti) = x(t+i )− x(t−i ), and Ii’s are some given functions. The equa-
tion is called an impulsive differential equation because solutions are al-
lowed to have jump discontinuities, or impulses, at points ti, i = 1, 2, · · · , p.
It can be used to model more physical phenomena than just using the clas-
sical initial value problem with x(0) = x0, where solutions are assumed to
be continuous.

To make things more precise, we let

PC([0, T ],ℜn) =
{
x : x is a mapping from [0, T ] into ℜn such that x(t) is

continuous at t ̸= ti and left continuous at t = ti, and the

right limit x(t+i ) exists (finite) for i = 1, 2, · · · , p
}
.

Then, one can verify that PC([0, T ],ℜn) is a Banach space with the
sup-norm

∥x∥PC = sup
t∈[0,T ]

|x(t)|. (5.2)

Definition 12.5.1 A solution of Eq. (5.1) is a function

x(·) ∈ PC([0, T ],ℜn) ∩ C1([0, T ] \ {t1, t2, · · · , tp},ℜn),

which satisfies Eq. (5.1) on [0, T ].
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Now, observe that if x is a solution of Eq. (5.1), then for t ∈ (tj , tj+1],∫ t

0
f(s, x(s))ds =

∫ t

0
x′(s)ds

=

∫ t1

0
x′(s)ds+

∫ t2

t1
x′(s)ds+ · · ·+

∫ t

tj

x′(s)ds

= [x(t−1 )− x(0+)] + [x(t−2 )− x(t+1 )] + · · ·+ [x(t−)− x(t+j )]

= [x(t−1 )− x(0)] + [x(t−2 )− x(t+1 )] + · · ·+ [x(t)− x(t+j )]

= −x(0)− [x(t+1 )− x(t−1 )]− [x(t+2 )− x(t−2 )]− · · ·
−[x(t+j )− x(t−j )] + x(t),

hence

x(t) = x(0) +

∫ t

0
f(s, x(s))ds

+[x(t+1 )− x(t−1 )] + [x(t+2 )− x(t−2 )] + · · ·+ [x(t+j )− x(t−j )]

= x(0) +

∫ t

0
f(s, x(s))ds+

∑
0<ti<t

∆x(ti)

= x0 +

∫ t

0
f(s, x(s))ds+

∑
0<ti<t

Ii(x(ti)). (5.3)

On the other hand, let x(·) ∈ PC([0, T ],ℜn) be a function satisfying Eq.
(5.3). First, note that for t ∈ (tj , tj+1),

∑
0<ti<t Ii(x(ti)) =

∑j
i=1 Ii(x(ti))

is independent of t, thus d
dt

∑
0<ti<t Ii(x(ti)) = 0 for t ̸= ti, i = 1, 2, · · · , p.

Hence, we deduce from (5.3) that x′(t) = f(t, x(t)), t ̸= ti, x(0) = x0, and

∆x(ti) = x(t+i )− x(t−i )

=
[
x(0) +

∫ ti

0
f(s, x(s))ds+

i∑
j=1

Ij(x(tj))
]

−
[
x(0) +

∫ ti

0
f(s, x(s))ds+

i−1∑
j=1

Ij(x(tj))
]

= Ii(x(ti)).

Therefore, we conclude that a function x in PC([0, T ],ℜn) is a solution
of Eq. (5.1) if and only if

x(t) = x0 +

∫ t

0
f(s, x(s))ds+

∑
0<ti<t

Ii(x(ti)). (5.4)
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This leads to the definition of a mapping P on PC([0, T ],ℜn) given by

(Px)(t) = x0 +

∫ t

0
f(s, x(s))ds+

∑
0<ti<t

Ii(x(ti)). (5.5)

Accordingly, conditions can be given to establish existence, uniqueness,
and other properties. Refer to Guo and Liu [1993], Rogovchenko [1997], and
Liu [1999] for additional related results.

12.6 Equations with Nonlocal Conditions

Here, we consider{
x′(t) = f(t, x(t)), 0 ≤ t ≤ T, x ∈ ℜn,
x(0) + g(x(·)) = x0,

(6.1)

where x(·) denotes a solution and g is a mapping acting on some space of
functions defined on [0, T ].

Since g(x(·)) in Eq. (6.1) is defined on the interval [0, T ] rather than at
a single point, Eq. (6.1) is called a “differential equation with nonlo-
cal conditions,” and can be applied with better effect than just using the
classical initial value problem with x(0) = x0, because now measurements
at more places are allowed, thus more information is available.

For Eq. (6.1), observe that if x is a solution, then

x(t) = x(0) +

∫ t

0
f(s, x(s))ds

= [x0 − g(x(·))] +
∫ t

0
f(s, x(s))ds. (6.2)

On the other hand, assume that a function x on the interval [0, T ] satisfies
(6.2). For this fixed function x, g(x(·)) is a fixed element in ℜn, hence
d
dtg(x(·)) = 0. Therefore, if we take a derivative in t, then x is a solution of
Eq. (6.1). That is, we conclude that a continuous function x is a solution of
Eq. (6.1) if and only if

x(t) = [x0 − g(x(·))] +
∫ t

0
f(s, x(s))ds. (6.3)

This leads to a mapping P on C([0, T ],ℜn) such that

(Px)(t) = [x0 − g(x(·))] +
∫ t

0
f(s, x(s))ds. (6.4)
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Based on this, one can derive existence, uniqueness, and other properties.
Refer to Byszewski and Lakshmikantham [1990] and Lin and Liu [1996] for
additional related results.

12.7 Impulsive Equations with Nonlocal
Conditions

Here, we combine impulsive differential equations and differential equations
with nonlocal conditions and consider impulsive differential equations
with nonlocal conditions,

x′(t) = f(t, x(t)), 0 ≤ t ≤ T, t ̸= ti, x ∈ ℜn,
x(0) + g(x(·)) = x0,
∆x(ti) = Ii(x(ti)), i = 1, 2, · · · , p, 0 < t1 < t2 < · · · < tp < T.

(7.1)

The remarks for impulsive differential equations and differential equa-
tions with nonlocal conditions indicate that we should define a solution of
Eq. (7.1) to be a function

x(·) ∈ PC([0, T ],ℜn) ∩ C1([0, T ] \ {t1, t2, · · · , tp},ℜn),

that satisfies Eq. (7.1). Similar to the discussions in the previous sections, it
can be verified that a function x in PC([0, T ],ℜn) is a solution of Eq. (7.1)
if and only if

x(t) = [x0 − g(x(·))] +
∫ t

0
f(s, x(s))ds+

∑
0<ti<t

Ii(x(ti)), (7.2)

which leads to a mapping P on PC([0, T ],ℜn) such that

(Px)(t) = [x0 − g(x(·))] +
∫ t

0
f(s, x(s))ds+

∑
0<ti<t

Ii(x(ti)). (7.3)

Based on this, some related results can be obtained.

12.8 Abstract Differential Equations

We have seen in Section 12.1 that a one-dimensional heat equation{
ut(t, x) = uxx(t, x), t ≥ 0, x ∈ [0, 1],
u(t, 0) = u(t, 1) = 0, u(0, x) = ϕ(x),

(8.1)
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can be written as an abstract autonomous homogeneous differential equation

y′(t) = Ay(t), y(0) = y0, t ≥ 0, (8.2)

in L2([0, 1],ℜ), where y(t) = u(t, ·), y0 = ϕ, and A = ∂2

∂x2 with the domain

D(A) =W 1,2
0 [0, 1] ∩W 2,2[0, 1].

Next, look at the following one-dimensional heat equation for material
with memory, see, for example, Gripenberg, Londen, and Staffans [1990],

q(t, x) = −Eux(t, x)−
∫ t
0 b(t− s)ux(s, x)ds, t ≥ 0, x ∈ [0, 1],

ut(t, x) = −∂q(t,x)
∂x + f(t, x),

u(t, 0) = u(t, 1) = 0, u(0, x) = ϕ(x).

(8.3)

The first equation gives the heat flux and the second is the balance equation.
Eq. (8.3) can be written as (assuming E = 1)

ut(t, x) =
∂2

∂x2

[
u(t, x) +

∫ t

0
b(t− s)u(s, x)ds

]
+ f(t, x), u(0, x) = ϕ(x).

Similar to Eq. (8.2), we define y(t) = u(t, ·), y0 = ϕ, f(t) = f(t, ·), and
A = ∂2

∂x2 with the domain D(A) = W 1,2
0 [0, 1] ∩W 2,2[0, 1] in L2([0, 1], then

we derive the following integrodifferential equation

y′(t) = A
[
y(t) +

∫ t

0
b(t− s)y(s)ds

]
+ f(t), y(0) = y0, t ≥ 0, (8.4)

or

y′(t) = Ay(t) +

∫ t

0
b(t− s)Ay(s)ds+ f(t), y(0) = y0, t ≥ 0, (8.5)

in L2([0, 1],ℜ). These indicate that differential equations from physics or
other applied sciences can be reformulated as abstract differential or inte-
grodifferential equations, such that solutions take values in abstract infinite-
dimensional spaces, and the matrices consisting of numbers used before will
now be replaced, in general, by unbounded operators acting on some abstract
infinite-dimensional spaces. Therefore, to study these abstract differential
equations, the knowledge of functional analysis, such as linear or nonlinear
semigroup theory, should be used. Sometimes, infinite-dimensional spaces
impose some special difficulties. For example, in infinite-dimensional spaces,
a bounded set may not be precompact, thus the fixed point theorems re-
quiring compactness are not applicable sometimes and new ideas must be
exploited.
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Next, we briefly outline some basic theory concerning abstract differential
equation (8.2) and abstract integrodifferential equation (8.4) (or Eq. (8.5))
in a general Banach space X. (In the case of the one-dimensional heat
equation (8.1), the Banach space is X = L2([0, 1],ℜ).)

Definition 12.8.1 Let X be a Banach space. A one-parameter family T (t),
0 ≤ t < ∞, of bounded linear operators from X into X is a semigroup of
bounded linear operators on X if

1. T (0) = I, (I is the identity operator on X).

2. T (t+ s) = T (t)T (s) for all t, s ≥ 0.

A semigroup T (·) is called a “C0 semigroup” if it is strongly continuous, that
is,

lim
t↘0

T (t)x = x for every x ∈ X.

The linear operator A defined on the domain

D(A) = {x ∈ X : lim
t↘0

T (t)x− x

t
exists}

such that

Ax = lim
t↘0

T (t)x− x

t
=
d+T (t)x

dt

∣∣∣
t=0

for x ∈ D(A)

is called the (infinitesimal) generator of the semigroup T (·).

Definition 12.8.2 Let X be a Banach space. A continuous function y :
[0,∞) → X is called a solution of (8.2) if y : [0,∞) → X is differentiable,
y(t) ∈ D(A), t ≥ 0, and y(·) satisfies Eq. (8.2).

We have the following fundamental results (see, for example, Pazy [1983]).

Theorem 12.8.3 Let A be a densely defined linear and closed operator with
a nonempty resolvent set. The following three statements are equivalent:

1. The linear operator A is the generator of a C0 semigroup T (·) satisfying
|T (t)| ≤Meωt for some constants M ≥ 1 and ω ∈ ℜ.

2. The resolvent set of A contains (ω, ∞) for some ω ∈ ℜ and the resol-
vent satisfies

|R(λ,A)n| ≤ M

(λ− ω)n
, for λ > ω, n = 1, 2, · · · .
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3. For any initial value y0 ∈ D(A), Eq. (8.2) has a unique solution on
[0,∞); and the unique solution is given by y(t) = T (t)y0, where T (·)
is the C0 semigroup generated by the operator A. ♠

Moreover, for the abstract nonhomogeneous differential equation

y′(t) = Ay(t) + f(t), y(0) = y0, t ≥ 0, (8.6)

the solution is given by

y(t) = T (t)y0 +

∫ t

0
T (t− s)f(s)ds, (8.7)

where T (·) is the C0 semigroup generated by the operator A. The formula
(8.7), which resembles formula (1.11) or (1.12) in Chapter 1 and also for-
mula (3.3) in Chapter 3, is also called a “variation of parameters formula.”
Therefore, the bounded operator T (t) plays the same role as the fundamen-
tal matrix solutions do for the corresponding equations in ℜn. Accordingly,
ekt in (1.11) of Chapter 1 and etA in (3.3) of Chapter 3 are the semigroups
generated by the number k and the matrix A respectively.

In the same way, for the abstract nonautonomous nonhomogeneous dif-
ferential equation

y′(t) = A(t)y(t) + f(t), y(0) = y0, t ≥ 0, (8.8)

where for each fixed t, A(t) is a generator of a C0 semigroup and satisfies
some other conditions, one can show that there is an evolution system
U(t, s), 0 ≤ s ≤ t < ∞, satisfying the evolution system property listed
in Chapter 1 and Chapter 3. The solution of Eq. (8.8) is also given by
another variation of parameters formula

y(t) = U(t, 0)y(0) +

∫ t

0
U(t, s)f(s)ds, (8.9)

which resembles formula (1.14) in Chapter 1 where U(t, s) = e
∫ t

s
k(h)dh, and

formula (2.19) in Chapter 3.
Formulas (8.7) and (8.9) indicate that for abstract infinite-dimensional

differential equations, we sometimes can still derive results that are similar
to those for differential equations in ℜn. They also lead to the definitions of
mappings such that for Eq. (8.6),

(Py)(t) = T (t)y(0) +

∫ t

0
T (t− s)f(s)ds, (8.10)
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and for Eq. (8.8),

(Py)(t) = U(t, 0)y(0) +

∫ t

0
U(t, s)f(s)ds. (8.11)

Therefore, fixed point approaches can be applied to derive certain prop-
erties.

For the abstract integrodifferential equation (8.4) (or Eq. (8.5)), the
counterpart of a semigroup T (·) of Eq. (8.2) is now a resolvent operator
R(·) of Eq. (8.4), which we briefly define as an operator for each t, such that
for t ≥ 0,

d

dt
R(t)y = A

[
R(t)y +

∫ t

0
b(t− s)R(s)yds

]
= R(t)Ay +

∫ t

0
R(t− s)Ab(s)yds, y ∈ D(A). (8.12)

See Grimmer and Liu [1994](2) and Liu [1994] for additional details showing
that the solution of Eq. (8.4) (or Eq. (8.5)) is given by

y(t) = R(t)y(0) +

∫ t

0
R(t− s)f(s)ds, (8.13)

provided a resolvent operator R(·) exists. This is similar to the semigroup
approach for the differential equation (8.2), and leads to the definition of a
mapping P such that

(Py)(t) = R(t)y(0) +

∫ t

0
R(t− s)f(s)ds. (8.14)

Therefore, some results can be obtained along this line.
Many results for differential equations x′(t) = f(t, x(t)) in ℜn have

been carried to the new types of differential equations in abstract infinite-
dimensional spaces. For example, Miller [1975] and Desch, Grimmer, and
Schappacher [1988] examined the wellposedness and other properties for ab-
stract integrodifferential equations; Grimmer and Liu [1992] studied stability
and boundedness of abstract integrodifferential equations using Liapunov-
Razumikhin’s methods; Naito and Minh [1999] obtained almost periodic so-
lutions for abstract evolution equations; and, Henriquez [1974], Burton and
Zhang [1991], and Liu [2000] derived periodic solutions for abstract evolution
equations with infinite delay.

However, many important and interesting questions for differential equa-
tions and integrodifferential equations in abstract infinite-dimensional spaces
are still open and under investigation. You are encouraged to join this active
research in differential equations and make some contributions.
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1. Linear Algebra

Definition. A set of vectors {v1, v2, · · · , vk} in ℜn is said to be linearly
dependent if there exist constants {c1, c2, · · · , ck}, not all zero, such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

A set of vectors {v1, v2, · · · , vk} in ℜn is said to be linearly indepen-
dent if it is not linearly dependent; that is, there do not exist constants
{c1, c2, · · · , ck}, not all zero, such that

∑k
i=1 civi = 0.

Theorem. If the n× n matrices A and B are similar, then A and B have
the same eigenvalues.

Proof. Assume C−1AC = B for some nonsingular n× n matrix C, then

det(B − λE) = det(C−1AC − λE) = det
(
C−1(A− λE)C

)
= [detC−1][det(A− λE)][detC]

= [det(C−1C)][det(A− λE)] = [detE][det(A− λE)]

= det(A− λE), (1)

therefore, A and B have the same eigenvalues. ♠

Theorem. If the eigenvalues λ1, λ2, · · · , λn of an n×n matrix A are distinct,
then the corresponding eigenvectors v1, v2, · · · , vn are linearly independent.

Proof. If v1, v2, · · · , vn are linearly dependent, then there is a least index p
such that v1, v2, · · · , vp are linearly independent and vp+1 is a linear combi-
nation of v1, v2, · · · , vp. Thus there exist numbers c1, c2, · · · , cp such that

c1v1 + c2v2 + · · ·+ cpvp = vp+1. (2)

Applying the matrix A to both sides of (2) and using Avi = λivi, we obtain

c1λ1v1 + c2λ2v2 + · · ·+ cpλpvp = λp+1vp+1. (3)
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Now, multiplying λp+1 to (2) and subtracting the result from (3), we get

c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + · · ·+ cp(λp − λp+1)vp

= λp+1vp+1 − λp+1vp+1 = 0. (4)

Since v1, v2, · · · , vp are linearly independent, we must have c1(λ1 − λp+1) =
c2(λ2 − λp+1) = · · · = cp(λp − λp+1) = 0. Because the eigenvalues are
distinct, then c1 = c2 = · · · = cp = 0. Using (2), we obtain vp+1 = 0, which
contradicts the fact that an eigenvector is a nonzero vector. This completes
the proof. ♠

Theorem (Cayley-Hamilton). Let A be an n× n matrix and let P (λ) =
det(λE − A) be the characteristic polynomial of matrix A, then P (A) = 0
(the 0 matrix).

Proof. From linear algebra, the matrix λE−A has an n×n adjoint matrix
B(λ) such that

B(λ)(λE −A) = [det(λE −A)]E = P (λ)E, (5)

and, in this case, every entry of B(λ) is a polynomial in λ with order ≤ n−1.
Accordingly, using the matrix operations, B(λ) can be written as

B(λ) = λn−1B0 + λn−2B1 + · · ·+ λBn−2 +Bn−1, (6)

where B0, B1, · · · , Bn−1 are all n× n matrices consisting of numbers. Also,
we can write P (λ) = λn + a1λ

n−1 + · · ·+ an−1λ+ an, then

P (λ)E = λnE + a1λ
n−1E + · · ·+ an−1λE + anE. (7)

On the other hand, from (6),

B(λ)(λE −A) = [λn−1B0 + λn−2B1 + · · ·+ λBn−2 +Bn−1](λE −A)

= λnB0 + λn−1(B1 −B0A) + λn−2(B2 −B1A)

+ · · ·+ λ(Bn−1 −Bn−2A)−Bn−1A. (8)

Now, from (5), (7), and (8),

B0 = E,
B1 −B0A = a1E,
B2 −B1A = a2E,

· · · · · ·
Bn−1 −Bn−2A = an−1E,

−Bn−1A = anE.

(9)
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Multiplying An to the first equality in (9) from the right, multiplying
An−1 to the second equality in (9) from the right, · · ·, and multiplying A to
the nth equality in (9) from the right, we obtain

B0A
n = An,

B1A
n−1 −B0A

n = a1A
n−1,

B2A
n−2 −B1A

n−1 = a2A
n−2,

· · · · · ·
Bn−1A−Bn−2A

2 = an−1A,
−Bn−1A = anE.

(10)

Add them and we see that the left-hand side becomes zero, and the right-
hand side is P (A). Thus P (A) = 0, which completes the proof. ♠

2. Functions

Definition. A pair (X, ρ) is called a metric space if X is a set (not
necessarily a linear space) and ρ : X ×X → [0,∞) such that for x, y, z ∈ X,
one has

(a). ρ(x, y) ≥ 0; ρ(x, x) = 0; ρ(x, y) = 0 implies x = y,

(b). ρ(x, y) = ρ(y, x),

(c). ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

Definition. A sequence {xn} in a metric space (X, ρ) is called a
Cauchy sequence if for any ε > 0 there exists N such that n,m > N
implies ρ(xn, xm) < ε. A metric space (X, ρ) is called complete if every
Cauchy sequence in X converges to a limit in X.

Definition. A triple (L,+, ·) is called a linear space (or vector space) over
the real numbers ℜ (or a field F ) if L is a set, and for x, y ∈ L and a ∈ ℜ,
x+ y and a · x = ax are in L, and

(1). x+ y = y + x, x, y ∈ L,

(2). x+ (y + z) = (x+ y) + z, x, y, z ∈ L,

(3). there is a unique 0 ∈ L with 0 + x = x for all x ∈ L,
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(4). for each x ∈ L, there is a unique −x ∈ L with x+ (−x) = 0,

(5). a(bx) = (ab)x, a, b ∈ ℜ, x ∈ L,

(6). 1 · x = x, x ∈ L,

(7). (a+ b)x = ax+ bx, a, b ∈ ℜ, x ∈ L,

(8). a(x+ y) = ax+ ay, a ∈ ℜ, x, y ∈ L.

Definition. A linear space L is called a normed space if for each x ∈ L
there is a nonnegative real number |x|, called the norm of x, such that

(1). |x| = 0 if and only if x = 0,

(2). |ax| = |a||x| for each a ∈ ℜ, x ∈ L,

(3). |x+ y| ≤ |x|+ |y|.

Definition. A linear normed space (L, | · |) is called a Banach space if it
is complete in the metric ρ(x, y) = |x− y|.

Definition. A sequence of functions {fm(t)}m≥1 on an interval [a, b] is
called uniformly bounded on [a, b] if for some constant C > 0, |fm(t)| ≤
C on [a, b] for all m ≥ 1; the sequence is called equi-continuous on [a, b]
if for any ε > 0, there exists a δ = δ(ε) > 0 such that t1, t2 ∈ [a, b] and
|t1 − t2| ≤ δ imply |fm(t1)− fm(t2)| ≤ ε for all m ≥ 1.

Theorem (Cauchy’s criterion). Let {fm(x)} be a sequence of functions
from a domain D ⊂ ℜ to ℜn. The series

∑∞
m=1 fm(x) converges uniformly

to a function on D if and only if for any ε > 0 there exists an M(ε) > 0
such that if m ≥ k ≥M(ε), then

|fk(x) + · · ·+ fm(x)| ≤ ε,

for all x ∈ D.

Theorem. Let {fm(x)} be a sequence of continuous functions from a domain
D ⊂ ℜ to ℜn such that the series

∑∞
m=1 fm(x) converges uniformly to a

function f on D, then f is continuous on D.
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Theorem (Weierstrass M-test). Let {Mm} be a sequence of positive real
numbers and let {fm(x)} be a sequence of functions from a domain D ⊂ ℜ to
ℜn such that |fm(x)| ≤ Mm for x ∈ D and m ≥ 1. If the series

∑∞
m=1Mm

is convergent, then the series
∑∞

m=1 fm(x) converges uniformly to a function
on D. If in addition each {fm(x)} is continuous on D, then the series∑∞

m=1 fm(x) converges uniformly to a continuous function on D.

Theorem (Arzela-Ascoli theorem). Let {fm(t)}m≥1 be a sequence of
continuous functions on a compact interval [a, b]. If the sequence is uniformly
bounded and equi-continuous on [a, b], then {fm(t)}m≥1 has a subsequence,
say {fmk

(t)}k≥1, that converges uniformly on [a, b] to some continuous func-
tion y(t). (That is, for any ε > 0, there exists a K = K(ε) > 0 such that
k ≥ K implies |fmk

(t)− y(t)| ≤ ε for all t ∈ [a, b].)

3. Fixed Point Theorems

The following fixed point theorems can be found in Smart [1980], Burton
[1985], and Hale and Verduyn Lunel [1993].

Definition. A mapping P on a metric space (X, ρ) is called a contraction
mapping if there is an r ∈ (0, 1) such that

ρ(Px, Py) ≤ rρ(x, y).

Theorem (Contraction mapping principle). Let P be a contraction
mapping on a complete metric space X, then there is a unique x ∈ X with
Px = x. Moreover, x = limn→∞ xn, where x0 is any element of X and
xj+1 = Pxj , j = 0, 1, · · ·.

Proof. Now, for some 0 < r < 1, we have ρ(Py, Pz) ≤ rρ(y, z) when y, z ∈
X. Let x0 be any element of X and define xj+1 = Pxj , j = 0, 1, · · ·. Then
x1 = Px0, x2 = Px1 = P 2x0, · · · , xj = Pxj−1 = · · · = P jx0, j = 1, 2, · · · .
Thus, for m > n,

ρ(xn, xm) = ρ(Pnx0, P
mx0)

≤ rρ(Pn−1x0, P
m−1x0)

...
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≤ rnρ(x0, P
m−nx0) = rnρ(x0, xm−n)

≤ rn
[
ρ(x0, x1) + ρ(x1, x2) + · · ·+ ρ(xm−n−1, xm−n)

]
≤ rn

[
ρ(x0, x1) + rρ(x0, x1) + · · ·+ rm−n−1ρ(x0, x1)

]
= rnρ(x0, x1)

[
1 + r + · · ·+ rm−n−1

]
≤ rnρ(x0, x1)

1

1− r
. (11)

As 0 < r < 1, the right-hand side goes to zero when n→ ∞. Thus {xn}
is a Cauchy sequence, and hence has a limit x ∈ X because X is a complete
metric space. Now, it is easily seen that P is continuous, therefore

Px = P
(

lim
n→∞

xn
)
= lim

n→∞

(
Pxn

)
= lim

n→∞
xn+1 = x, (12)

and x is a fixed point of P . If y is also a fixed point of P , then

ρ(x, y) = ρ(Px, Py) ≤ rρ(x, y), (13)

and, as 0 < r < 1, we must have ρ(x, y) = 0, which implies x = y. This
completes the proof. ♠

Theorem (Brouwer’s fixed point theorem). Let B ⊂ ℜn be nonempty,
convex, and compact, and let F : B → B be a continuous mapping. Then F
has a fixed point in B.

Theorem (Schauder’s first fixed point theorem). Let X be a nonempty,
convex, and compact subset of a Banach space Y , and let P : X → X be a
continuous mapping. Then P has a fixed point in X.

Theorem (Schauder’s second fixed point theorem). Let X be a
nonempty, convex, and bounded subset of a Banach space Y and let P : X →
X be a compact mapping (that is, P is continuous and maps a bounded set
into a precompact set). Then P has a fixed point in X.

The following are called “asymptotic fixed point theorems” since they
use the idea that if Pm has a unique fixed point for some positive integer m,
then P itself has a fixed point.

Definition. Let A and B be subsets of a Banach space Z. If A = B ∩C for
an open subset C of Z, then A is open relative to B.
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Theorem (Horn’s fixed point theorem). Let E0 ⊂ E1 ⊂ E2 be convex
subsets of a Banach space Z, with E0 and E2 compact subsets and E1 open
relative to E2. Let P : E2 → Z be a continuous mapping such that for some
integer m, one has

P j(E1) ⊂ E2, 1 ≤ j ≤ m− 1, (14)

P j(E1) ⊂ E0, m ≤ j ≤ 2m− 1, (15)

then P has a fixed point in E2.

Theorem (Browder’s fixed point theorem). Let E0 ⊂ E1 ⊂ E2 be
convex subsets of a Banach space Z, with E0 closed and E1, E2 open. Let
P : E2 → Z be a compact mapping such that for some integer m, one has

P j(E0) ⊂ E1, 0 ≤ j ≤ m, (16)

Pm(E1) ⊂ E0, (17)

then P has a fixed point in E2.
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asymptotically stable, 27, 183, 225,
326, 337

attractor (repeller), 184

autonomous equation, 163

basis, 116

Bendixson’s criterion, 400

Bendixson-Dulac’s criterion, 401

bifurcation, 19, 273, 278, 288, 296,
306, 337

bifurcation diagram, 276

bifurcation point, 19, 273

bifurcation value, 19, 273

blow up, 61

bounded solution, 471

cascade, 350

center, 187

center manifold, 423, 429

chaos, 23, 318

chaotic, 368

characteristic exponent, 155

characteristic multiplier, 155

cobweb, 326

conservative system, 211

constant solution, 2

continuous dependence, 77

converse of stabilities, 466

critical (equilibrium) point, 172

decrescent, 458, 465

difference equation, 23, 325

differential inequality, 198

direction field, 2

distribution diagram, 187

dissipative system, 211

domain, 43

dynamical system, 168

eigenvalue, 135

eigenvector, 135

equi-bounded, 471

equi-ultimately bounded, 471

Euler’s buckling beam, 18, 299

Euler’s method, 66

evolution system, 8, 108, 118, 120

existence and uniqueness, 55

final state diagrams, 353

first integral, 212

fixed point, 100, 325, 501

flip bifurcation, 337

Floquet exponent, 155

Floquet theory, 153

flow, 4

fundamental matrix solution, 117

global properties, 378

gradient system, 217

Gronwall’s inequality, 48

Hamiltonian function, 212
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Hamiltonian system, 212

Hartman-Grobman theorem, 431

Hill’s equation, 158, 246

homeomorphism, 422

homogeneous, 108

Horn’s fixed point theorem, 513

horseshoe, 370

hysteresis, 303, 315

improper node, 183

initial condition (value, data), 2

initial value problem, 2

integral equation, 46

invariant set, 382

Jordan canonical form, 135

Jordan curve theorem, 379, 389, 390

L-asymptotically stable, 307, 312

leaky bucket, 51

Liapunov, 34, 197, 224, 260, 458

Liapunov exponent, 159

Lienard-type equation, 14, 404

Lienard’s graphing method, 406

limit cycle, 399

limit point, 380

ω-limit point, 380

α-limit point, 380

limit set, 380

ω-limit set, 380

α-limit set, 380

linear differential equation, 9

linearization, 177

linearly independent, 116

Liouville’s formula, 126

Lipschitz condition, 50, 63

local Lipschitz condition, 63

local properties, 378

logistic equation, 11

logistic map, 338

Lorenz system, 23, 361

Lotka-Volterra equation, 12, 413

manifold, 422, 423, 425, 429

map (mapping), 23, 36, 325

Massera, 511, 512

maximal interval of existence, 90

negative half-trajectory, 382

negatively invariant set, 382

negative side, 385

Newtonian system, 214

nonhomogeneous, 108

nonlinear equation, 10

norm, 42

normal form, 288

orbit, 169

order, 2

ordinary differential equation, 2, 44

pendulum, 13, 206

period-doubling bifurcation, 337

period-k cycle, 336

period-k orbit, 336

period-k point, 336

periodic solution, 31, 499

periodic window, 353

phase plane, 169

phase portrait, 169

Picard, 32, 46, 55

pitchfork bifurcation, 296

Poincaré-Andronov-Hopf bifurcation,
306

Poincaré-Bendixson theorem, 389

Poincaré-Bendixson annular region the-
orem, 403

Poincaré map, 366, 394
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Poincaré section, 366, 394

positive definite, 260, 458, 465

positive half-trajectory, 382

positive side, 385

positively invariant set, 382

potential energy, 214

principle of superposition, 108

proper node, 184

Putzer algorithm, 145

recursion relation, 20, 325

regular point, 172

route to chaos, 351

Routh-Hurwitz criterion, 233

ℜn-decrescent, 465

ℜn-positive definite, 465

ℜn-wedge, 465

saddle, 184

saddle-node bifurcation, 278

Sarkovskii ordering, 358

semigroup, 7, 108

sensitive dependence, 364, 368

separation of variables, 2

similar, 135

simple closed curve, 173

simply connected domain, 400

Smale horseshoe, 370

solution, 2, 44

solution of map, 325

spectral mapping theorem, 144
spiral point (focus), 186
stable, 17, 187, 224, 326, 337
stable manifold, 423, 425
strange attractor, 361
strictly bounded, 516
subcritical (supercritical), 298

total energy, 210
trajectory, 169
transcritical bifurcation, 288

uniformly asymptotically stable, 225
uniformly bounded, 28, 471
uniformly stable, 224
uniformly ultimately bounded, 30, 471
unimodal map, 356
universality, 356
unstable, 17, 184, 225, 326, 337
unstable manifold, 423, 425

van der Pol equation, 15, 404
variation of parameters formula, 7,

120

weak Lipschitz condition, 63
wedge, 458, 465
Wronskian, 131


