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Abstract

For A(t) and f (¢, x, y) T-periodic inz, we consider the following evolution equation with infinite
delay in a general Banach spake

W' @)+ ADu() = f(t, u(t), u;), t>0, u(s) =¢(s), s <0, (0.1)

where the resolvent of the unbounded operatar) is compact, andi;(s) = u(t +s), s < 0. By

utilizing a recent asymptotic fixed point theorem of Hale and Lunel (1993) for condensing operators
to a phase spac€, we prove that if solutions of Eq. (0.1) are ultimate bounded, then Eq. (0.1)
has aT-periodic solution. This extends and improves the study of deriving periodic solutions from
boundedness and ultimate boundedness of solutions to infinite delay evolution equations in general
Banach spaces; it also improves a corresponding result in J. Math. Anal. Appl. 247 (2000) 627-644
where the local strict boundedness is used.
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1. Introduction

This paper is concerned with deriving periodic solutions from ultimate boundedness of
solutions for the following infinite delay evolution equation:

W)+ A@u@) = f(t,u®),u;), t>0, u(s)=¢(s), s <0, (1.1)

in a general Banach spac#, || - ||), whereA(r) is a unbounded operator, adr) and
f(,x,y)areT-periodic int. Hereu; € C((—o0, 0], X) (space of continuous functions on
(—o0, 0] with values inX) is defined by, (s) = u(t +s), s <O0.

A standard approach in derivirigrperiodic solutions is to define the Poincare operator
[1] given by

P(¢) =ur(¢),

which maps an initial function (or value) along the unique solution(¢) by T-units.
Then conditions are given such that some fixed point theorem can be applied to get fixed
points for the Poincare operator, which give rise to periodic solutions.

In [7], a phase spac€, is constructed in order to study Eq. (1.1); and it is proved that
in C, the Poincare operator for Eq. (1.1) is a condensing operator with respect to Kura-
towski's measure of non-compactness. Therefore, Sadovskii’'s (or Darbo’s [3]) fixed point
theorem is used to get fixed points of the operatoand hencel -periodic solutions of
Eq. (1.1). In using Sadovskii’s fixed point theorem, it is required that the Poincare operator
maps some set into itself. Therefore, a notion called “local strict boundedness” (see Defin-
ition 4.1 in [7]) is introduced to fulfill this requirement. Local strict boundedness basically
says that solutions started initially from a set will remain in the same set, thus it requires
more than the conditions of boundedness and ultimate boundedness.

Recently, after analyzing Eq. (1.1) with the same structure as in [7] (so that the Poincare
operator is condensing), we find that the techniques used in [5—-7] and a recent asymptotic
fixed point theorem due to Hale and Lunel [3] for condensing operators (which is an ex-
tension of Browder’s asymptotic fixed point theorem for completely continuous operators)
can be employed to obtain a direct extension of the classical results in this area. That is, we
are able to prove that if solutions of Eq. (1.1) are bounded and ultimate bounded, then the
Poincare operator has a fixed point and hence Eq. (1.1) figsaiodic solution. This way,
the earlier studies of deriving periodic solutions from boundedness and ultimate bounded-
ness for evolution equations without delay or with finite delay can be carried to evolution
equations with infinite delay in general Banach spaces. It also improves a corresponding
result in [7] where the local strict boundedness is used.

After this, we will study the relationship between boundedness and ultimate bounded-
ness. We first reduce the requirement of boundedness by introducing a notion called “local
boundedness” (see Definition 3.1), and show that {local boundedness and ultimate bound-
edness} is equivalent to {boundedness and ultimate boundedness}. Finally, we show that
for Eq. (1.1) (with the same structure as in [7]) and some other equations, local bound-
edness holds. So that for Eg. (1.1) and some other equations, ultimate boundedness alone
implies boundedness and ultimate boundedness, which in turn implies the existence of
periodic solutions (see Theorem 3.4). This improves and simplifies many earlier results
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for which boundedness and ultimate boundedness are assumed in order to obtain periodic
solutions.

We will study periodic solutions in Section 2, and study the relationship between bound-
edness and ultimate boundedness in Section 3.

2. Periodic solutions

In this section we study periodic solutions for Eq. (1.1). We make the following assump-
tions.

Assumption 2.1. For a constan? > 0, f(t + T,x,y) = f(t,x,y), A(t + T) = A(t),
t > 0. f is continuous in its variables and is locally Lipschitzian in the second and the
third variables, ang” maps bounded sets into bounded sets.

Assumption 2.2 [8, p. 150]. Fort € [0, T] one has

(H1) The domainD(A(t)) = D is independent of and is dense iX .
(H2) Forr > 0, the resolvenR (%, A(t)) = (A — A(r))~* exists for allx with Rea <0
and is compact, and there is a constéindependent of. andr such that

|R(, A®)| <M(2+1)", Rer<oO.

(H3) There exist constanfs > 0 and O< a < 1 such that
[(A@) — A)) A < LIt =51, s,t,r €[0,T1.
Under these assumptions, the results in, e.g., [1,8] imply the existence of a unique evo-

lution systemU (¢, s), 0< s <t < T, for Eq. (1.1).
Now, we define the phase spaCg for Eq. (1.1). First, we have, from [7],

Lemma2.1[7, Lemma 2.1]There exists an integefp > 1 such that
1 Ko—1

whereMo = sup o I1U (¢, 0)|| is finite. Next, letvo = 7'/ Ko; then there exists a function
g on (—oo, 0] such thatg(0) =1, g(—o0) = oo, g is decreasing on(—oo, 0], and for
d > wo one has

g(s) o 1

su < =. 2.2
Sebs—d) "2 22)
Based on the above functi@gn the space
Cy= {q): ¢ € C((—00,0], X) and supw(—s)|| < oo} (2.3)
s<0 8()

is well defined and is a Banach space with the norm



708 J. Liu et al. / J. Math. Anal. Appl. 286 (2003) 705-712

. 6]

Concerning the solutions of Eq. (1.1), we have, from [7],

Theorem 2.1 [7, Theorem 2.1]Let Assumption2.1 and 2.2 be satisfied, and lep
C, be fixed. Then there exists a constant- 0 and a unigue continuous function
u:(—oo,a] - X such thatug=¢ (i.e.,u(s) =¢(s), s <0), and

t

u(t)=U(t,0)¢(0)+/U(t,h)f(h,u(h),uh)dh, t [0, al. (2.5)
0

A function satisfying (2.5) is called a mild solution of Eq. (1.1). Thus Theorem 2.1 says
that mild solutions exist and are unique for Eqg. (1.1). In the sequel, we follow [4,7] and
other related papers and call “mild solutions” as “solutions.” We also assume that solutions
exist on[0, co) in order to study periodic solutions; and we uge ¢) to denote the unique
solution with the initial functionp.

Now, consider the Poincare operafrC, — C, given by

P(p)=ur(.¢), ¢eCq, (2.6)

i.e.,(Pp)(s) =ur(s,¢) =u(T +s,¢), s <0, which maps the initial functios along the
unigue solution(-, ¢) by T units.

Definition 2.1[3]. Suppose that is Kuratowski’s measure of non-compactness in Banach
spaceY andthatP : Y — Y is a continuous operator. Théhis said to be @ondensing op-
eratorif P takes bounded sets into bounded sets, & B)) < «(B) for every bounded
setB of Y with «(B) > 0.

The following result is proved in [7].

Theorem 2.2[7, Theorem 4.1]Let Assumption®.1and2.2be satisfied. Then the operator
P defined by(2.6)is condensing irC, with g given in Lemm&.1

Next, we state a recent asymptotic fixed point theorem due to Hale and Lunel [3] for
condensing operators, which is an extension of Browder’s asymptotic fixed point theorem
for completely continuous operators.

Theorem 2.3[3]. Supposey € S1 € S» are convex bounded subsets of a Banach space
So and S, are closed, and is open inS2, and suppos® : S> — Y is (S2) condensing in
the following sensef U and P(U) are contained inS2 anda(U) > 0, thena(P(U)) <
a(U). If PI(S1) € S5, j >0, and, for any compact séf C Sy, there is a numbeN (H)
such thatP*(H) C So, k > N(H), thenP has a fixed point.

Based on this, we deduce the following asymptotic fixed point theorem for condensing
operators.



J. Liu et al. / J. Math. Anal. Appl. 286 (2003) 705-712 709

Theorem 2.4. SupposeSy C 51 C S2 are convex bounded subsets of a Banach sjyacs
and S» are closed, and is open inS2, and suppose is a condensing operator ifi. If
PJ(S1) C So, j >0, and there is a numbe¥ (S1) such thatP¥ (S1) € So, k > N(S1), then
P has a fixed point.

Notice that the statement in Theorem 2.4 is similar to that of Browder's or Horn’s as-
ymptotic fixed point theorem. But the difference is that Theorem 2.4 does not involve
compactness, and therefore is particularly useful here because, as discussed in [7], under
the Poincare operatdt with infinite delay, an initial function oti—oco, 0] becomes a seg-
ment on(—oo, 0] of a function defined ori—oo, T']. Thus compactness is not applicable
now to the Poincare operatér, hence Browder’s or Horn’s asymptotic fixed point theorem
(which involves compactness) cannot be used here to deal with infinite delay.

Next, we state the definitions of boundedness and ultimate boundedness [2] and show,
by using Theorem 2.4, that they can be used to derive the existence of periodic solutions.

Definition 2.2. The solutions of Eq. (1.1) are said to beundedf for eachB; > 0, there
is B2 > 0, such that¢|, < By andr > 0 imply that its solution satisfigif«(z, ¢)|| < Bo.

Definition 2.3. The solutions of Eq. (1.1) are said tollémate bounded there is a bound
B > 0, such that for eacl®3 > 0, there isK > 0, such thai¢|, < Bz andr > K imply
that its solution satisfielu (¢, ¢)|| < B.

Theorem 2.5. Let Assumption2.1 and 2.2 be satisfied. If the solutions of E(L.1) are
bounded and ultimate bounded, then Eyl) has aT-periodic solution.

Proof. Letthe operato® be defined by (2.6). From [7], we have
P"($) = tumr($), ¢€Cq, m=0,1,2,.... (2.7)

Next, letB > 0 be the bound in the definition of ultimate boundedness. Using boundedness,
there isBy > B such tha{|¢|, < B, t > 0} implies|lu(t, ¢)|| < B1. Also, there isB, > By
such that{|¢|, < By, t > 0} implies |Ju(t, ¢)|| < B2. Next, using ultimate boundedness,
there is a positive integef such thaf|¢|, < B1, t > JT} implies|u(t, ¢)|| < B.

Now let

S2={¢ € Cyl I9lg < B2},

W={peC, |¢l, < B}, S1=wnSsy,

So={¢ e Cy: |9l < BY, (2.8)
so thatSp € §1 C S are convex bounded subsets of Banach sga¢éo ands; are closed,
andSi is openinSsz. Next, forg € S; andj > 0,
llujr (s)l _s Nlu(GT + )|

g(s) s<0 g(s)
lu(jT +s)| lu(jT + s)|| }

< max{ sup ,
s<—jt 8(5) se[—jT.00  8($)

|P/glg = |ujr(¢)|, =sup
s<0
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gmax{supM, sup ||u(l)“}
1<08U—JjT) ep0,j1)

< max{sup”u(l)”, sup [u) H} <max{|¢le, B2} < Bz, (2.9)
1<0 &) ieo,jT

which impliesP/(S1) € S2, j > 0. Now, we prove that there is a numbé¢s;) such that
PK(S1) € So for k > N(S1). To this end, we choose a positive integer= m(B;) such

that
1\" B

and then choose an integr= N(S1) > J such that
B2
—_— <
g(—=(N—=)T)
wherewg is from Lemma 2.1. Then fap € S1 andk > N,

lukr (s) | lu(kT +5)||
Pk = = — = _—
79l |ukT(¢)|g 525’ g(s) fgo g(s)

kT kT
< max{ sup MK+ KT +9))
sS—kT 8(s) s€[—kT,—(k—J)T] g(s)

NT >mwo and (2.11)

9

sup w} (2.12)

sel—(k—J)T,0] g(s)
For the terms in (2.12), we have

kT
sup [l ( +S)||< su

p |ud)| <B. (2.13)
se[—=(k—=J)T,0] g(s) 1e[JT.KT]

and
kT )
sup lukT + s) |l < lu)ll
se[—kT,—(k—J)T] g(s) 1ef0,J71 8 —kT)
B2 B2

< < <B, (2.14)
g(=k—=NT) ~g(—=(N—-J)T)

and
lukT + )1l lu@
s<—kr  8($) 1<0 8 —kT)
— ey luOIl &) < I6ly sup g
1<o &) g —kT) 1<0 8U —kT)
< Bysup g)  gl—wo) gl —(m—Dywo) g(l—mwo)'
1<0 8 — wo) g(l — 2wo) gl —mwo) g —kT)

(2.15)

Now, from Lemma 2.1, fof > 0,
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g(l - iwo)  _ g(s) < g(s) < }. (2.16)
1<0 8 — (i + Dwo)  y<_juy 86 —wo)  ;<0g(s —wo) 2
Thus, (2.15) becomes
kT 1\" 1 —
sup 1 Il g <_) supS L= mwo)
s<—kr  8() 2) 1<o gl —kT)
B I — I —
< Bl_supw g Bsupw o (217)
B1 <0 gl —NT) 1<0 &I —mwo)
Therefore, (2.12) becomes
|P*¢l, <B, k>N, (2.18)

which implies P¥(S1) C So, k > N(S1). Now, Theorem 2.4 can be used to obtain a fixed
point for the operatoP, which, from [7], gives rise to & -periodic solution of Eq. (1.1).
This proves the theorem.o

3. Boundedness and ultimate boundedness

In this section, we will study the relationship between boundedness and ultimate bound-
edness. To this end, we introduce the following notion of “local boundedness,” which will
reduce the requirement of the boundedness.

Definition 3.1. The solutions of Eq. (1.1) are said to loeally boundedf for eachB; > 0
andK > 0, there isB, > 0, such thaf¢|, < By and 0< ¢ < K imply that its solution
satisfiedlu(z, ¢)|| < B2.

Theorem 3.1. { Local boundedness and ultimate boundedpéesglies{ boundedness and
ultimate boundedneps

Proof. We only need to prove the boundedness.Ret 0 be the bound in the definition of
ultimate boundedness. For aBy > 0, from the ultimate boundedness, ther&is- 0 such
that|¢|, < Brandr > K imply |lu(z, ¢)|| < B. Next, solutions are locally bounded, so that
for the givenB; > 0 andK > 0, there isB, > B such thal¢|, < B1 and 0< ¢ < K imply
lu(z, )|l < B2. Now, it is clear thai¢|, < By ands > 0 imply [lu(z, ¢)|| < B2, which
proves the boundednessa

Accordingly, we can restate Theorem 2.5 as follows.

Theorem 3.2. Let Assumptiong.1 and 2.2 be satisfied. If the solutions of EL.1) are
locally bounded and ultimate bounded, then Bigl) has a7 -periodic solution.

Next, note that with some conditions on the functibrsuch as Lipschitzian conditions,
it is shown in [7] that the solutions of Eq. (1.1) are indeed locally bounded.
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Theorem 3.3 [7, Theorem 2.2]Let Assumption2.1 and 2.2 be satisfied. Then the solu-
tions of Eq.(1.1)are locally bounded.

Therefore, using Theorems 3.2 and 3.3, we conclude that for Eq. (1.1), ultimate bound-
edness alone implies the existencdeperiodic solutions, which is stated below.

Theorem 3.4. Let Assumption&.1 and 2.2 be satisfied. If the solutions of EL.1) are
ultimate bounded, then E{L.1) has aT -periodic solution.

Note that in [7], the local boundedness is proven using the Lipschitzian conditions and
Gronwall’'s inequality on finite intervals. Therefore, the local boundedness will hold for a
large class of differential equations and integrodifferential equations if similar conditions
are assumed. Consequently, for those equations, ultimate boundedness alone implies the
existence of periodic solutions. This result improves and simplifies many earlier results
for which boundedness and ultimate boundedness are assumed in order to derive periodic
solutions.
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