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We extend the method of sums of commuting operators to the study of the existence and uniqueness of
bounded solutions of Volterra equations of the form _uuðtÞ ¼ AuðtÞ þ

R1
0 dBð�Þuðt� �Þ þ f ðtÞ with bounded f

in the infinite dimensional case. The main results are necessary and sufficient conditions for the above equa-
tions to have a unique bounded solution with spectrum not intersecting the spectrum of the equation under
consideration. Applications are made to illustrate the main results.
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1. INTRODUCTION

In this article we are concerned with Volterra equations of the form

_uuðtÞ ¼ AuðtÞ þ

Z 1

0

dBð�Þuðt� �Þ þ f ðtÞ, ð1Þ

where f is a bounded continuous (or almost periodic) function, A is in general
unbounded closed linear operator on a Banach space X, with the domain D(A) and
(the standing condition) fBðtÞgt� 0 is a family of closed linear operators in X,
Bð�Þ : Rþ ! LðY,XÞ is left continuous and of bounded variation, where Y is D(A)
with the graph norm kyk :¼ kAyk þ kyk, 8y 2 DðAÞ.
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The study of bounded and almost periodic solutions of linear inhomogeneous equa-
tions is one of central topics of the qualitative theory of differential equations which
plays an important role in investigating the behavior of solutions of the perturbed non-
linear equations (see e.g. [6,9,10,14,15,26]). As is well known, many problems of applied
mathematics lead to equations of the form (1) (see for instance [4,7,10,14,20]). The
global theory of (1) is concerned with the existence of periodic, almost periodic
solutions of (1) with f of similar property.

Recently, of increasing interest is the extension of the classical results in the finite
dimensional case to the infinite dimensional case (see [1,2,5,8,13,16,17,19–22,23,24]
and the references therein for more information). The general setting of the problem
stated above has been first studied by Prüss [19]. Necessary and sufficient conditions
for several classes of equations, including the case where the spectrum of f is compact,
have been obtained. For example, when A is the generator of an analytic semigroup the
main task in [19] is to try to prove the following condition

� \�0 ¼ �, ð2Þ

where �0 :¼ f� 2 R: 6 9ði� � A� cdBdBð�ÞÞ�1
2 LðX,YÞg (which is called spectrum of

Eq. (1), here cdBdBð�Þ stands for the Fourier transform of dB), is a necessary and sufficient
condition for the admissibility of the function space �ðXÞ for Eq. (1). However, as
pointed out in [19, p. 136], the problem of finding necessary and sufficient spectral con-
ditions for the existence of bounded solutions to the general class of equations with B
of bounded variation is open. For example, the question of whether (2) is necessary and
sufficient for the existence and uniqueness of periodic solution to the following simplest
equation

_uuðtÞ ¼ AuðtÞ þ Buðt� 1Þ þ f ðtÞ, t 2 R, ð3Þ

where A is the generator of an analytic semigroup and B is an arbitrary bounded linear
operator, is still open. Needless to say, this kind of problem has many applications in
physics, biology, etc. In [8,21] necessary and sufficient conditions for the existence of
periodic solutions to Eq. (1) have been given with some additional conditions on the
phase spaces or f. We refer the reader to [11,12] and the references therein for complete
results in the finite dimensional case.

In this article we will extend the abstract approach of sums of commuting operators
as done in [16] in combination with the method of Prüss in [19] to give a necessary and
sufficient condition for the existence of bounded solutions to Eq. (1). Our results can be
applied to solve completely the above kind of problems (3) with B even more general.
Roughly speaking, our method of study is first to decompose f into two components
one of which has a compact spectrum and the other one has a spectrum far enough
from zero. Then we solve the equation with the first component by using Prüss’
method. The second component can be dealt with by using the sums of the commuting
operators method. Finally, the superposition principle allows us to get the bounded sol-
ution for the starting equation by summing up the two solutions obtained above. The
main result obtained in this article is Theorem 4. Its particular case, Theorem 5 resolves
completely the bounded solution problem for the case of bounded B(t). Applications
are provided in Section 5. The results of this article complement and extend several
results of [11,12,15,16,19,25].
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2. PRELIMINARIES

2.1. Notation

Throughout the article we will use the following notations: N, Z, R, C stand for the set
of natural, integer, real, complex numbers, respectively, and N0 :¼ N [ f0g. X will
denote a given complex Banach space. If T is a linear operator on X, then D(T)
stands for its domain. Given two Banach spaces Y,W by LðY,WÞ we will denote the
space of all bounded linear operators from Y to W and LðX,XÞ :¼ LðXÞ. As usual,
�ðTÞ, �ðTÞ,Rð�,TÞ are the notations of the spectrum, resolvent set, and resolvent of
the operator T, respectively. We will denote by �iðTÞ :¼ f� 2 R: i� 2 �ðTÞg. The nota-
tions BUCðR,XÞ, APðXÞ will stand for the space of all X-valued bounded uniformly
continuous functions on R and its subspace of almost periodic functions in Bohr’s
sense. By ðSðtÞÞt� 0 we will denote the translation group on BUCðR,XÞ, i.e.,
SðtÞvðsÞ :¼ vðtþ sÞ, 8t, s 2 R, v 2 BUCðR,XÞ with infinitesimal generator D :¼ d=dt
which is defined on DðDÞ :¼ BUC1

ðR,XÞ. Let M be a subspace of BUCðR,XÞ, A
be a linear operator on X. We shall denote by AM the operator f 2 M�Af ð�Þ with
DðAMÞ ¼ f f 2 Mj8t 2 R, f ðtÞ 2 DðAÞ,Af ð�Þ 2 Mg. When M ¼ �ðXÞ (see the defini-
tion of this function space in the next subsection) we shall use the notation A :¼ AM.

2.2. Spectrum of a Bounded Uniformly Continuous Function

The spectrum of a given function u 2 BUCðR,XÞ is defined as the following set
(Beurling spectrum)

spðuÞ :¼ f� 2 R: 8� > 0 9 f 2 L1ðRÞ, supp F f � ð� � �, � þ �Þ, f � u 6¼ 0g, ð4Þ

where

f � uðsÞ :¼

Z þ1

�1

f ðs� tÞuðtÞ dt F f ðsÞ :¼

Z 1

�1

e�istf ðtÞ dt:

It coincides with the set (Carleman spectrum) consisting of � 2 R such that the Fourier–
Carleman transform of u

ûuð�Þ ¼

Z 1

0

e��tuðtÞ dt, (Re �>0) ;

�

Z 1

0

e�tuð�tÞ dt, (Re �<0)

8>><>>: ð5Þ

has no holomorphic extension to a neighborhood of i� (see e.g. [20, Proposition 0.5,
p. 22]). In turn, the Carleman spectrum of a uniformly continuous and bounded func-
tion u coincides with its Arveson spectrum

ispðuÞ ¼ �ðDMu
Þ, ð6Þ

where Mu is the closed subspace of BUCðR,XÞ spanned by all translations of u , i.e.,

Mu :¼ spanfSð�Þu, � 2 Rg, ð7Þ
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(see [2, Section 2] for a short introduction to these notions of spectrum and its
inter-relations).

We collect some main properties of the spectrum of a function, which we will need in
the sequel, for the reader’s convenience.

THEOREM 1 Let f , gn 2 BUCðR,XÞ, n 2 N, such that gn ! f as n ! 1,  2 S, where S
is the Schwartz space of all C1-functions on R with each of its derivatives decaying faster
than any polynomial. Then

(i) sp( f ) is closed,
(ii) spð f ð� þ hÞÞ ¼ spð f Þ,
(iii) If � 2 Cnf0g spð�f Þ ¼ spð f Þ,
(iv) If spðgnÞ � � for all n 2 N then spð f Þ � �,
(v) If A is a closed operator, f ðtÞ 2 DðAÞ, 8t 2 R and Af 2 BUCðR,XÞ, then

spðAf Þ � spð f Þ,
(vi) spð � f Þ � spð f Þ \ suppF ,
(vii) spð f �  � f Þ � spð f Þ \ suppð1� F Þ,
(viii) For K 2 BVðLðY,XÞÞ , spðdK � f Þ � spð f Þ.

Proof For the proof we refer the reader to [20, Proposition 0.4, p. 20, Proposition 0.6,
p. 25, Theorem 0.8 , p. 21] and [19, Proposition 2]. g

Definition 1 A closed and translation invariant subspace M of the function space
BUCðR,XÞ , i.e., Sð�ÞM � M for all � 2 R , is said to satisfy condition H if the follow-
ing condition is fulfilled:

8C 2 LðXÞ, 8f 2 M ) Cf 2 M:

In the article, as a model of the translation invariant subspaces, which satisfy
condition H, we can take

�ðXÞ :¼ fu 2 BUCðR,XÞ: sp(u) � �g, ð8Þ

where � is a given closed subset of the real line. In connection with the translation
invariant subspaces we need the following simple spectral properties.

LEMMA 1 Let M satisfy condition H. Then �ðAMÞ � �ðAÞ and

kRð�,AMÞk � kRð�,AÞk, 8� 2 �ðAÞ:

Proof Let � 2 �ðAÞ. We show that � 2 �ðAMÞ. In fact, as M satisfies condition H,
8f 2 M,Rð�,AÞf ð�Þ :¼ ð�� AÞ�1f ð�Þ 2 M. Thus the function Rð�,AÞf ð�Þ is a solu-
tion to the equation ð��AMÞu ¼ f . Moreover, since � 2 �ðAÞ it is seen that the above
equation has at most one solution. Hence � 2 �ðAMÞ. Obviously, kRð�,AMÞk �

kRð�,AÞk. g

2.3. Sums of Commuting Operators

We recall now the notion of two commuting operators which will be used in the sequel.
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Definition 2 Let A and B be operators on a Banach space G with nonempty resolvent
set. We say that A and B commute if one of the following equivalent conditions hold:

(i) Rð�,AÞRð�,BÞ ¼ Rð�,BÞRð�,AÞ for some (all) � 2 �ðAÞ,� 2 �ðBÞ,
(ii) x 2 DðAÞ implies Rð�,BÞx 2 DðAÞ and ARð�,BÞx ¼ Rð�,BÞAx for some (all)

� 2 �ðBÞ.

For 	 2 ð0,
Þ,R > 0 we denote �ð	,RÞ ¼ fz 2 C: jzj � R, j arg zj � 	g.

Definition 3 Let A and B be commuting operators. Then

(i) A is said to be of class �ð	,RÞ if there are positive constant R and

�ð	,RÞ � �ðAÞ and sup
�2�ð	,RÞ

k�Rð�,AÞk :¼ M <1, ð9Þ

(ii) A and B are said to satisfy condition P if there are positive constants 	, 	0,R such
that 	0 < 	 < 
=2, A and B are of class �ð	 þ 
=2,RÞ,�ð
=2� 	0,RÞ, respectively.

If A and B are commuting operators, Aþ B is defined by ðAþ BÞx ¼ Axþ Bx with
domain DðAþ BÞ ¼ DðAÞ \DðBÞ.

In this article we will use the following norm, defined by A on the space X, kxkT A
:¼

kRð�,AÞxk, where � 2 �ðAÞ. It is seen that different � 2 �ðAÞ yields equivalent norms.
We say that an operator C on X is A-closed if its graph is closed with respect to the
topology induced by T A on the product X�X. It is easily seen that C is A-closable
if xn ! 0, xn 2 DðCÞ,Cxn ! y with respect to T A in X implies y¼ 0. In this case,
A-closure of C is denoted by C

A
.

THEOREM 2 Assume that A and B commute. Then the following assertions hold:

(i) If one of the operators is bounded, then

�ðAþ BÞ � �ðAÞ þ �ðBÞ: ð10Þ

(ii) If A and B satisfy condition P, then Aþ B is A-closable, and

� ðAþ BÞ
A

� �
� �ðAÞ þ �ðBÞ: ð11Þ

In particular, if D(A) is dense in X, then ðAþ BÞ
A
¼ Aþ B, where Aþ B denotes the

usual closure of Aþ B.

Proof For the proof we refer the reader to [3, Theorems 7.2, 7.3]. g

2.4. Unbounded Perturbation of Operators

We will consider the Volterra equation (1) as a perturbed equation of the evolution
equation u0 ¼ Au. To this end, the following perturbation theorem is the key tool.

THEOREM 3 Let A be of class �ð	,RÞ and M be defined by (9) for some 
 > 	 > 
=2.
Suppose also that B is a linear operator with DðBÞ 	 DðAÞ and there are nonnegative
reals �,� such that

kBxk � �kAxk þ �kxk, 8x 2 DðAÞ:
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There exists a positive number R0 such that if 0 � � � � :¼ ð1=2Þð1þMÞ
�1, then Aþ B is

of class �ð	,R0Þ.

Proof The proof can be taken from the one in [18, the proof of Theorem 2.2.1,
p. 80]. g

Remark 1 In this article we will consider the operator A which is of class �ð	 þ 
=2,RÞ
with 
=2 > 	 > 0. In particular, if A is the generator of a uniformly bounded analytic
semigroup of bounded linear operators, then A is of the above class.

3. BOUNDED AND ALMOST PERIODIC SOLUTIONS

From the standing hypothesis on Bð�Þ, it follows that if u 2 DðABUCðR,XÞÞ, then
u 2 DðBBUCðR,XÞÞ, where BBUCðR,XÞuðtÞ :¼

R1
0

dBðÞuðt� Þ. Moreover,

kBBUCðR,XÞuð�Þk � VarBj10 kABUCðR,XÞuð�Þk þ VarBj10 kuð�Þk, 8u 2 DðBBUCðR,XÞÞ:

We will fix a pair of nonnegative constants a, b (which may be different from the pair
ðVarBj10 , VarBj10 Þ) such that

kBBUCðR,XÞuð�Þk � akABUCðR,XÞuð�Þk þ bkuð�Þk, 8u 2 DðBBUCðR,XÞÞ: ð12Þ

Let � � R be a closed subset. We will consider the following abstract operator
equation

Du ¼ Auþ Buþ f ð13Þ

where D :¼ d=dt, AuðtÞ ¼ AuðtÞ, BuðtÞ ¼
R1
0 dBð�Þuð� � tÞ in the function space �ðXÞ.

Obviously, A consists of all functions w 2 �ðXÞ such that wðtÞ 2 DðAÞ, 8t 2 R and
Awð�Þ 2 BUCðR,XÞ, i.e., supt2R kwðtÞk <1 and supt2R kAwðtÞk <1. DðBÞ consists of
all functions w 2 �ðXÞ such that wðtÞ 2 DðAÞ, 8t 2 R and if vðtÞ :¼

R þ1

0 dBðÞwðt� Þ,
then v 2 BUCðR,XÞ. Hence, in �ðXÞ, B is A-bounded, so it may be regarded as a
unbounded perturbation of A. Below we will consider the sum of the operators �D

and Aþ B. These are commuting operators as shown in the following lemma.

LEMMA 2 Under the above notation, D and Aþ B are commuting operators.

Proof Obviously, DðA þ BÞ ¼ DðAÞ. To prove the lemma it suffices to show that for
fixed �0, 0 such that <�0 > 0 (hence �0 2 �ðDÞ) and 0 2 �ðA þ BÞ we have

Rð�0,DÞRð0, ðA þ BÞÞ ¼ Rð0, ðA þ BÞÞRð�0,DÞ: ð14Þ

Recall that D generates the translation group ðSðtÞÞt2R. Hence,

Rð�0,DÞv ¼

Z 1

0

e�i�0tSðtÞv dt, 8v 2 �ðXÞ:
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Thus, it remains to show that the translation group ðSðtÞÞt2R commutes with Aþ B. In
fact, let us denote Rð0,Aþ BÞf ¼ w. This means that w is the unique solution in �ðXÞ

to the equation

0wðtÞ � AwðtÞ �

Z 1

0

dBð�Þwðt� �Þ ¼ f ðtÞ, 8t 2 R

for any fixed f 2 �ðXÞ. Of course, for every � 2 R the function Sð�Þw is a solution
to the above equation with the right hand side Sð�Þf 2 �ðXÞ. Thus, Sð�Þw ¼

Rð0,Aþ BÞ Sð�Þf . From the arbitrary nature of f 2 �ðXÞ, this yields

Sð�ÞRð0,Aþ BÞ ¼ Rð0,Aþ BÞSð�Þ, 8� 2 R,

i.e., the commutativeness of the translation group and the operator Rð0,Aþ BÞ. This
completes the proof of the lemma. g

On the other hand, we have the following lemma.

LEMMA 3 Let A be of class �ð	 þ 
=2,RÞ for 
=2 > 	 > 0 with constant M and
a � ð1=2Þð1þMÞ

�1, where a is a nonnegative real chosen in (12). Then on �ðXÞ,
Aþ B is of class �ð	 þ 
=2,R0Þ with R0 independent of �.

Proof The lemma is an immediate consequence of Theorem 3 and (12). In fact, by
Lemma 1 and (v) of Theorem 1, A is of the same class as A. Again, by (viii) of
Theorem 1 and Theorem 3 the operator Aþ B is of class �ð	 þ 
=2,R0Þ for some
positive R0 independent of � (which depends only on the constants a, b,M, determined
by A,Bð�Þ). g

3.1. Definition of Admissibility

Definition 4

(i) A function u 2 BUCðR,XÞ is said to be a (classical ) solution of Eq. (1) if
u0ð�Þ 2 BUCðR,XÞ, uðtÞ 2 DðAÞ, 8t 2 R,Auð�Þ 2 BUCðR,XÞ and Eq. (1) holds.

(ii) (cf. [5, Def. 2.1, p. 41]) A function u 2 BUCðR,XÞ is said to be a mild solution of
Eq. (1) if there are a sequences of classical solutions unð�Þ 2 BUCðR,XÞ of Eq. (1)
with the right hand side fn 2 BUCðR,XÞ such that un ! u and fn ! f as n ! 1.

We adopt the definition of admissibility (see also [20]) as follows:

Definition 5 The function f in Eq. (1) is said to be regular if Eq. (1) has at least one
classical solution u. A translation invariant closed subspace M � BUCðR,XÞ is said
to be almost admissible for Eq. (1) if for every f 2 M Eq. (1) has a unique mild solution
uf 2 M such that the operator M 3 f � uf 2 M is continuous. An almost admissible
function space M is said to be admissible if every trigonometric monomial xei�t, as a
function of t, is regular if it belongs to M.

Remark 2

(i) In the case where A is the generator of a strongly continuous semigroup and B(t)
is extendable to a bounded linear operator on the whole space X such that Bð�Þ
is a function of bounded variation from Rþ ! LðXÞ, the notion of admissibility
means that for every f 2 M there is a unique mild solution xf 2 M in the usual
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sense to Eq. (1) (see [16, §3.4]). In this case we will say that B is of the bounded case.
(ii) The notion of admissibility in [19] is a little stronger than the one in the above defi-

nition. In fact, in [20] it is required that all elements ofM\ BUC1
ðR,XÞ be regular.

This requirement yields that every trigonometric monomial xe�t is regular if it is
in M. However, if B is of the bounded case, all these notions are the same for
the function space �ðXÞ (see [16, Corollary 3.1]).

3.2. Necessary and Sufficient Conditions for Admissibility

Below we will denote

�0 :¼ � 2 R :6 9 i�� A�

Z 1

0

dBðÞe�i�

� ��1

2 LðX,YÞ

( )
:

PROPOSITION 1 Let � 2 R be a closed subset and �ðXÞ be admissible for Eq. (1). Then
the following assertions hold:

(i) � \�0 ¼ �,
(ii) spðuÞ � �0 for every (classical) solution u of the homogeneous equation (i.e. Eq. (1)

with f¼ 0).

Proof The second assertion has been proved in [19, Proposition 1]. For the first asser-
tion we note that translations commute with the Green operator G which takes every
f 2 �ðXÞ into the unique mild solution uf 2 �ðXÞ. In fact, for classical solutions, this
claim is obvious because if uf is a classical solution of Eq. (1) with f, then SðhÞuf
is the unique classical solution of Eq. (1) with SðhÞf for any h 2 R. Hence,
SðhÞGf ¼ GSðhÞf . Recall that there is a dense subset of �ðXÞ of such regular functions
f. Since the Green operator, by definition, is a (unique) extension of the operator f � uf
defined on the set of regular f of �ðXÞ, this operator commutes with translations as
well. Hence, for the function f ðtÞ :¼ xei�t, x 2 X, � 2 � we have SðhÞGf ¼ GSðhÞf ,
8h 2 R. This yields that

dGf

dt
¼ lim

h!0

SðhÞGf � Gf

h
¼ lim

h!0
G
SðhÞf � f

h
¼ i�Gf :

This shows that Gf ðtÞ ¼ yei�t for some y 2 X. On the other hand, by definition of
admissibility, this trigonometric monomial should be a classical solution of Eq. (1).
This yields in particular that y 2 Y. Hence, we have proved the existence of an operator
P : X 3 x� y 2 Y. Obviously, by definition of admissibility, this operator is continu-
ous. Next, we see that P is the bounded inverse of the following operator

Q : Y 3 y� i�� A�

Z 1

0

dBð�Þe�i�

� �
y 2 X:

In fact, both P,Q are continuous linear operators. Moreover, Q is injective, and
obviously, PQ ¼ IY, QP ¼ IX. Thus, � 62 �0.

Remark 3 Similar results were proved in [19, Proposition 1] for a little different defini-
tion of admissibility. Without additional conditions we cannot say anything about the
relation between spðuÞ, spð f Þ, and �0.
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PROPOSITION 2 Let A be of class �ð	 þ 
=2,RÞ with 
=2 > 	 > 0, B be of bounded
variation with a < ð1=2Þð1þMÞ

�1, where the constant a is chosen to satisfy (12) and
M is determined by A. Then � \ �iðA þ BÞ ¼ � is a sufficient condition for the almost
admissibility of the function space �ðXÞ for Eq. (1).

Proof The theorem is an immediate consequence of Theorem 2 and Lemma 3. g

COROLLARY 1 Given A, B as in Proposition 2. Then if for sufficiently large N such that
� \ ½�N,N
 ¼ �, �ðXÞ is almost admissible for Eq. (1).

Proof Under the corollary’s assumptions, on the space �0ðXÞ the operator Aþ B is of
class�ð	 þ 
=2,R0Þwith 
=2 > 	 > 0 with some R0 independent of�0. This yields in par-
ticular that the set �iðA þ BÞ � ½�R0,R0
 for any closed subset �0 � R. Consequently, if
� \ ½�R0,R
 ¼ �, then in �ðXÞ all conditions of Proposition 2 are satisfied. g

In this subsection we will prove the following theorem which is the main result of the
article.

THEOREM 4 Let A be the generator of an analytic semigroup, and B be of bounded vari-
ation with a < ð1=2Þð1þMÞ

�1, where the constant a is chosen to satisfy (12) and M is
determined by A. Then, the function space �ðXÞ is admissible for Eq. (1) if and only if
� \�0 ¼ �.

Proof It may be seen that it suffices to prove the theorem with the assumption that A
is of class �ð	 þ 
=2,RÞ for some 0 < 	 < 
=2 and R>0. We will use the principle of
superposition, i.e., if the equations _xx¼AxðtÞ þBxðtÞ þ f1ðtÞ and _yy¼AyðtÞ þByðtÞ þ f2ðtÞ
have two solutions xð�Þ,yð�Þ. Then, the equation _xx¼AxðtÞ þBxðtÞ þ ð f1ðtÞ þ f2ðtÞÞ have a
solution xð�Þ þ yð�Þ. Now using the sums of the commuting operators method we can
show that on �ðXÞ the operator AþB is of class �ð	,RÞ for some positive R,

 > 	 > 
=2 (these constants are determined by the operator A, independent of �), so
�iðAþBÞ � ½�R,R
 (recall that �iðAþBÞ :¼ f� 2R: i� 2 �ðAþBÞ). On the other hand,
for every f 2�ðXÞ we can decompose it into two components one of which has spec-
trum outside the area of �iðAþBÞ � ½�R,R
, say, f2. The other component f1 has
compact spectrum in ½�R� 1,Rþ 1
. In fact, we can choose a continuous function ’
on R such that F’ðtÞ ¼ 1, 8t 2 ½�R,R
, F’ðtÞ ¼ 0, 8jtj �Rþ 1 and 0�F’ðtÞ, 8t 2R

(recall that F’ denotes the Fourier transform of ’). In this way, we can define
f1 :¼ ’ � f , f2 :¼ f � ’ � f . By (vi) and (vii) of Theorem 1

spð f1Þ � spð f Þ \ suppðF’Þ � spð f Þ \ ½�R� 1,Rþ 1


spð f2Þ � spð f Þ \ suppð1� F’Þ � spð f Þ \Rn½�R,R
:

Thus, we can apply Prüss’ result [19, Theorem 1] for the equation (1) with f1. The equa-
tion with f2 can be solved by using Corollary 1. Now we show that �ðXÞ is admissible.
To this end, we will establish the Green operator on �ðXÞ for Eq. (1) which will be
defined on a dense subset F of regular functions. We will denote

�1 :¼ � \ ½�R� 1,Rþ 1


�2 :¼ � \ ðRn½�R,R
Þ:
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Let us denote by F 2 the subset of�2ðXÞ such that for every f2 2 F 2 Eq. (1) has a unique
classical solution in�2ðXÞ. In�2ðXÞ, the operator ðD�A�BÞ�2ðXÞ is invertible. In fact,
�ð�D�2ðXÞÞ ¼ i�2,meanwhile, i�iððAþBÞ�2ðXÞÞ ¼ �ððAþBÞ�2ðXÞÞ \ iR� i½�R,R
.Hence,
Theorem 3 applies. Thus, F 2 is dense in �2ðXÞ. We define F :¼�1ðXÞþF 2. Obviously,
by the above argument, for every f 2F there is at least a classical solution uf 2�ðXÞ to
Eq. (1).We now show that such a solution uf is unique. In fact, this is an immediate conse-
quence of the assertion (ii) of Proposition 1. For every function g 2�ðXÞ we denote by
g1 :¼ ’ � g, g2 :¼ g�’ � g. Note that since F’ has compact support, this decomposition
is continuous with respect to g 2�ðXÞ. Solving Eq. (1) separately with respect to f1, f2 we
have solutionsG1 f1 :¼ uf1 ,G2 f2 :¼ uf2 , whereG1,G2 denote the Green operator of Eq. (1)
on �1ðXÞ and the operator ððD�A�BÞ�2ðXÞÞ

�1 defined on �2ðXÞ. The above argument
shows that the mapping G :F 3 f �uf :¼ uf1þ uf2 2�ðXÞ can be extended uniquely to
a continuous mapping on the whole space �ðXÞ by the formula Gf :¼G1 f1þG2 f2. It
remains to show that every trigonometric monomial xei�t is a regular function. In fact,
since � 62�0, ði��A� cdBdBð�ÞÞ�1

2 LðX,YÞ. Hence, yei�t is a classical solution of Eq. (1)
with f ðtÞ :¼ xei�t, where y :¼ ði��A� cdBdBð�ÞÞ�1x.
In the same way as above we consider the following equation

_uuðtÞ ¼ AuðtÞ þ

Z þ1

�1

dBðÞuðt� Þ þ f ðtÞ, ð15Þ

where A is the generator of an analytic semigroup, BðtÞ 2 LðXÞ, 8t 2 R, and Bð�Þ is of
bounded variation, and f is a bounded continuous function. A minor modification
of the proof of [19, Theorem 1] shows that its statement remains true for equations
of the form (15). Applying exactly the method of proving Theorem 4 we arrive at the
following result which resolves completely the bounded solution problem for the
bounded case of B.

THEOREM 5 Let the above conditions be fulfilled for Eq. (15) and � be a closed subset of
R. Then the function space �ðXÞ is admissible for Eq. (15) if and only if � \�0 ¼ �:

Remark 4 Several particular cases of Theorem 5 has been proved in [11,12,15,16].

For a closed subset � � R let us denote by AP�ðXÞ the subspace of APðXÞ consisting
of all almost periodic functions f such that spð f Þ � �. Obviously, AP�ðXÞ is a closed
subspace of �ðXÞ which is invariant under translations.

THEOREM 5 Let the conditions of Theorem 5 (Theorem 5, respectively) be satisfied. Then
AP�ðXÞ is admissible for Eq. (1) (Eq. (15), respectively).

Proof Note that the proof of [19, Theorem 1] is also applicable to the case of AP�ðXÞ.
On the other hand, the statement of the results in Corollary 1 is also true for the case
of AP�ðXÞ. Combining these facts and following the proof of Theorem 5 we get the
theorem. g

4. PERIODIC AND QUASI PERIODIC SOLUTIONS

To illustrate applications of the main results obtained in the previous section we con-
sider below the admissibility of the function spaces of periodic and, more generally,
quasi-periodic functions for Eq. (1).
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4.1. Periodic Solutions

We consider the periodic solutions of Volterra equations of the form (1). As we can
charaterize the �-periodicity of a bounded continuous function f by spð f Þ � 2
Z=�,
we have the following

COROLLARY 2 Let A be of class �ð	,RÞ for 
 > 	 > 
=2 with constant M defined by (9),
and B satisfy the standing hypothesis. Moreover, let a < � :¼ ð1=2Þð1þMÞ

�1. Then a
necessary and sufficient condition for the space of �-periodic continuous functions to be
admissible for Eq. (1) is �0 \ 2
Z=� ¼ �:

4.2. Quasi Periodic Solutions

A set of reals S is said to have an integer and finite basis if there is a finite subset T � S
such that any element s 2 S can be represented in the form s ¼ n1b1 þ � � � þ nmbm,
where nj 2 Z, j ¼ 1, . . . ,m, bj 2 T , j ¼ 1, . . . ,m. If f is quasi-periodic, i.e., it is of
the form f ðtÞ ¼ Fðt, t, . . . , tÞ, t 2 R, where Fðt1, t2, . . . , tnÞ is a X-valued continuous
function of n variables which is periodic in each variable, the set of its Fourier–Bohr
exponents is discrete (which coincides with sp( f ) in this case), then the spectrum
sp( f ) has an integer and finite basis (see [13, p. 48]). Conversely, if f is almost periodic
and sp( f ) has an integer and finite basis, then f is quasi-periodic. We refer the reader to
[13, pp. 42–48] for more information on the relation between quasi-periodicity and
spectrum, Fourier–Bohr exponents of almost periodic functions.

COROLLARY 3 Let A be of class �ð	,RÞ for 
 > 	 > 
=2 with constant M defined by (9),
B satisfy the standing hypothesis, and a < � :¼ ð1=2Þð1þMÞ

�1. Moreover, let f be quasi-
periodic with sp( f ) having an integer and finite basis such that spð f Þ \�0 ¼ �. Then Eq.
(1) has a unique quasi-periodic mild solution xf such that spðxf Þ � spð f Þ.

Proof Under the assumptions, Theorem 5 can be applied to the function space
AP�ðXÞ, where � :¼ spð f Þ. This shows that Eq. (1) has a unique mild solution xf
which is almost periodic and has the spectrum spðxf Þ � spð f Þ. Since sp( f ) has an inte-
ger and finite basis, so does sp(xf ). But this fact yields that the almost periodic function
xf is quasi-periodic. g

5. APPLICATIONS

Example 1 Consider the equation

x0ðtÞ ¼ AxðtÞ þ
Xn
k¼1

Akxðt� �kÞ þ f ðtÞ,

where xðtÞ 2 X, A is the generator of an analytic semigroup of bounded linear operators
on a given Banach space X, Ak 2 LðXÞ, k ¼ 1, 2, . . . , n, �k 2 R, 0, k ¼ 1, 2, . . . , n. In
[11,12] a necessary and sufficient condition for the existence of !-periodic solution
has been given in the finite dimensional case. Here we consider the case of quasi-
periodic solutions. For instance, f ðtÞ :¼ gðtÞ þ gð

ffiffiffi
2

p
tÞ, where g is a !-periodic function.
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A necessary and sufficient condition for the equation to have a unique quasi-periodic
solution xf such that spðxf Þ � ðð2
Z=!Þ þ ð2

ffiffiffi
2

p

Z=!ÞÞ for every f of the above form is

2
Z

!
þ
2
ffiffiffi
2

p

Z

!

 !
\�0 ¼ �,

where �0 :¼ f 2 R : 6 9ðiI �
Pn

k¼1 Ake
�i�kÞ

�1
2 LðXÞg. In particular if �0 ¼ � we get

the conclusion in [15, Section 4] for the existence and uniqueness of bounded solutions
in the finite dimensional case.

Example 2 Consider the heat equation in materials with memory

utðt, xÞ ¼ �uðt, xÞ þ

Z 1

0

�dBð�Þuðt� �Þ

þ
Xn
k¼1

akuðt� �k, xÞ þ f ðt, xÞ, t 2 R, x 2 �, ð16Þ

uðt, xÞ ¼ 0, t 2 R, x 2 @�, ð17Þ

where � � R
N denotes a bounded domain with smooth boundary @� and B 2 BVðRþÞ

and is left continuous, Bð0þÞ ¼ 0 and ak, k ¼ 1, 2, . . . are reals. The case where
dBð�Þ ¼ bð�Þd� for a function bð�Þ 2 L1ðRþÞ and ak ¼ 0, k ¼ 1, 2:::, n and the case
where both

a :¼ VarBj10 and b :¼ �n
k¼1kakk

are small enough have been treated in [20, Applications (a)]. We define X :¼ L2ð�Þ,
A ¼ � with DðAÞ ¼ W2, 2ð�Þ \W1, 2

0 . Then, A is a self-adjoint negative definite hence
analytic, and �ðAÞ ¼ f�jg

1
1 � ð�1, 0Þ. To apply Proposition 2, Theorems 4, 5 we

assume that VarBj10 is sufficiently small. Meanwhile, the coefficients ak can be arbitra-
rily large.

Example 3 Consider the following system of equations arising in population dynamics

ujt ¼ dj�ujðt, xÞ þ�n
k¼1

Z 1

0

dbjkð�Þukðt� �, xÞ, t 2 R, x 2 �

dj
@uj
@�

ðt, xÞ ¼ 0, x 2 @�, j ¼ 1, . . . , n,

where � � R
n denotes a bounded domain with smooth boundary and �ðxÞ the outer

normal at x 2 @�. Let X :¼ ½L2ð�Þ

n, A :¼ D �� ¼ ðdiag djÞ�, dj � 0 for all j with

domain

DðAÞ :¼ fu 2 X: djuj 2 W2, 2ð�Þ, dj@uj=@� ¼ 0 on @�g

and let B(t) be defined as follows

ðBðtÞuÞjðxÞ ¼
Xn

k¼1
bjkðtÞukðxÞ, u 2 X,
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where bjk 2 BVðRþÞ. Then A is the generator of an analytic semigroup and Theorem 5 is
applicable without any assumption on the smallness of VarBj10 . As shown in
[19, Applications], the spectrum of the equation can be computed as follows:

�0 ¼ f� 2 R: �mði�Þ ¼ 0 for some m 2 N0g,

where

�m ¼ det �� �mD� cdBdBð�Þ� �
, m 2 N0:

Here �0 :¼ 0 > �1 � �2, . . . denote the eigenvalues of the Laplacian with Neumann
boundary condition.
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[3] W. Arendt, F. Räbiger and A. Sourour (1994). Spectral properties of the operators equations AX þ XB
¼ Y, Quart. J. Math. Oxford (2), 45, 133–149.

[4] T. Burton (1983). Volterra Integral and Differential Equations. Mathematics in Science and Engineering,
Vol. 167. Academic Press, Inc., Orlando, FL.

[5] R. Chill (1998). Fourier Transforms and Asymptotics of Evolution Equations. PhD dissertation, University
of Ulm.

[6] J.M. Cushing (1976). Bounded solutions of perturbed Volterra integrodifferential systems. J. Differential
Equations, 20(1), 61–70.

[7] J.M. Cushing, (1977). Integrodifferential Equations and Delay Models in Population Dynamics, Lecture
Notes in Biomathematics, Vol. 20. Springer-Verlag, Berlin.

[8] G. Da Prato and A. Lunardi (1986). Periodic solutions for linear integrodifferential equations with infi-
nite delay in Banach spaces. In: Favini and Obrecht (Eds.), Differential Equations in Banach Spaces.
Lecture Notes in Math., Vol. 1223, pp. 49–60. Springer Verlag, Berlin.

[9] A.M. Fink (1974). Almost Periodic Differential Equations, Lecture Notes in Math., Vol. 377. Springer
Verlag, Berlin.

[10] G. Gripenberg, S.O. Londen and O. Staffans (1990). Volterra Integral and Functional Equations,
Encyclopedia of Mathematics and its Applications, Vol. 34. Cambridge University Press, Cambridge,
New York.

[11] L. Hatvani and T. Krisztin (1992). On the existence of periodic solutions for linear inhomogeneous and
quasilinear functional differential equations. J. Differential Equations, 97, 1–15.

[12] C. Langenhop (1985). Periodic and almost periodic solutions of Volterra integral differential equations
with infinite memory. J. Differential Equations, 58, 391–403.

[13] B.M. Levitan and V.V. Zhikov (1982). Almost Periodic Functions and Differential Equations. Moscow
Univ. Publ. House 1978. English translation by Cambridge University Press.

[14] J. Mallet-Paret (1999). The global structure of traveling waves in spatially discrete dynamical systems.
J. Dynam. Differential Equations, 11(1), 49–127.

[15] J. Mallet-Paret (1999). The Fredholm alternative for functional-differential equations of mixed type.
J. Dynam. Differential Equations, 11(1), 1–47.

ON THE BOUNDED SOLUTIONS OF VOLTERRA EQUATIONS 445



[16] S. Murakami, T. Naito and N. V. Minh (2000). Evolution semigroups and sums of commuting operators:
a new approach to the admissibility theory of function spaces. J. Differential Equations, 164, 240–285.

[17] T. Naito and N.V. Minh (1999). Evolution semigroups and spectral criteria for almost periodic solutions
of periodic evolution equations. J. Differential Equations, 152, 358–376.

[18] A. Pazy (1983). Semigroups of linear operators and applications to partial differential equations. Applied
Math. Sci., Vol. 44. Springer-Verlag, Berlin-New York.

[19] J. Prüss (1988). Bounded solutions of Volterra equations. SIAM J. Math. Anal., 19, 133–149.
[20] J. Prüss (1993). Evolutionary Integral Equations and Applications. Birkhäuser, Basel.
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