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Ž . Ž .For A t and f t, x, y T-periodic in t, we consider the differential equation with
infinite delay in a general Banach space X,

u9 t q A t u t s f t , u t , u , t ) 0, u s s f s , s F 0, 0.1Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .t

Ž .where the resolvent of the unbounded operator A t is compact and f is continu-
Ž . Ž .ous in its variables, and u s s u t q s , s F 0. We first show that the Poincarét

Ž . Ž . Ž Ž .operator given by P f s u f i.e., T units along the unique solution u fT
.determined by the initial function f is a condensing operator with respect to

Kuratowski’s measure of non-compactness in a phase space C , and then deriveg
periodic solutions from bounded solutions by using Sadovskii’s fixed point theorem.
This extends the study of deriving periodic solutions from bounded solutions to
infinite delay differential equations in general Banach spaces. Q 2000 Academic

Press

Key Words: periodic solutions; infinite delay; Kuratowski’s measure of non-
compactness; Sadovskii’s fixed point theorem.

1. INTRODUCTION

This paper is concerned with deriving periodic solutions from bounded
solutions for the infinite delay differential equation

u9 t qA t u t sf t , u t , u , t)0, u s sf s , sF0,Ž . Ž . Ž . Ž . Ž . Ž .Ž .t
1.1Ž .
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Ž 5 5. Ž .in a general Banach space X, ? , with A t a unbounded operator and f
Ž . Ž .a continuous function in its variables, and A t and f t, x, y T-periodic in

ŽŽ x . Ž Ž xt. Here u g C y`, 0 , X space of continuous functions on y`, 0 witht
. Ž . Ž .values in X is defined by u s s u t q s , s F 0.t

A standard approach in deriving T periodic solutions is to define the
w x Ž . Ž .Poincare operator 1 given by P f s u f , which maps an initial´ T

Ž . Ž .function or value T-units along the unique solution u f determined by
Ž .the initial function or value f. Then conditions are given such that some

fixed point theorem can be applied to get a fixed point for the Poincaré
operator, which gives rise to a periodic solution.

Many fixed point theorems require that the operator maps among
compact sets, or that the operator itself is compact; see, e.g., Browder’s,
Horn’s, Schauder’s and Schauder]Tychonov’s fixed point theorems.

When X is a finite dimensional space, compact sets can be constructed
using the uniformly bounded and equicontinuous functions. See, e.g.,

w xBurton 2 for such a construction in a phase space C , where theg

boundedness and ultimate boundedness are then used to ensure that
Horn’s fixed point theorem can be applied to obtain a fixed point for the
Poincare operator.´

Ž .When X is a general infinite dimensional Banach space, then to verify
the compactness of a set of functions with values in X, one needs to use
the abstract version of the Ascoli theorem. Now, the additional require-
ment is to ensure that at any given point in the interval where the
functions are defined, the set of all functions evaluated at that point is
precompact in X. This requirement is very hard to fulfill, so it causes
major difficulty for the study of periodic solutions in general Banach
spaces.

For differential equations without delay or with finite delay in general
w x w x w x w xBanach spaces, Amann 1 , Hale 6 , Xiang and Ahmed 17 , Liu 10]12 ,

etc., studied the existence of periodic solutions by requiring that the
Ž .resolvent of A ? be compact, so that the abstract version of the Ascoli

theorem can be used to show that the Poincare operator is compact.´
Hence the images of the Poincare operator on bounded sets are precom-´
pact, which makes it possible to derive the periodic solutions. For example,

w xfor finite delay differential equations with initial functions on yr, 0 , this
w xis done in Liu 12 by observing that if the period T ) r, then the image of

an initial function under the Poincare operator becomes a segment on´
w x Ž . Ž .T y r, T ; 0, ` of a smooth function defined on 0, ` . That means the
Ž . w xpossibly ‘‘bad’’ history of the initial function on yr, 0 has been cut, or
smoothed out. Therefore, it is possible to show that the Poincare operator´
is compact and hence to derive periodic solutions from bounded solutions.
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However, this technique of showing the compactness of the Poincaré
operator does not apply to differential equations with infinite delay in

Ž .general Banach spaces. The reason is that now the time interval in the
Ž xphase space is y`, 0 , so that under the Poincare operator, an initial´

Ž x Ž xfunction on y`, 0 becomes a segment on y`, 0 of a function defined
Ž x Ž xon y`, T . That is, the history of the initial function on y`, 0 is still

carried over under the Poincare operator; thus it is possible that under the´
Poincare operator, a bounded set gets mapped into a non-precompact set.´
Therefore the abstract version of the Ascoli theorem and hence all those
Browder’s, Horn’s, Schauder’s, and Schauder]Tychonov’s fixed point theo-
rems are not applicable to the Poincare operator in the infinite delay cases´
in general Banach spaces.

This means that other methods are needed to study the periodic solu-
tions for differential equations with infinite delay in general Banach

Ž . Ž .spaces. When A t is independent of t and when Eq. 1.1 is an integrodif-
ferential equation, the periodic solutions are studied in Burton and Zhang
w x w x3 using Granas’s degree theory and in Grimmer and Liu 5 using the

Ž Ž . .limiting equation technique when Eq. 1.1 is also linear .
w x Ž .Recently, Henriquez 7 studied the periodic solutions for Eq. 1.1

Ž Ž . .when A t is independent of t in a seminormed abstract space with the
axioms for abstract infinite delay differential equations introduced in Hale

w xand Kato 8 , and Kuratowski’s measure of non-compactness is used to
show that the Poincare operator is condensing under some conditions, so´

w xthat by Sadovskii’s theorem 16 , fixed points exist when a condensing
operator maps a convex, closed, and bounded set into itself.

w x Ž .In this paper we will adopt the idea of 7 and study Eq. 1.1 in
ŽŽ x .continuous functions space C y`, 0 , X . We will choose a function g on

Ž x Žy`, 0 in such a way that in the ‘‘weighted’’ or ‘‘friendly’’ in some
.literature phase space C , the Poincare operator is shown to be condens-´g

w xing without those conditions and axioms imposed in 7 .
Note that Sadovskii’s fixed point theorem requires that the Poincaré

operator maps a bounded set into itself. Thus some kind of boundedness
Ž .of the solutions is required here. We will show that if solutions of Eq. 1.1

Ž w x. Ž .are bounded even locally on 0, T in a strict sense, then Eq. 1.1 has T
Ž .periodic solutions see Definition 4.1 and Theorem 4.3 . This way, the idea

of deriving periodic solutions from bounded solutions can be extended to
infinite delay differential equations in general Banach spaces.

Ž .We will study the solutions of Eq. 1.1 in Section 2, Kuratowski’s
measure of non-compactness in Section 3, and the periodic solutions in
Section 4.
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2. THE SOLUTIONS

In this section we study the existence and uniqueness of solutions for
Ž .Eq. 1.1 . We make the following assumptions.

Ž . Ž .ASSUMPTION 2.1. For a constant T ) 0, f t q T , x, y s f t, x, y ,
Ž . Ž .A t q T s A t , t G 0. f is continuous in its variables and is locally

Lipschitzian in the second and the third variables, and f maps a bounded
set into a bounded set.

w x w xASSUMPTION 2.2 14, p. 150 . For t g 0, T one has

Ž . Ž Ž ..H1 The domain D A t s D is independent of t and is dense
in X.

Ž . Ž Ž .. Ž Ž ..y1H2 For t G 0, the resolvent R l, A t s lI y A t exists for
all l with Re l F 0 and is compact, and there is a constant M indepen-
dent of l and t such that

y15 5 < <R l, A t F M l q 1 , Re l F 0.Ž . Ž .Ž .

Ž .H3 There exist constants L and 0 - a F 1 such that

y1 a5 5 < < w xA t y A s A r F L t y s , s, t , r g 0, T .Ž . Ž . Ž .Ž .

w x w xUnder these assumptions, the results in, e.g., Amann 1 , Friedman 4 ,
w x w xKielhofer 9 , and Pazy 14 imply the existence of a unique evolution¨

Ž . Ž . w xsystem U t, s , 0 F s F t F T for Eq. 1.1 . See 1, 4, 9, 14 for details.
Ž .Now, we define the phase space C for Eq. 1.1 . First we haveg

LEMMA 2.1. There exists an integer K ) 1 such that0

K y101
M - 1, 2.1Ž .0ž /2

5 Ž .5where M s sup U t, 0 is finite. Next, let w s TrK ; then there0 t gw0, T x 0 0
Ž x Ž . Ž .exists a function g on y`, 0 such that g 0 s 1, g y` s `, g is decreasing

Ž xon y`, 0 , and for d G w one has0

g s 1Ž .
sup F . 2.2Ž .

g s y d 2Ž .sF0
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Ž . ya sProof. Such a function g exists; e.g., g s s e where a ) 0 is such
aw 0that e G 2.

For the function g given in Lemma 2.1, define the continuous functions
space

5 5f sŽ .
C s f : f g C y`, 0 , X and sup - ` . 2.3Ž Ž .Ž .g ½ 5g sŽ .sF0

Then C coupled with the normg

5 5f sŽ .
< <f s sup , f g C , 2.4Ž .g gg sŽ .sF0

w xis a Banach space 2 . Now we consider the existence and the uniqueness
Ž .of solutions of Eq. 1.1 .

THEOREM 2.1. Let the Assumptions 2.1, 2.2 be satisfied, and let f g Cg
be fixed. Then there exists a constant a ) 0 and a unique continuous function

Ž x Ž Ž . Ž . .u: y`, a ª X such that u s f i.e., u s s f s , s F 0 , and0

t w xu t s U t , 0 f 0 q U t , h f h , u h , u dh, t g 0, a . 2.5Ž . Ž . Ž . Ž . Ž . Ž .Ž .H h
0

Proof. We will use the contraction mapping theorem. With f g Cg
being fixed and with a ) 0 yet to be determined, we consider the func-

ŽŽ x .tions u g C y`, a , X with u s f and define a map Q such that0
Ž .Ž . Ž . w xQu s s f s for s F 0; and for t g 0, a ,

t
Qu t s U t , 0 f 0 q U t , h f h , u h , u dh. 2.6Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H h

0

�Using the property of the evolution system U, we have Q : u g
ŽŽ x . 4 � ŽŽ x . 4C y`, a , X : u s f ª u g C y`, a , X : u s f . Next, for u, ¨0 0

ŽŽ x . w xg C y`, a , X with u s ¨ s f, one has for t g 0, a ,0 0

t
Qu t y Q¨ t s U t , h f h , u h , u y f h , ¨ h , ¨ dhŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H h h

0

t
s U t , h f h , u h , u y f h , u h , ¨ dhŽ . Ž . Ž .Ž . Ž .H h h

0

t
q U t , h f h , u h , ¨ y f h , ¨ h , ¨ dh.Ž . Ž . Ž .Ž . Ž .H h h

0

2.7Ž .
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Ž .Now, U t, h is a bounded operator and f is locally Lipschitzian in the
w xsecond and the third variable; and for h g 0, a ,

5 5u s y ¨ sŽ . Ž .h h
< < 5 5u y ¨ s sup F sup u s y ¨ sŽ . Ž .gh h h hg sŽ .sF0 sF0

5 5s sup u h q s y ¨ h q sŽ . Ž .
sF0

5 5s sup u h q s y ¨ h q s u r y ¨ r s 0, r F 0Ž . Ž . Ž . Ž .Ž .
w xsg yh , 0

5 5F sup u l y ¨ l ; 2.8Ž . Ž . Ž .
w xlg 0, a

thus, it is clear that we can obtain the result by using the contraction
Žw x .mapping theorem in C 0, a , X . Details will be left here.

Note that the function u determined by Theorem 2.1 is often called ‘‘the
Ž .mild solution of Eq. 1.1 .’’ In our study here, we would like the Poincaré

Ž Ž .operator to be defined on the whole space C i.e., solutions of Eq. 1.1g
.exist for all initial functions in C , so that in this paper ‘‘a solution of Eq.g

Ž .1.1 ’’ means a function u determined by Theorem 2.1, i.e., a mild solution
Ž . w xof Eq. 1.1 . This is also the case in 7 and in many other related papers.

Also note that we are concerned with the periodic solutions here, so we
w . Ž .may assume that solutions exist on 0, ` . We will write u s u ?, f to

indicate that u is the unique solution with the initial function f.

Remark 2.1. To guarantee the uniqueness of the solutions, we assumed
the local Lipschitzan condition for the function f. If the Lipschitzan
condition is not assumed, then the existence of the solutions can still be
obtained by using Schauder’s fixed point theorem with an argument similar

w xto the one in 7 .

For the Banach space C defined above, we haveg

Ž x < <LEMMA 2.2. Let u be a continuous function on y`, T such that u isgt
w x Žfinite for e¨ery t g 0, T . Then for any 0 F h - r F T with r y h G w w0 0
.is from Lemma 2.1 , one has

1
< < 5 5 < <u F max sup u s , u . 2.9Ž . Ž .g gr h½ 52w xsg h , r
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Proof. By using Lemma 2.1, we have

5 5 5 5u s u r q sŽ . Ž .r
< <u s sup s supgr g s g sŽ . Ž .sF0 sF0

5 5u lŽ .
s sup r q s s lŽ .

g l y rŽ .lFr

5 51 u lŽ .
5 5F max sup u l , supŽ .½ 5g l y r g l y rŽ . Ž .w x lFhlg h , r

5 51 u l g l y hŽ . Ž .
5 5s max sup u l , supŽ .½ 5g l y r g l y h g l y rŽ . Ž . Ž .w x lFhlg h , r

5 5u h q s g sŽ . Ž .
5 5F max sup u l , supŽ .½ 5g s g s y r y hŽ . Ž .Ž .w x sF0lg h , r

l y h s sŽ .
1

5 5 < <F max sup u s , u . 2.10Ž . Ž .gh½ 52w xsg h , r

To estimate the solutions, we have

LEMMA 2.3. Let the Assumptions 2.1, 2.2 be satisfied and let u and y be
Ž . Ž .two solutions of Eq. 1.1 with initial functions u and y , respectï ely on0 0

Ž x w xy`, L , L ) 0. Then for t g 0, L ,

< < < < M1Žk 0qk 1. tu y y F M q 1 u y y e , 2.11Ž . Ž .g gt t 0 0 0

where M , M , k , and k are some constants.0 1 0 1

w xProof. Similar to the proof of Lemma 2.2, we have, for t g 0, L ,

< < 5 5 < <u y y F max sup u s y y s , u y y . 2.12Ž . Ž . Ž .g gt t 0 0½ 5
w xsg 0, t

Next, using the local Lipschitz conditions, we may assume that

5 5 5 5f h , u h , y y f h , y h , y F k u h y y h , 2.13Ž . Ž . Ž . Ž . Ž .Ž . Ž .h h 0

5 5 < <f h , u h , u y f h , u h , y F k u y y , 2.14Ž . Ž . Ž .Ž . Ž . gh h 1 h h
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5 Ž .5for some constants k and k . Let M s sup U t, 0 , M s0 1 0 t gw0, T x 1
5 Ž .5 w xsup U s, h , which are finite. Then for s g 0, t ,0 F hF sF T

5 5u s y y s s U s, 0 u 0 y y 0Ž . Ž . Ž . Ž . Ž .Ž .
s

q U s, h f h , u h , u y f h , y h , y dhŽ . Ž . Ž .Ž . Ž .H h h
0

s U s, 0 u 0 y y 0Ž . Ž . Ž .Ž .
s

q U s, h f h , u h , u y f h , u h , y dhŽ . Ž . Ž .Ž . Ž .H h h
0

s
q U s, h f h , u h , y y f h , y h , y dhŽ . Ž . Ž .Ž . Ž .H h h

0

s
5 5 5 5F M u 0 y y 0 q M k u h y y h dhŽ . Ž . Ž . Ž .H0 1 0

0

s
< <q M k u y y dhH g1 1 h h

0

t
< < < <F M u y y q M k q k u y y dh. 2.15Ž . Ž .g H g0 0 0 1 0 1 h h

0

Ž .Thus we have, from 2.12 ,

t
< < < < < <u y y F M q 1 u y y q M k q k u y y dh. 2.16Ž . Ž . Ž .g g H gt t 0 0 0 1 0 1 h h

0

Ž .Now, Gronwall’s inequality implies 2.11 .

An immediate consequence of Lemma 2.3 is the following local bound-
edness property of the solutions.

THEOREM 2.2. Let the Assumptions 2.1, 2.2 be satisfied and let D ; Cg
Ž .be bounded. Then for any L ) 0, solutions of Eq. 1.1 with initial functions

w x Ž .in D are bounded on 0, L . That is, there exists a constant E s E D, L ) 0
Ž . Ž . 5 Ž .5 w xsuch that if u ? s u ?, f with f g D, then u t F E for t g 0, L .

Ž . < <Proof. Let y s y f be a fixed solution with f g D. Then u Fg0 0 L
< < � < Ž . < 4u y y , and hence Lemma 2.3 implies that u f : f g D isg gL L L
bounded. Therefore the result is true by using the definition of the norm
in C .g
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3. THE MEASURE OF NON-COMPACTNESS

In this section, we examine Kuratowski’s measure of non-compactness,
which will be used in the next section to study the periodic solutions via
the fixed points of a condensing operator. Kuratowski’s measure of non-

Ž .compactness or the a measure for a bounded set H of a Banach space Y
< <with norm ? is defined asY

� 4a H s inf d ) 0 : H has a finite cover of diameter - d . 3.1Ž . Ž .

We need to use the following basic properties of the a measure and
w xSadovskii’s fixed point theorem here; see 13, 16 .

w xLEMMA 3.1 13 . Let A and B be bounded sets of a Banach space Y. Then

Ž . Ž . Ž Ž . � < < 4 .1. a A F dia A . dia A s sup x y y : x, y g A .Y

Ž .2. a A s 0 if and only if A is precompact.
Ž . < < Ž . Ž � 4 .3. a l A s l a A , l g R. l A s l x : x g A .
Ž . � Ž . Ž .44. a A j B s max a A , a B .
Ž . Ž . Ž . Ž � 4 .5. a A q B F a A q a B . A q B s x q y : x g A, y g B .
Ž . Ž .6. a A F a B if A : B.

Ž w x.LEMMA 3.2 Sadovskii’s fixed point theorem 16 . Let P be a condensing
operator on a Banach space Y, i.e., P is continuous and takes bounded sets

Ž Ž .. Ž .into bounded sets, and a P B - a B for e¨ery bounded set B of Y with
Ž . Ž .a B ) 0. If P H : H for a con¨ex, closed, and bounded set H of Y, then

P has a fixed point in H.

The following result is also needed here. However, we have not found a
reference for the result yet. So we provide a proof here.

< < < <LEMMA 3.3. Let A with norm ? and C with norm ? be bounded. IfA C

there is a surjectï e map Q: C ª A such that for any c, d g C one has
< Ž . Ž . < < < Ž . Ž .Q c y Q d F c y d , then a A F a C .A C

Proof. For any « ) 0, there exist bounded sets Gi : C, i s 1, . . . , m,
such that

m
i idia G F a C q « , C s G . 3.2Ž . Ž . Ž .D

is1
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m Ž i. Ž i.Now, Q is surjective, so that A s D Q G . And for a, b g Q G weis1
Ž . Ž . imay assume that a s Q c , b s Q d for some c, d g G . Thus

< < < < < < ia y b s Q c y Q d F c y d F dia GŽ . Ž . Ž .A A C

F a C q « . 3.3Ž . Ž .

Ž Ž i.. Ž . Ž .This implies dia Q G F a C q « , and hence from Lemma 3.1 1 ,
Ž Ž i.. Ž Ž i.. Ž . Ž .a Q G F dia Q G F a C q « . Therefore Lemma 3.1 4 implies that
Ž . Ž .a A F a C q « . Since « ) 0 is arbitrary, the result is true.

Ž . Ž .Next, for D ; C and u f , the unique solution with u f s f, weg 0
Ž . � Ž . 4 Ž . � Ž . 4define W D s u f : f g D and W D s u f : f g D , wherel l w h, r x w h, r x

w xu means the restriction of u on h, r . The idea of the proof of thew h, r x
w xfollowing result is similar to the one in 15 .

LEMMA 3.4. Let the Assumptions 2.1, 2.2 be satisfied. If D ; C isg
Ž . Žw x . Ž .bounded, then W D ; C 0, T , X is bounded and W D ; C isw0, T x r g
w xbounded for each r g 0, T . And for any 0 F h - r F T with r y h G w0

Ž .w is from Lemma 2.1 , one has0

1
a W D F max a W D , a W D . 3.4Ž . Ž . Ž . Ž .Ž . Ž .Ž .r w h , r x h½ 52

Ž . Žw x .Proof. First, Theorem 2.2 implies that W D ; C 0, T , X isw0, T x
Ž .bounded. This result and Lemma 2.2 with h s 0 imply that for each

w x Ž .r g 0, T , W D is bounded in C . Now, for any « ) 0, there existr g
i Ž . j Ž .bounded sets P : W D , i s 1, . . . , m, and bounded sets Q : W D ,w h, r x h

j s 1, . . . , n, such that

m
i idia P F a W D q « , W D s P , 3.5Ž . Ž . Ž . Ž .Ž . Dw h , r x w h , r x

is1

n
j jdia Q F a W D q 2« , W D s Q . 3.6Ž . Ž . Ž .Ž .Ž . Dh h

js1

Put

Y i , j s u g W D : u g P i , u g Q j . 3.7Ž . Ž .� 4r r r w h , r x h

Then we have

m n
i , jW D s Y . 3.8Ž . Ž .D Dr r

is1 js1
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For each Y i, j, if u , w g Y i, j, then from the proof of Lemma 2.2,r r r r

1
< < 5 5 < <u y w F max sup u s y w s , u y wŽ . Ž .g gr r h h½ 52w xsg h , r

1
i jF max dia P , dia QŽ . Ž .½ 52

1
F max a W D q « , a W D q 2«Ž . Ž .Ž .Ž .Ž .w h , r x h½ 52

1
s max a W D , a W D q « . 3.9Ž . Ž . Ž .Ž .Ž .w h , r x h½ 52

Ž .This implies, using Lemma 3.1 1 , that

1
i , j i , ja Y F dia Y F max a W D , a W D q « . 3.10Ž . Ž . Ž .Ž .Ž . Ž . Ž .r r w h , r x h½ 52

Ž .Then Lemma 3.1 4 implies that

1
a W D F max a W D , a W D q « . 3.11Ž . Ž . Ž . Ž .Ž . Ž .Ž .r w h , r x h½ 52

Since « ) 0 is arbitrary, the result is true.

w xThe following lemma from Amann 1 will be used here to show that P
Ž w xis a condensing operator. Recall that in the usual way see, e.g., Amann 1 ,

w x w x. aFriedman 4 , Pazy 14 we define fractional power operator A and
Ž . Ž Ž a .Banach space X for 0 F a F 1, where A s A 0 and X s D A ,a a

5 5 . 5 5 5 a 5 Ž . Ž? with x ' A x . We also write the norm in L X , X space ofa a a b

. 5 5bounded linear operators from X to X as ? .a , ba b

w x Ž .LEMMA 3.5 1 . i Suppose that 0 F a F b - 1. Then for b y a - g
Ž .- 1, there is a constant C a , b , g such that

yg
5 5U t , h F C a , b , g t y h , 0 F h - t F T .Ž . Ž . Ž .a , b

Ž . Ž .ii For 0 F g - 1, there is a constant C g , such that for g g
Žw x . Ž .C 0, L , X L ) 0 is a constant , one has for 0 F s, t F L,

st g< < 5 5U t , h g h dh y U s, h g h dh F C g t y s max g h .Ž . Ž . Ž . Ž . Ž . Ž .H H
0FhFL0 0

Ž .iii Let 0 F a - b F 1. Then

t
K x , g t ' U t , 0 x q U t , h g h dh, 0 F t F T ,Ž . Ž . Ž . Ž . Ž .H

0
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Žw x .defines a continuous linear operator from X = C 0, T , X intob
g Žw x . w .C 0, T , X for e¨ery g g 0, b y a .a

We also state here the Ascoli theorem for a general Banach space X for
convenient reference.

Ž . Žw x .LEMMA 3.6 Ascoli theorem . Let E ; C a, b , X be bounded. Then E
is precompact if and only if functions in E are equicontinuous and for each

w x � Ž . 4t g a, b , the set f t : f g E is precompact in X.

By using the Ascoli theorem, we have the following result. The idea of
w xthe proof is similar to the case for finite delay in 12 .

LEMMA 3.7. Let the Assumptions 2.1, 2.2 be satisfied and let D ; C beg
Ž Ž ..bounded. Then a W D s 0 for any 0 - l - r F T.w l, r x

Ž .Proof. By Lemma 3.1 2 , we need to prove that the Ascoli theorem can
Ž . Žw x .be applied to the bounded set E s W D ; C l, r , X .w l, r x

w xNote that a function in E can be expressed as, for s g l, r ,
s

u s, f s U s, 0 f 0 q U s, h f h , u h , u dh, f g D.Ž . Ž . Ž . Ž . Ž .Ž .H h
0

3.12Ž .
w x wSince l ) 0, there is k ) 0 such that s ) k for s g l, r . From 14,

x w xp. 164 , one has, for s g l, r ,

U s, 0 f 0 s U s, k U k , 0 f 0 , f g D. 3.13Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž .Fix h g 0, 1 . Then from Lemma 3.5 i , U k, 0 : X ª X is bounded.h

Ž Ž .Next the embedding X ª X is compact under Assumption 2.2 H2 ; see,h

w x. � Ž . Ž . 4 � Ž . 4e.g., 6 ; thus U k, 0 f 0 : f g D is precompact in X since f 0 : f g D
� Ž . Ž . 4is bounded in X. Therefore, the closure of U k, 0 f 0 : f g D is com-

pact in X. Now, by a standard argument, one can verify that as functions
w xon l, r ,

U ?, 0 f 0 : f g D s U ?, k U k , 0 f 0 : f g D 3.14� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .
Ž .is equicontinuous. Next, from Lemma 3.5 ii , for 0 F g - 1, there is a

Ž . w xconstant C g , such that for s , s g l, r ,1 2

s s2 1
U s , h f h , u h , u dh y U s , h f h , u h , u dh 3.15Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H2 h 1 h

0 0

< <g 5 5F C g s y s max f h , u h , u . 3.16Ž . Ž . Ž .Ž .1 2 h
0FhFT

By using Lemma 3.4, we see that the variables in f are bounded. Now f
Ž .maps a bounded set into a bounded set; thus there exists M s M D ) 02 2

such that
5 5 w xf t , u t , u f F M , t g 0, T , f g D.Ž . Ž .Ž .t 2
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w xTherefore, as functions on l, r ,

?

U ?, h f h , u h , u dh : f g D 3.17Ž . Ž . Ž .Ž .H h½ 5
0

is also equicontinuous. Therefore, functions in E are equicontinuous.
In the following, to check the precompactness of the functions at every

w x w xpoint in l, r , we fix s g l, r . From the above arguments, we also know0
that

U s , 0 f 0 : f g D 3.18� 4Ž . Ž . Ž .0

Ž . Ž Ž . Ž ..is precompact in X. Next, for f g D, we may let g t s f t, u t , u f .t
Then

s0
U s , h f h , u h , u f dh ' K 0, g s g XŽ . Ž . Ž . Ž . Ž .Ž .H 0 h 0 h

0

Ž . Ž .according to Lemma 3.5 iii . Also note that by Lemma 3.5 i , there are
Ž .constants g g 0, 1 and M ) 0 such that3

yg
5 5U s , h F M s y h , 0 F h - s .Ž . Ž .0, h0 3 0 0

Thus

s0 1ygU s , h f h , u h , u f dh F M M T r 1 y g , f g D.Ž . Ž . Ž . Ž .Ž .H 0 h 3 2
h0

Therefore

s0
U s , h f h , u h , u f dh : f g D 3.19Ž . Ž . Ž . Ž .Ž .H 0 h½ 5

0

is bounded in X . Then, using the fact that the embedding X ª X ish h

Ž .compact again, we see that the set defined by 3.19 is precompact in X.
Now the Ascoli theorem implies that E is precompact. Thus by Lemma

Ž . Ž Ž .. Ž .3.1 2 , a W D s a E s 0.w l, r x

4. THE PERIODIC SOLUTIONS

In this section, we study the periodic solutions of the T periodic infinite
Ž .delay differential equation 1.1 . For this purpose, we define the Poincaré

Ž .operator P along the solution such that for the unique solution u ?, f of
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Ž .Eq. 1.1 with the initial function f,

P f s u ?, f , f g C 4.1Ž . Ž . Ž .T g

i.e., Pf s s u s, f s u T q s, f , s F 0 ,Ž . Ž . Ž . Ž .Ž .T

and then examine when the map P has a fixed point. We note that a fixed
Ž .point of P gives rise to a periodic solution, because if P f s f, then for

Ž . Ž . Ž . Ž . Žthe solution u ? s u ?, f with u ?, f s f, we can define y t s u t q0
. w x Ž .T . Now, for t G 0, we can use the known formulas 14 U t, s s
Ž . Ž . Ž . Ž . ŽU t, r U r, s , 0 F s F r F t F T , and U t q T , s q T s U t, s since the

Ž . .operator A t is T periodic in t to obtain

y t s u t q T s U t q T , 0 f 0Ž . Ž . Ž . Ž .
tqT

q U t q T , h f h , u h , u dhŽ . Ž .Ž .H h
0

T
s U t q T , T U T , 0 f 0 q U t q T , h f h , u h , u dhŽ . Ž . Ž . Ž . Ž .Ž .H h

0

tqT
q U t q T , h f h , u h , u dhŽ . Ž .Ž .H h

T

T
s U t , 0 U T , 0 f 0 q U t q T , T U T , h f h , u h , u dhŽ . Ž . Ž . Ž . Ž . Ž .Ž .H h

0

t
q U t q T , T q s f T q s, u T q s , u dsŽ . Ž .Ž .H Tq s

0

T
s U t , 0 U T , 0 f 0 q U t , 0 U T , h f h , u h , u dhŽ . Ž . Ž . Ž . Ž . Ž .Ž .H h

0

t
q U t , s f s, y s , y dsŽ . Ž .Ž .H s

0

T
s U t , 0 U T , 0 f 0 q U T , h f h , u h , u dhŽ . Ž . Ž . Ž . Ž .Ž .H h

0

t
q U t , s f s, y s , y dsŽ . Ž .Ž .H s

0

t
s U t , 0 u T q U t , s f s, y s , y dsŽ . Ž . Ž . Ž .Ž .H s

0

t
s U t , 0 y 0 q U t , s f s, y s , y ds. 4.2Ž . Ž . Ž . Ž . Ž .Ž .H s

0
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Ž . Ž . Ž .Equation 4.2 implies that y is also a solution with y s u f s P f s0 T
Ž . Ž . Ž . Ž .f ; then the uniqueness implies that y t s u t , so that u t s u t q T is

a T periodic solution.
Next, we prove that the operator P is condensing.

THEOREM 4.1. Let the Assumptions 2.1, 2.2 be satisfied. Then the opera-
Ž .tor P defined by 4.1 is condensing in C with g gï en in Lemma 2.1.g

Proof. From Lemma 2.3, we have

< < < < M1Žk 0qk 1.T < <P f y P w s u f y u w F M q 1 e f y w ,Ž . Ž . Ž . Ž . Ž .g g gT T 0

4.3Ž .
so that P is continuous. It also implies that P takes bounded sets into

Ž .bounded sets see the proof of Theorem 2.2 . Next, let D ; C beg
Ž .bounded with a D ) 0. By using Lemmas 3.4 and 3.7 repeatedly, we have

Ž .w is from Lemma 2.10

1
a P D s a W D F max a W D , a W DŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .T wTyw , T x Tyw½ 50 02

1
s a W DŽ .Ž .Tyw 02

1 1
F max a W D , a W DŽ . Ž .Ž . Ž .wTy2 w , Tyw x Ty2 w½ 50 0 02 2

21
s a W DŽ .Ž .Ty2 w 0ž /2

21 1
F max a W D , a W DŽ . Ž .Ž . Ž .wTy3w , Ty2 w x Ty3w½ 50 0 0ž /2 2

31
s a W DŽ .Ž .Ty3w 0ž /2

???

K y101 1
F max a W D , a D . 4.4Ž . Ž . Ž .Ž .w0 , TyŽK y1.w x½ 50 0ž /2 2

w Ž . xNext, for ?g 0, T y K y 1 w ,0 0

W D : U ?, 0 f 0 : f g D� 4Ž . Ž . Ž .w0 , TyŽK y1.w x0 0

?

q U ?, h f h , u h , u f dh : f g D .Ž . Ž . Ž .Ž .H h½ 5
0

4.5Ž .



JAMES H. LIU642

w Ž . xAnd since for t g 0, T y K y 1 w ,0 0

5 5 5 5U t , 0 f 0 y U t , 0 w 0 s U t , 0 f 0 y w 0Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
5 5 < <F M f 0 y w 0 F M f y w , 4.6Ž . Ž . Ž .g0 0

5 Ž .5 Ž .where M s sup U t, 0 , then we have from Lemma 3.1 3 and0 t gw0, T x
Ž w Ž . x.Lemma 3.3 that for ?g 0, T y K y 1 w0 0

a U ?, 0 f 0 : f g D F M a D . 4.7� 4Ž . Ž . Ž . Ž .0

w Ž . xSimilar to the proof in Lemma 3.7 we see that for ?g 0, T y K y 1 w ,0 0

?

a U ?, h f h , u h , u f dh : f g D s 0. 4.8Ž . Ž . Ž . Ž .Ž .H h½ 5
0

Ž .Therefore we have from Lemma 3.1 5,6 that

a W D F M a D . 4.9Ž . Ž . Ž .Ž .w0 , TyŽKy1.w x 00

Ž . Ž . ŽThus, from Lemma 2.1 and 4.4 , 4.9 we have note that M s0
5 Ž .5 .sup U t, 0 G 1t gw0, T x

K y101 1
a P D F max M a D , a DŽ . Ž . Ž .Ž . 0½ 5ž /2 2

K y101
F M a D - a D . 4.10Ž . Ž . Ž .0ž /2

Ž .Next, we study the periodic solutions of Eq. 1.1 . From Lemma 3.2 and
Theorem 4.1, we have

THEOREM 4.2. Let the Assumptions 2.1, 2.2 be satisfied and let the
Ž .operator P be defined by 4.1 in C with g gï en in Lemma 2.1. If there existsg

Ž .a con¨ex, closed, and bounded set H ; C such that P H : H, then P hasg
Ž .a fixed point in H, and hence Eq. 1.1 has a T periodic solution.

Ž . Ž .Note that, in general, f t, 0, 0 / 0 in Eq. 1.1 , so the periodic solutions
Ž .if they exist are nontrivial. Also, note that Sadovskii’s fixed point theorem

Ž .requires that P H : H for a bounded set H. Therefore some kind of
Ž .boundedness of the solutions of Eq. 1.1 is required here. We now make

the following definition for the T periodic infinite delay differential
Ž .equation 1.1 .
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Ž .DEFINITION 4.1. Solutions of Eq. 1.1 are said to be locally strictly
< <bounded if there exists a constant B ) 0 such that f F B implies thatg

5 Ž .5 w xits solution satisfies u t, f F B for t g 0, T .

We now study the relationship between the boundedness and the
Ž .periodicity of the solutions of Eq. 1.1 . We will see that if solutions of Eq.

Ž . Ž w x. Ž .1.1 are bounded even locally on 0, T in a strict sense, then Eq. 1.1
has T periodic solutions.

THEOREM 4.3. Let the Assumptions 2.1, 2.2 be satisfied. If the solutions
Ž . Žof Eq. 1.1 are locally strictly bounded or assume that solutions are non-

5 5 w x. Ž .increasing in norm ? on 0, T , then Eq. 1.1 has a T periodic solution.

Ž .Proof. Let the operator P be defined by 4.1 in C with g given ing
� < < 4Lemma 2.1, and let H s f g C : f F B with B from Definition 4.1.gg

Ž . Ž .Then H is convex, closed, and bounded in C . Next, for u ? s u ?, f withg
5 Ž .5 w xf g H, the locally strict boundedness implies that u t F B for t g 0, T .

Then we obtain from Lemma 2.2 that

1
< < < < 5 5 < <P f s u f F max sup u s , fŽ . Ž . Ž .g g gT ½ 52w xsg 0, T

1
F max B , B s B. 4.11Ž .½ 52

Thus the result is true by using Theorem 4.2.
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