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For A(t) and f(¢, x, y) T-periodic in ¢, we consider the differential equation with
infinite delay in a general Banach space X,

w'(t)y + A()u(t) = f(t,u(t),u,), >0, u(s)=d¢(s), s=<0, (0.1)

where the resolvent of the unbounded operator A(¢) is compact and f is continu-
ous in its variables, and u,(s) = u(t + s), s < 0. We first show that the Poincaré
operator given by P(¢) = ur(¢) (i.e., T units along the unique solution u(¢)
determined by the initial function ¢) is a condensing operator with respect to
Kuratowski’s measure of non-compactness in a phase space C,, and then derive
periodic solutions from bounded solutions by using Sadovskii’s fixed point theorem.
This extends the study of deriving periodic solutions from bounded solutions to
infinite delay differential equations in general Banach spaces. © 2000 Academic
Press

Key Words: periodic solutions; infinite delay; Kuratowski’s measure of non-
compactness; Sadovskii’s fixed point theorem.

1. INTRODUCTION

This paper is concerned with deriving periodic solutions from bounded
solutions for the infinite delay differential equation

u'(t) +A()u(t) =f(t,u(t),u,), t>0, u(s)=¢(s), s<0,
(1.1)
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in a general Banach space (X, || - I)), with A(¢) a unbounded operator and f
a continuous function in its variables, and A(¢) and f(¢, x, y) T-periodic in
t. Here u, € C((—,0], X) (space of continuous functions on (—, 0] with
values in X) is defined by u,(s) = u(¢ + s), s < 0.

A standard approach in deriving T periodic solutions is to define the
Poincaré operator [1] given by P(¢) = u;(¢), which maps an initial
function (or value) T-units along the unique solution u(¢) determined by
the initial function (or value) ¢. Then conditions are given such that some
fixed point theorem can be applied to get a fixed point for the Poincaré
operator, which gives rise to a periodic solution.

Many fixed point theorems require that the operator maps among
compact sets, or that the operator itself is compact; see, e.g., Browder’s,
Horn’s, Schauder’s and Schauder—Tychonov’s fixed point theorems.

When X is a finite dimensional space, compact sets can be constructed
using the uniformly bounded and equicontinuous functions. See, e.g.,
Burton [2] for such a construction in a phase space Cg, where the
boundedness and ultimate boundedness are then used to ensure that
Horn’s fixed point theorem can be applied to obtain a fixed point for the
Poincaré operator.

When X is a general (infinite dimensional) Banach space, then to verify
the compactness of a set of functions with values in X, one needs to use
the abstract version of the Ascoli theorem. Now, the additional require-
ment is to ensure that at any given point in the interval where the
functions are defined, the set of all functions evaluated at that point is
precompact in X. This requirement is very hard to fulfill, so it causes
major difficulty for the study of periodic solutions in general Banach
spaces.

For differential equations without delay or with finite delay in general
Banach spaces, Amann [1], Hale [6], Xiang and Ahmed [17], Liu [10-12],
etc., studied the existence of periodic solutions by requiring that the
resolvent of A(-) be compact, so that the abstract version of the Ascoli
theorem can be used to show that the Poincaré operator is compact.
Hence the images of the Poincaré operator on bounded sets are precom-
pact, which makes it possible to derive the periodic solutions. For example,
for finite delay differential equations with initial functions on [—r, 0], this
is done in Liu [12] by observing that if the period T > r, then the image of
an initial function under the Poincaré operator becomes a segment on
[T —r,T] c (0,%) of a smooth function defined on (0, «). That means the
(possibly) “bad” history of the initial function on [—r, 0] has been cut, or
smoothed out. Therefore, it is possible to show that the Poincaré operator
is compact and hence to derive periodic solutions from bounded solutions.
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However, this technique of showing the compactness of the Poincaré
operator does not apply to differential equations with infinite delay in
general Banach spaces. The reason is that now the (time) interval in the
phase space is (—,0], so that under the Poincaré operator, an initial
function on (—<0, 0] becomes a segment on (—,0] of a function defined
on (—oo, T]. That is, the history of the initial function on (—c,0] is still
carried over under the Poincaré operator; thus it is possible that under the
Poincaré operator, a bounded set gets mapped into a non-precompact set.
Therefore the abstract version of the Ascoli theorem and hence all those
Browder’s, Horn’s, Schauder’s, and Schauder—Tychonov’s fixed point theo-
rems are not applicable to the Poincaré operator in the infinite delay cases
in general Banach spaces.

This means that other methods are needed to study the periodic solu-
tions for differential equations with infinite delay in general Banach
spaces. When A(7) is independent of ¢ and when Eq. (1.1) is an integrodif-
ferential equation, the periodic solutions are studied in Burton and Zhang
[3] using Granas’s degree theory and in Grimmer and Liu [5] using the
limiting equation technique (when Eq. (1.1) is also linear).

Recently, Henriquez [7] studied the periodic solutions for Eq. (1.1)
(when A(¢) is independent of ¢) in a seminormed abstract space with the
axioms for abstract infinite delay differential equations introduced in Hale
and Kato [8], and Kuratowski’s measure of non-compactness is used to
show that the Poincaré operator is condensing under some conditions, so
that by Sadovskii’s theorem [16], fixed points exist when a condensing
operator maps a convex, closed, and bounded set into itself.

In this paper we will adopt the idea of [7] and study Eq. (1.1) in
continuous functions space C((—,0], X). We will choose a function g on
(—o,0] in such a way that in the “weighted” (or “friendly” in some
literature) phase space C,, the Poincaré operator is shown to be condens-
ing without those conditions and axioms imposed in [7].

Note that Sadovskii’s fixed point theorem requires that the Poincaré
operator maps a bounded set into itself. Thus some kind of boundedness
of the solutions is required here. We will show that if solutions of Eq. (1.1)
are bounded (even locally on [0, T]) in a strict sense, then Eq. (1.1) has T
periodic solutions (see Definition 4.1 and Theorem 4.3). This way, the idea
of deriving periodic solutions from bounded solutions can be extended to
infinite delay differential equations in general Banach spaces.

We will study the solutions of Eq. (1.1) in Section 2, Kuratowski’s
measure of non-compactness in Section 3, and the periodic solutions in
Section 4.
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2. THE SOLUTIONS

In this section we study the existence and uniqueness of solutions for
Eq. (1.1). We make the following assumptions.

AssuMmpTION 2.1. For a constant T >0, f(t+ T,x,y) =f(, x,y),
A(t + T) = A(t), t > 0. f is continuous in its variables and is locally
Lipschitzian in the second and the third variables, and f maps a bounded
set into a bounded set.

ASSUMPTION 2.2 [14, p. 150]. For ¢ € [0, T] one has
(H1) The domain D(A(t)) = D is independent of ¢ and is dense
in X.
(H2) For ¢t > 0, the resolvent R(A, A(2)) = (A — A(¢))~! exists for

all A with Re A < 0 and is compact, and there is a constant M indepen-
dent of A and ¢ such that

IR(A, A()l < M(IA+1)"",  Re A <0.
(H3) There exist constants L and 0 < a < 1 such that
(A(t) —A(s))A(r)_lll <Lt —s|%, s,t,re[0,T].

Under these assumptions, the results in, e.g., Amann [1], Friedman [4],
Kielhofer [9], and Pazy [14] imply the existence of a unique evolution
system U(t,5), 0 <s <t < T for Eq. (1.1). See [1, 4, 9, 14] for details.

Now, we define the phase space C, for Eq. (1.1). First we have

LEMMA 2.1. There exists an integer K, > 1 such that

1\ Ko—1
(5) M, <1, (2.1)

where My = sup, c o 11lU(¢,0)|| is finite. Next, let wy = T/K,; then there
exists a function g on (—, 0] such that g(0) = 1, g(—») = o, g is decreasing
on (—=,0], and for d > w, one has

s 1
SL<113 % <5 (2.2)
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Proof.  Such a function g exists; e.g., g(s) = e ** where a > 0 is such
that e > 2. |

For the function g given in Lemma 2.1, define the continuous functions
space

lp(s)ll
C,={d: ¢ € C((—,0],X)and sup < o (2.3)
s<0 g(s)
Then C, coupled with the norm
lp(s)ll
l¢lg = sup , ecC,, 24
¢ s<0 g(S) ¢ ( )

is a Banach space [2]. Now we consider the existence and the uniqueness
of solutions of Eq. (1.1).

THEOREM 2.1.  Let the Assumptions 2.1, 2.2 be satisfied, and let ¢ € C,
be fixed. Then there exists a constant a > 0 and a unique continuous function
u: (—oo, al = X such that u, = ¢ (i.e., u(s) = ¢(s), s < 0), and

u(t) = U(t,0)$(0) +f0‘U(t,h)f(h,u(h),uh)dh, te[0,a]. (2.5)

Proof. We will use the contraction mapping theorem. With ¢ € C,
being fixed and with a > 0 yet to be determined, we consider the func-
tions u € C((—x, a], X) with u, = ¢ and define a map Q such that
(Qu)(s) = ¢(s) for s < 0; and for ¢ € [0, ],

(Qu)(1) = U(1.0)(0) + [U(t.h)f(hou(h), wy) dh. (26)

Using the property of the evolution system U, we have Q:{u €
C(—»,al, X):uy= ¢} > {u € C((—», al, X):u, = ¢}. Next, for u, v
€ C((—o, a], X) with u, = v, = ¢, one has for ¢ € [0, a],

(Q)(1) = (Qu)(1) = [[U(e, ) F(,u(h), ) = f(h,0(h), 0,)] dh
- fO’U(r,m[f(h,u(h),uh) — f(h,u(h),v,)] dh

+fO’U<r,h)[f(h,u<h),vh) — f(h,v(h),v,)] dh.
(2.7)
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Now, U(t, h) is a bounded operator and f is locally Lipschitzian in the
second and the third variable; and for 4 € [0, a],

lu,(s) — v, ()l
Uy — Uylg = SUP ( )g(s) (5) < supllu,(s) — v, ()l

s<0 s<0

= supllu(h +5) —v(h +s)ll

s<0

= sup llu(h +s)—v(h+s)l (u(r) —v(r)=0,r<0)
se[—h,0]

< sup llu(l) —o(D)l; (2.8)
1€]0, a]

thus, it is clear that we can obtain the result by using the contraction
mapping theorem in C([0, a], X). Details will be left here. |

Note that the function u determined by Theorem 2.1 is often called “the
mild solution of Eq. (1.1).” In our study here, we would like the Poincaré
operator to be defined on the whole space C, (i.e., solutions of Eq. (1.1)
exist for all initial functions in C,), so that in this paper “a solution of Eq.
(1.1)” means a function u determined by Theorem 2.1, i.e., a mild solution
of Eq. (1.1). This is also the case in [7] and in many other related papers.
Also note that we are concerned with the periodic solutions here, so we
may assume that solutions exist on [0,). We will write u = u(-, ¢) to
indicate that u is the unique solution with the initial function ¢.

Remark 2.1. To guarantee the uniqueness of the solutions, we assumed
the local Lipschitzan condition for the function f. If the Lipschitzan
condition is not assumed, then the existence of the solutions can still be
obtained by using Schauder’s fixed point theorem with an argument similar
to the one in [7].

For the Banach space C, defined above, we have

LEMMA 2.2.  Let u be a continuous function on (—%, T] such that u,|, is
finite for every t € [0, T]. Then forany 0 <h <r < Twithr — h > w, (w,
is from Lemma 2.1), one has

1
lu,le < max{ sup |lu(s)Il, =lu,lg;. (2.9)
selh,r] 2
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Proof. By using Lemma 2.1, we have

. = su llee, ()l Cw lu(r + )l
TN () 8(s)
lu(H)Il
Tei-n  UTeTh
llu( D)l
SmaX{ZESS}?r]”M(Z)” (/- ) l<h g(l—r)}
B 1 lu(D)Il g(1 — h)
- {ZE[,}’,]” TS R T g(l—r)}
lu(h + s)ll g(s)
_max{;:&?,]”u(l)”’ 0 8(s) g(s—(r—h))}
(I —h=y)
smax{ sup lu(s)l, Iuhlg (2.10)
selh,r]

To estimate the solutions, we have

LEMMA 2.3. Let the Assumptions 2.1, 2.2 be satisfied and let u and y be
two solutions of Eq. (1.1) (with initial functions u, and y,, respectively) on
(—o, L], L > 0. Then fort € [0, L],

lu, = yl, < (My + Dluy — y,l eMikotkor 2.11
¢ ~ Vilg 0 0o~ Yolg

where M, M,, k,, and k, are some constants.

Proof.  Similar to the proof of Lemma 2.2, we have, for t € [0, L],

lu, —y,lg < max{ sup llu(s) —y(s)ll, lu, —yolg}. (2.12)
se[0,¢]

Next, using the local Lipschitz conditions, we may assume that

If(h,u(h),y,) = f(h,y(h), y)Il < kollu(h) —y(R)Il,  (2.13)
Wf(hou(h),uy) = f(hou(h), y)ll < kiluy, = y,l,, (2.14)
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for some constants k, and k,. Let M, = sup,., U0, M, =
Supg < 5 < s < 71UCs, ||, which are finite. Then for s € [0, 7],

lu(s) = y()l = [U(s,0) (u(0) — y(0))
+[{:U(s,h)[f(h,u(h),uh) — f(h, y(h), ;)] dn|
— |U(s,0) (u(0) - y(0))
+ [ UG Ry ) = [ (). 3,)] |

+ [ UG W F(hu(h). ) = F(hy(h). 3,)] dh]
< M,llu(0) — y(0)Il + fOlekollu(h) — y(h)ll dh
+fOM1k1|uh — vl dh

t
< Myluy — yol, + fOMl(kO + k), — y,le dh. (2.15)
Thus we have, from (2.12),
t
lu, = ylg < (Mg + Dlug = yyl, + /0 My (ko + ko)l — yylg dh. (2.16)

Now, Gronwall’s inequality implies (2.11). |

An immediate consequence of Lemma 2.3 is the following local bound-
edness property of the solutions.

THEOREM 2.2.  Let the Assumptions 2.1, 2.2 be satisfied and let D C C,
be bounded. Then for any L > 0, solutions of Eq. (1.1) with initial functions
in D are bounded on [0, L). That is, there exists a constant E = E(D, L) > 0
such that if u(:) = u(-, ¢) with ¢ € D, then ||u(|l < E fort € [0, L].

Proof. Let y = y(¢,) be a fixed solution with ¢, € D. Then |u,|, <
lu;, —y.l;, and hence Lemma 2.3 implies that {lu,($)l,: ¢ € D} is
bounded. Therefore the result is true by using the definition of the norm
inC,. 1

8
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3. THE MEASURE OF NON-COMPACTNESS

In this section, we examine Kuratowski’s measure of non-compactness,
which will be used in the next section to study the periodic solutions via
the fixed points of a condensing operator. Kuratowski’s measure of non-
compactness (or the @ measure) for a bounded set H of a Banach space Y
with norm |- |y is defined as

a(H) = inf{d > 0: H has a finite cover of diameter < d}. (3.1)

We need to use the following basic properties of the « measure and
Sadovskii’s fixed point theorem here; see [13, 16].

LEmMA 3.1[13]. Let A and B be bounded sets of a Banach space Y. Then

a(A) < dia(A). (dia(A) = supf{lx — yly : x,y € A})

a(A) = 0 if and only if A is precompact.

a(AA) =|Ma(A), A€ NR. (A4 ={Ax:x € A})

a(A U B) = max{a(A), a(B)}.

a(A+B)<a(A)+ a(B).(A+B={x+y:xeA,y €B})
a(A4) < a(B) if A C B.

AU

LEMMA 3.2 (Sadovskii’s fixed point theorem [16]). Let P be a condensing
operator on a Banach space Y, i.e., P is continuous and takes bounded sets
into bounded sets, and a(P(B)) < a(B) for every bounded set B of Y with
a(B) > 0. If P(H) C H for a convex, closed, and bounded set H of Y, then
P has a fixed point in H.

The following result is also needed here. However, we have not found a
reference for the result yet. So we provide a proof here.

LEMMA 3.3. Let A with norm |-| 4 and C with norm |- |c be bounded. If

there is a surjective map Q: C — A such that for any c¢,d € C one has
10(c) — O(Dl4 < lc —dlc, then a(A) < a(C).

Proof. For any & > 0, there exist bounded sets G' c C, i =1,...,m,
such that

dia(G") < a(C) + &, C

I
s
Q

I
[un

(3.2)
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Now, Q is surjective, so that 4 = U™, Q(G"). And for a,b € Q(G") we
may assume that a = Q(c), b = Q(d) for some ¢,d € G'. Thus

0(c) — O(d)l4 <lc —dlc < dia(G")
a(C) + &. (3.3)

la — bl 4

IA

This implies dia(Q(G")) < a(C) + &, and hence from Lemma 3.1(1),
a(Q(G") < dia(Q(G")) < a(C) + &. Therefore Lemma 3.1(4) implies that
a(A) < a(C) + &. Since & > 0 is arbitrary, the result is true. ||

Next, for D € C, and u(¢), the unique solution with uy(¢) = ¢, we
define W,(D) {u,(d;) ¢ € D} and Wy, (D) = {u, ,(¢): ¢ € D}, where
up, ) means the restriction of u on [h r]. The idea of the proof of the
following result is similar to the one in [15].

LEMMA 3.4. Let the Assumptions 2.1, 2.2 be satisfied. If D C C, is
bounded, then Wy, (D) c C(0,T], X) is bounded and WD) c C, is
bounded for each r € [0,T]. And for any 0 <h <r <Twithr —h = w,
(w, is from Lemma 2.1), one has

1
a(W,(D)) < max{a(W[h’,](D)), Ea(Wh(D))}. (3.4)

Proof. First, Theorem 2.2 implies that W, (D) c C([0,T], X) is
bounded. This result and Lemma 2.2 (with 2 = 0) imply that for each
relo,T], W(D) is bounded in C Now, for any & > 0, there exist
bounded sets P' € W}, (D), i = , m, and bounded sets Q/ € W,(D),
j=1,...,n, such that

dia(P') < a(W, (D)) + &, W, (D)= ur. 63

IA

«(W(D) + 26, WD) = U Q.  (36)
j=1

dia(Q’)

Put

Yisi

{u, € W,(D):uy, ,,€Pu, € Qf}. (3.7)

Then we have

w(o)= U U, (3.8)
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For each Y./, if u,, w, € Y/, then from the proof of Lemma 2.2,

1
lu, —w,l, < max{ sup llu(s) —w(s)ll, =lu, — whlg}
se€lh,r] 2

1 :
< max{dia(P’), 5 dia(Qf)}
1
< max{a(W[h’,](D)) + &, E(a(Wh(D)) + 26‘)}

1
= max{a(VV[h’r](D)), Ea(Wh(D))} + &. (3.9)

This implies, using Lemma 3.1(1), that
o o 1
a(¥}")) < dia(Y) < max{a(W[h,,](D)), Ea(VVh(D))} PNERT)

Then Lemma 3.1(4) implies that

1
a(W,(D)) < max{a(W[h’r](D)), Ea(Wh(D))} +e. (3.11)

Since & > 0 is arbitrary, the result is true. ||

The following lemma from Amann [1] will be used here to show that P
is a condensing operator. Recall that in the usual way (see, e.g., Amann [1],
Friedman [4], Pazy [14]) we define fractional power operator A* and
Banach space X, for 0 < a <1, where 4 = A(0) and X, = (D(A4°),
[l lle) with [lxl, = [l4°x]l. We also write the norm in L(X,, X,) (space of
bounded linear operators from X, to XB) as || lla, g-

LEmmA 3.5 [1]. ()  Suppose that 0 < a < B < 1. Then for B — a <y
< 1, there is a constant C(a, B, y) such that

NU(t,h)lla.p < C(a,B,y)(t—h) 7, O0<h<t<T.

(i) For 0 <y <1, there is a constant C(y), such that for g
C(0, L], X) (L > 0 is a constant), one has for 0 <s,t <L,

HfotU(t,h)g(h) dh — fOSU(s,h)g(h) dh

< C t h .
= (}’)l 5| 0<1nh3-<X ||g( )H
(iii) Let 0 < a< B < 1. Then

K(x,8)(1) = U(t,0)x + [U(t,)g(h)dh, 0<t<T,
0
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defines a continuous linear operator from Xz X Cc(0,T], X) into
Cc*([0,T], X,) for every y € [0, B — a).

We also state here the Ascoli theorem for a general Banach space X for
convenient reference.

LEMMA 3.6 (Ascoli theorem). Let E € C([a, b], X) be bounded. Then E
is precompact if and only if functions in E are equicontinuous and for each
t € [a, bl, the set {f(¢): f € E} is precompact in X.

By using the Ascoli theorem, we have the following result. The idea of
the proof is similar to the case for finite delay in [12].

LEMMA 3.7.  Let the Assumptions 2.1, 2.2 be satisfied and let D < C, be
bounded. Then a(Wy; (D)) =0 forany 0 <l <r<T.

Proof. By Lemma 3.1(2), we need to prove that the Ascoli theorem can
be applied to the bounded set £ = W, (D) c C([L, r], X).
Note that a function in E can be expressed as, for s € [, r],

u(s, &) = U(s,0)(0) +f0SU(s,h)f(h,u(h),uh)dh, éeD.
(3.12)

Since [ > 0, there is k > 0 such that s > k for s € [[,r]. From [14,
p. 164], one has, for s [/, r],
U(5,0)6(0) = U(s, k)U(K,0)$(0),  $€D.  (3.13)
Fix n € (0,1). Then from Lemma 3.5(), U(k,0): X — X, is bounded.
Next the embedding X, — X is compact (under Assumption 2.2(H2); see,
e.g., [6]); thus {U(k,0)¢$(0) : ¢ € D} is precompact in X since {¢(0): ¢ € D}
is bounded in X. Therefore, the closure of {U(k,0)¢(0): ¢ € D} is com-
pact in X. Now, by a standard argument, one can verify that as functions
on [l,r],
(U(0)$(0): & € D} = (U(-, k)[U(k,0)$(0)] : & < D} (3.14)
is equicontinuous. Next, from Lemma 3.5(ii), for 0 < y < 1, there is a
constant C(vy), such that for s, s, € [, 7],

j:zU(s2,h)f(h,u(h),uh)dh —fOSlU(sl,h)f(h,u(h),uh)th (3.15)

< CO)lsy = sl max If(, u(h), w,)ll (3.16)

By using Lemma 3.4, we see that the variables in f are bounded. Now f
maps a bounded set into a bounded set; thus there exists M, = M,(D) > 0
such that

If(t,u(t),u(dp)l<M,, te[0,T], $e<D.
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Therefore, as functions on [/, r],

{fO'U("h)f(h,u(h),uh)dh:¢ eD} (3.17)

is also equicontinuous. Therefore, functions in E are equicontinuous.

In the following, to check the precompactness of the functions at every
point in [/, r], we fix s, € [/, r]. From the above arguments, we also know
that

{U(54,0)$(0) : ¢ € D} (3.18)

is precompact in X. Next, for ¢ € D, we may let g(¢z) = f(¢, u(t), u,($)).
Then

[ U0 ) F(hu(h). () dh = K(0.8)(s0) € X,

according to Lemma 3.5@iii). Also note that by Lemma 3.5(1), there are
constants y € (0,1) and M; > 0 such that

NU(sy, W)llo.n < My(sy —h) 7, 0<h<s,.

Thus

HfoS(’U(So,h)f(hM(h),uh(cﬁ))dh <MM,T7/(1-y), $€D.

Therefore

{fOSOU(sO,h)f(h,u(h),uh(d)))dh:qb ED} (3.19)

is bounded in X, . Then, using the fact that the embedding X, — X is
compact again, we see that the set defined by (3.19) is precompact in X.
Now the Ascoli theorem implies that E is precompact. Thus by Lemma
3.12), a(W, (D) = a(E) = 0. |

4. THE PERIODIC SOLUTIONS

In this section, we study the periodic solutions of the T periodic infinite
delay differential equation (1.1). For this purpose, we define the Poincaré
operator P along the solution such that for the unique solution u(-, ¢) of
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Eq. (1.1) with the initial function ¢,

P(6) =ur(d),  deC, 1)
(i.e., (P)(s) =us(s,¢) =u(T +s,¢), s<0),

and then examine when the map P has a fixed point. We note that a fixed
point of P gives rise to a periodic solution, because if P(¢) = ¢, then for
the solution u(-) = u(-, ¢) with u(-, ¢) = ¢, we can define y(¢) = u(r +
T). Now, for t> 0, we can use the known formulas [14] U(z,s) =
Ut,)U(r,s),0<s<r<t<T,and Ut + T,s + T) = U(t, s) (since the
operator A(¢) is T periodic in ¢) to obtain

y()=u(t+T)=U(t+ T,0)¢(0)

+ [0+ T ) f(hu(h), wy) dh
0
= U(t+ T.T)U(T.0)$(0) + [ U(t + T. 1) f(h.u(h). uy) dh
0
+ [0+ T (e u(h) . wy) dh
= U(t,0)U(T,0)$(0) + [ U(t + T, T)U(T, ) f(h,u(h), u,) dh
+ftU(t + T, T+s)f(T+s,u(T+s),ur,,)ds
0
= U(1,0)U(T.0)$(0) + [ U(t,0)0U(T, k) f(h, u(h), u,) dh
0
+ [0, 5)f(5.¥(5). v,) ds
0
- U(t,O)[U(T,O)q')(O) + fOTU(T,h)f(h,u(h),uh)dh
+ [0 5)f(5.¥(5). v,) ds
0
— U(t,0)u(T) + fOtU(t,s)f(s,y(s),ys)ds

— U(1,0)y(0) + fOtU(t,s)f(s,y(s),ys) ds. (4.2)
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Equation (4.2) implies that y is also a solution with y, = u;(¢) = P($) =
¢; then the uniqueness implies that y(¢) = u(¢), so that u(z) = u(z + T) is
a T periodic solution.

Next, we prove that the operator P is condensing.

THEOREM 4.1. Let the Assumptions 2.1, 2.2 be satisfied. Then the opera-
tor P defined by (4.1) is condensing in C, with g given in Lemma 2.1.

Proof. From Lemma 2.3, we have
IP(¢) = P(@)ly = lur(d) —ur(@)ly < (My + 1“0 — ol
(4.3)

so that P is continuous. It also implies that P takes bounded sets into
bounded sets (see the proof of Theorem 2.2). Next, let D c C, be
bounded with a(D) > 0. By using Lemmas 3.4 and 3.7 repeatedly, we have
(w, is from Lemma 2.1)

a(P(D))=a(WT<D))smax{ & (Wirri(D)): 30 TWO(D))}

S I

a (WT*WU(D))

IA

max{ (Wir- 2w 7-w1(D)) la(WT ZW“(D))}

)

a(WT— 2w0(D))

N =

~—~——— —— —

2

N =

max{a(Fr s, 20 (P): 3 (Wi s (D))

w

IA
. —_—— —_—— N

a(WT—awo(D))

N =

1 Ko~ 1 1
< (E) max{a(W[O’T_(KO_l)WU](D)), Ea(D)}. (4.4)
Next, for -€ [0,T — (K, — Dw,],
Wio.r— k- 1wo(P) € {U(+,0)¢(0) : ¢ € D}
+{fO.U(gh)f(h,u(h),uh(d)))dh: b e D}.
(4.5)
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And since for ¢t € [0,T — (K, — Dw,],

IU(£,0)6(0) — U(1,0)o(0)ll = 1U(2,0)($(0) — ¢(0))ll
< Myll$(0) — e(0)ll < Myl — ¢lg, (4.6)

where M, = sup, ¢ (o 1lU(z,0)ll, then we have from Lemma 3.1(3) and
Lemma 3.3 that (for - € [0,T — (K, — Dw,]

a{U(-,0)6(0): ¢ € D} < Mya(D). (4.7)

Similar to the proof in Lemma 3.7 we see that for - € [0, 7 — (K, — Dw,],

a{fO'U(-,h)f(h,u(h),uh(cz)))dh;qseD} ~ 0. (4.8)
Therefore we have from Lemma 3.1(5,6) that

C“(W[O,T—(K—1)w0](D)) <M,a(D). (4.9)

Thus, from Lemma 2.1 and (4.4), (49) we have (note that M, =
supre[(],T]”U(t, 0Oll=1D

a(P(D)) < (%)Kt)lmax{Moa(D),%a(D)}

)KﬂlMOa(D) < a(D). (4.10)

Next, we study the periodic solutions of Eq. (1.1). From Lemma 3.2 and
Theorem 4.1, we have

THEOREM 4.2. Let the Assumptions 2.1, 2.2 be satisfied and let the
operator P be defined by (4.1) in C o With g given in Lemma 2.1. If there exists
a convex, closed, and bounded set H C C, such that P(H) c H, then P has
a fixed point in H, and hence Eq. (1.1) has a T periodic solution.

Note that, in general, f(z,0,0) = 0 in Eq. (1.1), so the periodic solutions
(if they exist) are nontrivial. Also, note that Sadovskii’s fixed point theorem
requires that P(H) C H for a bounded set H. Therefore some kind of
boundedness of the solutions of Eq. (1.1) is required here. We now make
the following definition for the 7 periodic infinite delay differential
equation (1.1).



INFINITE DELAY EQUATIONS 643

DEFINITION 4.1. Solutions of Eq. (1.1) are said to be locally strictly
bounded if there exists a constant B > 0 such that |¢|, < B implies that
its solution satisfies [|u(¢, ¢)|l < B for t € [0, T].

We now study the relationship between the boundedness and the
periodicity of the solutions of Eq. (1.1). We will see that if solutions of Eq.
(1.1) are bounded (even locally on [0, T]) in a strict sense, then Eq. (1.1)
has T periodic solutions.

THEOREM 4.3. Let the Assumptions 2.1, 2.2 be satisfied. If the solutions
of Eq. (1.1) are locally strictly bounded (or assume that solutions are non-
increasing in norm || -1l on [0, T)), then Eq. (1.1) has a T periodic solution.

Proof. Let the operator P be defined by (4.1) in C, with g given in
Lemma 2.1, and let H = {¢ C,: |¢l, < B} with B from Definition 4.1.
Then H is convex, closed, and bounded in C,. Next, for u(-) = u(:, ¢) with
¢ € H, the locally strict boundedness implies that [|u(¢)|| < B for ¢ € [0, T'].
Then we obtain from Lemma 2.2 that

1
P(), |uT(¢)|gSmax{ sup_llu(s)l. 314,

s€[0,T]

1
< maX{B, EB} = B. (4.11)

Thus the result is true by using Theorem 4.2. |
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