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1. Introduction

Let us consider the following finite delay evolution equation

W)+ AOu(t) = f(Lult)u), >0, u(s)=d(s), s€[—r0] (1.1)

in a general Banach space (X, ||| ), with 4(#) an unbounded operator and f a continuous

function. Here »>0 is a constant. (When »=0, (1.1) is an equation without delay.)

We denote C([—r,0],.X) the space of continuous functions from [—r,0] to X with the

sup-norm, |¢||c = , and define u, € C([—r,0],X) by w,(s) =u(t+ s),
€ [-r,0], for a function u.

Eq. (1.1) has received some attention recently. For example, Xiang and Ahmed [1]
studied the existence of periodic solutions of Eq. (1.1), and Oliveira [2] studied the
instability for Eq. (1.1) when A(¢) is a constant operator. See Liu [3, 4] for related
citations for equations without delay.

In this paper, we will study the relationship between the bounded solutions and the
periodic solutions. For this purpose, we define a map P along the solution in such a
way that, for u(-, ¢) a solution of Eq. (1.1) with the initial function ¢,

Po=ur(-, @), ¢eC([-r0LX (1.2)
(ie. (P@)(s)=ur(s,¢)=u(T +5,¢), s€[-r,0],)

and then examine when the map P has a fixed point.
The same issue has been studied thoroughly when X is a finite dimensional space.
See, for example, Massera [5], Yoshizawa [6], Burton [7] and Haddock [8], where the
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solutions are proven to be bounded and ultimate bounded, and then compact subsets
are constructed using bounded sets and the equicontinuity, and finally an asymptotic
fixed point theorem (Hom’s) is used to obtain the periodic solutions.

It is possible to carry all the techniques used in finite dimensional spaces to general
Banach spaces. However, for a general Banach space, the bounded sets may not be
precompact. Thus the construction of compact sets used in finite dimensional spaces
will not lead to compact sets in general Banach spaces. Therefore, we need to modify
those techniques used in finite dimensional spaces.

One idea is to put some compactness conditions on the resolvent of 4(r) so as to
prove that the map P is compact. Then compact sets can be obtained using images of
the map P on bounded sets.

This idea has been used in, e.g. [1,9-13] to deal with the same difficulty. It is also
used in Liu [3,4] for evolution equations without delay (i.e. » =0 in Eq. (1.1)), where
it was shown that the equation has a 7-periodic solution if solutions of the equation
are bounded and ultimate bounded, and that solutions of the equation are bounded and
ultimate bounded if there exists a proper Liapunov function.

Recently, after examining the delay equation (1.1) and the methods in Liu [3, 4],
we found that the ideas used in [3, 4] for equations without delay can be extended to
equations with finite delay. Thus it is the purpose of this paper to report such findings.

Note that the map P maps the initial functions ¢ on [—r,0] to functions P¢ on
[T —r. T] along the solutions. If 7 —# < 0, then the restrictions of P¢ on |7 —r,0] are
parts of the initial functions ¢, and they may be arbitrary, or “bad”, i.e. not precompact.
To avoid this, we require 7 — #>0 in this paper. Under this assumption, conditions
can be given to show that the map P is compact, which enables us to carry the results
for equations without delay to the finite delay evolution equation (1.1).

We will obtain the solutions of Eq. (1.1) in Section 2, and study the boundedness
and ultimate boundedness of the solutions in Section 3, and then derive the periodic
solutions from the boundedness and ultimate boundedness in Section 4.

2. Solving the Eq. (1.1)

In this section we study the existence and uniqueness of solutions for Eq. (1.1). We
make the following assumptions.

Assumption 2.1. For a constant 7 >r, f(t+71,x,v)= f(t,x,y), AU+T)=A(t), t > 0.
/ is continuous in its variables and is locally Lipschitzian in the second and the third
variables, and maps a bounded set into a bounded set.

Assumption 2.2 ([13, p. 150]). For r&[0,7],

(H1) The domain D(A(1)) =D is independent of ¢ and is dense in X.

(H2) For t > 0, the resolvent R(/,A(1))= (/1 —A(t))"" exists for all 4 with Re A < 0
and is compact, and there is a constant M independent of 2 and ¢ such that

IR, AN < M(A] +1)7", Rei <0.
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(H3) There exist constants L and 0 <a < | such that
1(A(e) = AGHAGY || < Lit = s, 5,67 €[0.T],

Under these assumptions, the results in, e.g. Amann [9], Friedman [10], Kielhofer
[12] and Pazy [13] imply the existence of a unique evolution system U(zs), 0 <5 <
t < T, for Eq. (1.1). See [9, 10, 12] and [13] for details.

Theorem 2.1. Let the Assumptions 2.1-2.2 be satisfied and let ¢ € C(|-r.0],X). Then
there exists a constant x>0 and a unique continuous function u : [—r, 2] — X such
that uy = ¢ and

!

u(:):l/(r,())gb(on/ ULh) f(hou(h),up)ydh, 1 €[0,2]. (2.1)

0
Proof. We only need to set up the framework for the use of the Contraction Mapping
Theorem. With ¢ € C([~r,0],X) being fixed and with «>0 yet to be determined,
we define a map Q on C([—r.%],X) such that, for u & C([—r.x].X) with up= ¢,
(Qu)(s)=¢(s) for s€[—r.0], and

-1
(Qu)(1)=U(1,0)p(0) + / Ut h) f(hou(h),up)dh,  for t€ [0, 2] (2.2)
Jo
Using the property of the evolution system U. we have Q : C([-r,a,X) — C([-r,
2], X). Next, for u,v € C([~r, 2], X ) with 1y =19 =¢ and ¢ € [0, ], one has

!

(Qu)(t) — (Qu)(¢) ::/ U f(houlh),uy) — fF(ho(h), e dh (2.3)

0

= / UL Chyu(h) ug) — f(BouCh).vg)]dh
(

JA)
n / UL (o), tn) — £ Che(h. o) i (2.4)
S0

Now, f is locally Lipschitzian in the second and the third variables and U(#, %) is a
bounded operator, it is then clear that we can obtain the result by using the Contraction
Mapping Theorem. Details will be left here. [

Note that the function u determined by Theorem 2.1 is often called “the mild solution
of Eq. (1.1)”. In our study here, we would like the map P to be defined on the
whole space C([—r,0],X), i.e. solutions of Eq. (1.1) exist for all initial functions in
C([—r,0],X). So that in this paper, “a solution of Eq. {1.1)” means a “a mild solution”,
i.c. a function determined by Theorem 2.1. Under some extra conditions on ¢, A(t)
and /., mild solutions give rise to “classical solutions” (i.e. have derivatives). See e.g.
[1,9, 10,12, 13] for details. Also note that we are concerned with the bounded and
periodic solutions here, so we may assume that solutions exist on [0, >¢). We will
write u =u(-,¢) for a solution with the initial function ¢.
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3. Boundedness and ultimate boundedness
Consider the finite delay evolution equation

' () + A(Ou(t) =f(Lu(t)u), >0, u(s)=dd(s), s€[-r0], (3.1)

in Banach space (X, - ||). The following definitions are standard, we state them here
for convenient references. Note that the uniform boundedness and uniform ultimate
boundedness are not required to obtain the periodic solutions here, so we only define
the boundedness and ultimate boundedness. See [7] for more references.

Definition 3.1. Solutions of Eq. (3.1) are bounded if for each B, >0, there is a B, >0,
such that ||¢l|¢ < By and 7 > 0 imply |Ju(¢, ¢)|| <B2.

Definition 3.2. Solutions of Eq. (3.1) are ultimate bounded if there is a bound B>0,
such that for each B3>0, there is a K >0, such that ||¢|lc < B; and 1 > K imply

Definition 3.3. An operator P:Z — 7 is called compact on Z if P maps bounded
sequence (or set) into precompact sequence (or set).

Lemma 3.1 ((Horn’s Fixed Point Theorem) [7]). Let £y C Ey C E> be convex subsets
of Banach space Z, with Ey and E; compact subsets and E| open relative to E,. Let
P Ey—Z be a continuous map such that for some positive integer m,

PENCE, 1</<m—1
PUE\)CEy m<j<2m- 1.

Then P has a fixed point in E).

Now, we state the following result which asserts that the existence of a proper
Liapunov function implies the boundedness and ultimate boundedness of the solutions.
The result is analogous to the one in Burton [7], and a similar result for equations
without delay is proved in Liu [4]. Thus we only sketch the proof here.

Theorem 3.1. Assume that there exist functions (“wedges”) W;, i=1,2,3, with W;:
[0,00) = [0,00), WA(0)=0,W; strictly increasing, and W\(t)— oc, 1 — . Further,
assume that there exists a (Liapunov) function V. X — R (reals), such that for some
constant M >0, when u is a solution of Eq. (3.1) with |[u(t)|| > M, then

(a) Wi([lu(n)]]) < Viu(e)) < Wal|lu(t)]),

(b) d/de¥V(u()) < —Willu)|)), or V(u(r))y — V(u(0)) < — fot ([u(s)])) ds.

Then solutions of equation (3.1) are bounded and ultimate bounded.

Proof. Let u(¢)=u(t.¢) and let B, >0 be given with By > M. Find B, > B, with
W\(B2)=Ws(B)). If for some interval [¢,#] with 0 < 7, |fu(2;)] = B;. and |ju(2)] >
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B on [, 2], then for ¢ €[4, 1],

Wi(llu(O])) < V(u(r)) < V(u(t))
<Wa([lu(t)]]) < W2(By) =W\ (By), (3.2)

which gives the boundedness.

Next, we prove the ultimate boundedness. Find B > M + | with W (8)= W,(M +1)
and let Bz >0 be given. We need to prove that there is a K >0 such that if [|¢]|c < B3
and ¢ > K, then |Ju(s)| < B.

Now, if [|u(¢)||>B > M + 1 for ¢ > 0, then

O<Wi (M + 1) < V(u(t)) < V(u(0)) — Ws(M + 1)t < Wy(B3) — W3(M + It
This fails when 1 > W>(B3)/W~(M + 1). Thus one can verify that
K=Wy(By)/W3(M + 1)
will work. (See [4] for details.) [

Remark 3.1. As can be seen here and in Liu [4], the proof of Theorem 3.1 is inde-
pendent of the form of equation (3.1). Thus Theorem 3.1 is a general result, and can
be applied to many other equations.

4. Periodic solutions

In this section, we study the periodic solutions for the finite delay evolution equation

W'ty + Au(t) =f(Lu(t),u;), t>0, u(s)=¢(s), s€[-r0] (4.1)

For this purpose, we define a map P along the solution in such a way that, for
u(-,¢) a solution of Eq. (4.1) with the initial function ¢,

Po=ur(-.¢), ¢$eC(]—r0],X), (4.2)

and then examine whether the map P has a fixed point. We note that a fixed point of P
gives rise to a periodic solution. Because if P¢ = ¢, then for the solution u(-) = u(-, ¢)
with uy(-, ¢) = ¢, we can define y(¢)=u(t+ 7). Now, for ¢ > 0, we can use the known
formulas ([13]) U(t,s)=U(t,r)U(r,s) and U(t+T,s+ T)=U(t,s) (since the operator
A(t) is T-periodic in ¢) to obtain

o1
vi)=u(t+T)Yy=U(+T,0)¢(0) + / Ut + T h)f(hu(h),u;)dh
JO

7
= U(t + T, THU(T,0)p(0) + / Ut + Toh) f (hou(h), uy) dh
S0
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A
:ownuuzoww)+/ Ut + T, TYU(T h) f(hou(h), uy) dh
S0

ol

+/ U+ T,T + 3T+ s,u(T + 5),ure)ds

0
A

= U(1,0)U(T.0)(0) + / UL 0)UAT. h) f (hyu(h), uy) dh

0

+ / Ut s)f (s, y(s), v,)ds
Jo
.

:LMLO}PKﬁoyMO%%/ U(T.h) f Ch, u(h), uy,) dh
J0

+ / Ut,s)f(s.p(5), 1) ds
J0

g

=U(,0nd(T) + / Ut s)f(s, y(s), ys)ds

0

o
= U(£,0)p(0) -+ / Ut s) (s, v(s), ys)ds. (4.3)
S0
This implies that y is also a solution, and yy = uy(¢)=P¢ = ¢. Then the uniqueness
implies that (u(¢ + 7)) = )y(t) =u(t), so that u(¢) is a 7-periodic solution.

The following lemma from Amann [9] will be used here to show that P is a compact
operator. Recall that in the usual way (see, e.g. Amann [9], Friedman [10], Pazy [13])
we define fractional power operator 4* and Banach space X, for 0 < x < 1, where
A=A4(0) and X, =(D(A"), || - ||lx) with |x||, =][|4%x||. We also write the norm in
L(X,, Xy) (space of bounded linear operators from X, to Xy) as | - ||,

Lemma 4.1 ([9]). (i) Suppose that 0 < o < < V. Then for f — 2 <y <1, there is a
constant C(x, B,v) such that

U ap < Clo, o)t —h)y ", 0<h<t <T.

(1) For 0 < <1, there iy a constant C(7), such that for g€ C([0,L],X) (L>0 is
constant ), one has for 0 <s, 1t < L,

|

(ti1) Let 0 <a<fp < 1. Then

/ U(t,hyg(hydh — / Uls,h)g(h)dh
0

S0

gcuw~w%ggﬂmmﬂ

d

KGO,gty=U(10)x + / Ulthgh)ydh, 0<r<T,

JO
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defines a continuous linear operator from Xy x C([0,T],X) into C7([0,T].X,) for
every y€[0,5 — o).

We also state the Arzela Theorem for Banach spaces here for convenient reference.

Lemma 4.2, Let EC C([a,b).X) be bounded. Then E is precompact if and only if
functions in E are equicontinuous and for each t€[a,b), the set {f(t): f€E} is
precompact in X.

Now we show that P defined by (4.2) is a compact operator. The idea in the proof
is similar to the one in [4].

Theorem 4.1. Let the Assumptions 2.1-2.2 be satisfied, and assume that solutions of
Eq. (4.1) are bounded. Then P:C([—r,0],X) — C([—r01,X) defined by (4.2) is ua
compact operaror.

Proof. Let H C C([~+.0],X) be bounded. Since solutions of Eq. (4.1) are
bounded, it follows that £=P(H)C C(|—r.0},X) i1s bounded. In the following, we
will use the Arzela Theorem to show that £ is precompact.

For s € [—r,0], a function in £ can be expressed as

(POYs)=ur(s,p)=u(T + s.¢)
Ty
=U(T 4+ 5.0)(0) + / UT +s,h) f(hu(h),up)dh, $eH  (44)
Jo
Since 7' — r>0, there 1s £ >0 such that 7 + s>k for s € [--r.0]. From [13, p.164],
one has for s € [—r,0],

U(T 4+ 5.0)p(0)=U(T + 5,k )YUk,0)p(0), oPeH. 4.5)

Fix n€(0.1). Then from Lemma 4.1(i), U(k,0):X — X, is bounded. Next the em-
bedding X, — X is compact (under Assumption 2.2(H2), sec e.g. [11]), thus {U(k,0)
$(0):pe H} is precompact in X since {H(0):p € H} is bounded in X. Therefore,
the closure of {U(k,0)(0):p & H} is compact in X. Now, one can verify that as
functions on - € [—-r.0],

{UT + ,0)p(0): p € H} = {U(T + - k)[U(k0)p(0)]: p€ H} (4.6)

is equicontinuous. Next, from Lemma 4.1(ii). for 0 < y <1, there is a constant C(7),
such that for s, 52 € [~r.0],

\\ T sy TSy .
M/ U(T + s2,h) flhou(h), uy ) dh — /
JO

U(T +s1,h) f(huth), u;,)dh‘
Jo

(4.7)

< C(y)|s) — 2| ()111,:1()(, (L Chyu(h), uy )| (4.8)
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Since solutions of Eq. (4.1) are bounded and / maps a bounded set into a bounded
set, there exists M) = M;(H)>0 such that

| f (L ut, ) u (PN <My, te[0,T], peH.

Thus, as functions on - € [—r,0],

T
{/ U(T + ~,k),/‘(h,u(h).u,,)dh;¢eH} (4.9)
JO

is also equicontinuous. Therefore, functions in £ are equicontinuous.
Next, fix so € [—r.0]. From the above arguments, we also know that

{U(T + 50,0)(0): pe H} (4.10)

is precompact in X. Now for ¢ € H, we may let g(¢) = f(£,u(t,¢),u,(¢$)). Then

s
/ U(T + so. h) f(hou(h, ), un(Pp))dh=K(0,g T + s0) € X,

JO

according to Lemma 4.1(iii). Also note that by Lemma 4.1(i), there are constants
v & (0,1) and M, >0 such that

HU(T + S(),]’I)”().,} < M(T + 59 — Yy, 0< h<T + 5.

Thus

<MMT " 7/(1 =), ¢EH.

n

A
H / UCT + s0. ) f ChouCh ), () d
JQ

Therefore

o5y
{/ U(T+smh)/‘(h,u(h,cb),u;,(d)))dh:a‘)EH} (4.11)

J0

is bounded in X,. Then use the fact that the embedding X, — X is compact again,
we see that the set defined by (4.11) is precompact in X. Now the Arzela Theorem
implies that the map P is a compact operator. [J

Next we show that periodic solutions can be derived from the boundedness and
ultimate boundedness of solutions. The proof is analogous to the one in [4]. Thus we
only sketch the proof here.

Theorem 4.2. Let the Assumptions 2.1-2.2 be satisfied. If the solutions of Eg. (4.1)
are bounded and ultimate bounded, then Eq. (4.1) has a T-periodic solution.
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Proof. Let the map P be defined by (4.2). Using an argument similar to (4.3), we see
that

P(d)=unr(¢). ¢ € C([~=r.0]). (4.12)

Next, let B>0 be the bound in the definition of ultimate boundedness. Using bound-
cdness, there is B, > B such that {||¢|c < B, r > 0} implies lu(z, ¢)|| <B2. And also,
there is By > 2B, such that {||¢||c < 2B;, ¢ > 0} implies lu(t, )| <Bs. Next, using ul-
timate boundedness, there is a positive integer m such that {lllc < 2Bat = (m -2)T}
implies |ju(z. ¢)|| <B. These imply

1P~ plle = luti = 1T + e <Ba

for i=1,2.3,... and |¢|c < 2B, (4.13)
1P pllc = [[u(i = DT + - $)llc <B
for i > m and ||¢|lc < 2Bs. (4.14)
Now let
H={¢pcC([-r0LX): ||}llc <Ba}, £ =cl.(cov. (P(H))).
K={¢peC-r01.X): |dllc<2B:}, E1=KNE, (4.15)

G={¢pecC([-r.0).X):[lc <B}, Ey = ch{cov. (P(G))),

1

where cov. (F) is the convex hull of the set F defined by cov. (Fy=1{>_/_Aifi:n =1,
fieF, 4 >0, 3.0 4=1}, and cl. denotes the closure. Thus Ey, E, and E; are
convex subsets and E| is open relative to £.

Then one can show that £q C Ey C E2 and that Ey and £; are compact scts. And
from (4.13) and (4.14), one has

PUE)CP(K)=PP (KYCP(H)CEy, i=123,..., (4.16)
PUE))C P(K)=PP ' (K)CP(G)CEy, i=m. (4.17)

Finally, we verify the continuity of the map P. Let w(r)=u(t,¢,) and v(1) = v(t, P2).
Then for +€[0, 7],

u(t)=U(1,0)¢(0) + / Ut h)f(hu(h),uy)dh, (4.18)
J0

ot
(1) = U(1,0)2(0) + / UGt ) f (b e(h), o) dh. (4.19)
JO

By using the Lipschitzian condition, we can find constants C;>1, i=1,2,..., such
that for r€[0,7],

lla( 1) = o(0)]] < [[U(£,0)[1(0) — pa2(0)]

+ / UL Choh)oy) — £ Chouh), )] dh
{

J O
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+ / U (hu(h). vn) — f(Roe(h), ey)] dhl| (4.20)
Jo

-+/ CilluChy — v(h)|| dh (4.21)
Jo

v
<y = Palle + / Cylluy — vy dh. (4.22)

0]

Then for 0 < s << T,

o
< C[ H(/)] - (/)QH(' + / C4Hll;, - l,’/,;’|('d/1. (423)
Jo
Therefore,
y
lug — vlle < Cilldy — dalle + / Cylluy — vl dh, 1€0.7). (4.24)
Jo

Hence the Gronwall’s inequality can be applied to get
“ll, — l',”(‘ _< (‘;”(}’)] - (/)2”(', e [0, 7] (425)

Thus the map P is continuous. Now, it is clear that the Horn’s Fixed Point Theorem
can be used to get a 7-periodic solution of Eq. (4.1). [

Remark 4.1. As can be seen here and in [4], the proof of Theorem 4.2 is independent
of the form of Eq. (4.1). Thus it can be applied to other equations as well. Combine
this with Remark 3.1, we have the following general results for differential equations,
with or without delays.
(A) For a differential equation in a general Banach space, if there exists a Liapunov
function that satisfies the conditions (a) and (b) in Theorem 3.1. then the solutions of
the equation are bounded and ultimate bounded.
(B) For a differential equation in a general Banach space, if the following conditions
are satisfied,

I. The solutions of the equation are bounded and ultimate bounded,

2. the equation is 7-periodic in time ¢,

3. the map that maps an initial function (could be just a point if without delay)

along the solution by 7" units is compact,

then the equation has a T-periodic solution.
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