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Abstract
We study the convergence of solutions of

Eu'(t;e) +u'(t;e) = (824 + B)u(t;e) + f(;K(t —5)(e24 + B)u(s; ¢) ds
+f(e), =0,
u(0;8) = up(e), u'(05¢) =u(e),

to solutions of

{ W (t) = Bw(t) + [y K(t —s)Bw(s)ds + f(£), t=0,
w(0) = wy,

when ¢ — 0. Here 4 and B are linear unbounded operators in a Banach space X, K(¢) is
a linear bounded operator for each 7 > 0 in X, and f(¢;¢) and f(¢) are given X-valued
functions. Our result extends the studies in Fattorini [J. Diff. Eq. 70 (1987) 1] for
equations without the integral term and in Liu [Proc. Am. Math. Soc. 122 (1994) 791]
for parabolic singular perturbation problems.
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1. Introduction

This paper is concerned with hyperbolic singular perturbation problems for
integrodifferential equations. For references in this area, we refer the reader to
the monographs of Fattorini [4], Goldstein [6] and Smith [11], and the papers
of Fattorini [5], Grimmer and Liu [7], Hale and Raugel [9], and the references
therein.

In Fattorini [5], the following hyperbolic partial differential equation with a
small positive parameter ¢ from traffic flow

%u o%u Ou Ou
2 A -~ _— —_— =
¢ <6t2 a6x2>+(6t bax> 0

is formulated as an abstract differential equation
u'(te) +u(te) = (A + B)u(t;e), t=0

in a Banach space, with 4 and B linear unbounded operators satisfying certain
conditions. Then the inhomogeneous singular perturbation problem

{ Eu'(te) +u'(t;e) = (24 + Bu(t;e) + f(te), t=0, (1)
u(0;¢) = up(e), u'(0;¢) =u(e),

is studied, and it is shown with some conditions on 4 and B that, as ¢ — 0, if
up(e) — wo, &ui(e) — 0, and f(-;¢) — f(-), then u(t;¢) — w(t) uniformly on
compact subsets of ¢ > 0, where u(¢; ¢) is the solution of the Cauchy problem
(1.1) and w is the solution of the Cauchy problem

{xf(;) =Bw(t) +f(1), t=0, (1.2)

(0) = wo.

This is an extension of an earlier result in Fattorini [4] about the parabolic
singular perturbation problem

and

where the same result mentioned above holds.

Stimulated by the work of Fattorini [5], we study in this paper the con-
vergence of solutions of the following Cauchy problem for a hyperbolic inte-
grodifferential equation
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Su'(te) +u'(t;e) = (4 + B)u(t;e) + [ K(t — 5) (24 + B)u(s; ¢) ds
+f(te), 120,
u(0;¢) = up(e), u'(0;¢) =u(e),

(1.3)
to solutions of the Cauchy problem
W (t) = Bw(t) + [y K(t —s)Bw(s)ds + f(£), >0, (1.4)
w(0) = wy, '

when ¢ — 0. Here 4, B and K(¢) (for each ¢ > 0) are operators in a Banach
space X and satisfy some assumptions (see Section 2 below), and f(-;¢),
S() € Ll.([0,00); X). Eq. (1.3) models physical problems, such as viscoelas-
ticity. Following Fattorini [5], we call this study as the hyperbolic singular
perturbations for integrodifferential equations.

We will show that, as ¢ — 0, if uy(e) — wp, &%u;(¢) — 0, and f(+;¢) — f(-),
then u(z;¢) — w(¢) uniformly on compact subsets of ¢ > 0 for the solution
u(t;e) of (1.3) and the solution w(¢) of (1.4). When K(-) = 0, this result goes
back to the corresponding results (Theorems 3.3 and 8.4) in Fattorini [5] for
equations without the integral term. Also it covers Theorem 2.1 in Liu [10]. See
Remark 3.4 below for details.

2. Preliminaries

Throughout this paper, ¢ > 0, X is a Banach space; L(X) denotes the space
of all continuous linear operators from X to itself; and D(4) stands for the
domain of an operator A.

Here we list the basic assumptions and results of Fattorini [5] that will be
used in this work. See [5] for details.

Assume that the domain D(&?4 + B) = D(4) N D(B) is dense in X; that the
homogeneous version of (1.1) (f(-;¢) = 0) has a solution for uy(¢),u;(¢) in a
dense subspace D of X; and that the solutions of the homogeneous version of
(1.1) depend continuously on their initial data uniformly on compacts of ¢ = 0.
This is equivalent to the following assumption (cf., [4,5]; see also [14,15]).

(A1) &4 + B is the generator of a strongly continuous cosine function on X.
Under this condition, one can define two propagators of the homogeneous
version of (1.1) by

O(t;e)u=u(t;e), G(t;e)u=v(t;e), ueD, t=0,

where u(t; €) (resp. v(t;¢)) is the solution of the homogeneous version of (1.1)
with u(0;¢) =u, u/(0;¢) =0 (resp. with v(0;¢) =0, v/(0;¢) = ¢ 2u); these
propagators can be extended to all of X as bounded operators, which we
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denote by the same symbol; and these operator-valued functions are strongly
continuous in ¢ = 0. It is also shown in [5] that the solutions of (1.1) are given
by

u(t; ¢) = O(t;e)uo(e) + G(t;8)[eu (¢)] + /Ol G(t —s;8)f (s;6)ds, 2.1)
and that for u € X
&G (t;e)u = O(t;e)u — G(t; ¢)u. (2.2)

Following Fattorini [5], we also make the following assumptions.
(A2) There exist constants C, w, & independent of ¢ and ¢ such that for ¢ > 0
and 0<e<g

10(5;e) 1, [|G (1 8)[| < Ce™. (2:3)

(A3) The restriction By of B to D(4) is closable and there is a v such that
(4= By)D(By) is dense in X for Rel > v.
By virtue of [5, Theorems 3.2 and 8.3] we know that under these assump-
tions, the closure By of B, generates a strongly continuous semigroup {S(¢)}, 50
satisfying

ISl <Me, =0 (2.4)
for certain constants M and u; and

lilr& Ot,e)u=S{tu, uelX, (2.5)

lim [Ga, £) + eiﬂ u=S{u, uex, (2.6)
uniformly on compact subset of z > 0.

To link the semigroup {S(¢)},., and Eq. (1.2), we assume
(A4) B, =

Therefore, under the assumption (A4), the solutions of (1.2) are given by

w(t) = S(t)wo + /Ot S(t—s)f(s)ds, wy € D(By). (2.7)

The following is an assumption made specially for the integrodifferential
equations (1.3) and (1.4).
(AS) {K(0)},>, C L(X). For eachx € X, K(-)x € W2 ([0,00); X). |[K"(-)|| is lo-
cally bounded on [0, c0). Here K” is the strong derivative.

Definition 2.1. An X-valued function u(-;¢) on [0,00) is called a solution of
(1.3) if u(+; &) is twice continuously differentiable, u(¢; &) € D(4) N D(B) for¢t = 0
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and (1.3) is satisfied. Similarly, an X-valued function w(-) on [0, o) is called a
solution of (1.4) if w(-) is continuously differentiable, w(¢) € D(B) for ¢ = 0 and
(1.4) is satisfied.

Suppose that u(#;¢) is a solution of (1.3). As in [4,5,10], we write

u(t;e) = efﬁv(£>.

&

Then by (1.3) we have

V(L) = (4+B+3:)v (g) + [y K(t = s)ex (224 + B)o (%) ds + &2/ (1; )
v(058) = up(e), V'(0;¢) = = up(e) + euy (&),

that is

V(1) = (24 + B+ 35)o(t) + [y K(t —s38)(24 + B)o(s)ds + f(t;€),
o(0:) = w(e),  v(0; £) = 3.up(e) + e (),

(2.8)
where
K(t;e) = eK (et)er,  f(t;¢) = f(et;e)ex, =0,

From [3,12,13], one can find the existence and uniqueness theorems for
solutions of (2.8) and (1.4). Since the singular perturbations is what we are
concerned in this paper, we assume that (1.3) (i.e., (2.8)) for every ¢ > 0 and
(1.4) have unique solutions, respectively.

3. Singular perturbation theorem

Now we state and prove our main result of the paper concerning singular
perturbations for Egs. (1.3) and (1.4).

Theorem 3.1. Let T > 0 be fixed, (A1)—(AS) hold, and

(A6) uy(e) — wo, u(e) — 0, as ¢ — 0,
(A7) f(56) — £() in L'(]0, T];X), as ¢ — 0.

Let u(t;¢) and w(t) be the solution of (1.3) and (1.4) on [0, T], respectively.
Then

u(t;€) — w(t) uniformly for t € [0,T] as ¢ — 0.
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Proof. Using (A5) and a standard fixed point argument, one can deduce that
there exists an L(X)-valued function F(-) such that

F(1) + K (1) + / K(t— $)F(s)ds 0,
0

F(-)x € W2'([0,00); X) for each x € X,

[IF'(-)|| 1is locally bounded on [0, 00),

where F” is the strong derivative (cf., [1,2]).
Let 6(-) be the Dirac measure. Then

(5+F)*(5+K)=0. (3.1)
Since u(t; ¢) satisfies (1.3), we get
g (t;6) + 1/ (;6) = (0 + K) * (24 + B)u(t;€) + f (1 ¢),
then by (3.1), we obtain
(0 +F) [P (t;6) + u (1;6)] = (A + Bu(t;6) + (0 + F) * f(158).

This means that u(¢; ¢) satisfies

a2 ot 2 62
where
f(t:8) = (54 F) = f(t;8) = F % [ (1;.6) + 1/ (1; ¢)). (33)
Similarly, we have
(w0 =vio 70, 10 4
where
F(0) = (54 F)x £(0) — F o w(0). (35)

Therefore, by (2.1) and (2.7), we know that

u(t;e) = O(t; &)uo(e) + G(t; 8)[e*us ()] + /Ot G(t — s;€)f (s;€) ds, (3.6)

w(t) = S(t)wo + /O St — )] (s) ds. (3.7)
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Thus
u(t;e) —w(t) = O(t; e)uo(e) — O(t; e)wo + O(t; 6)wo — S(t)wo

+ G(t; 8)[Pui (8)] + /OZ[G(I —si8)+e 2 —S(t—s)f(s)ds

- [e=r0ds+ [ ot-saliis - Fonds
0 0

(3.8)

Clearly, (2.3), (A6) and (2.5) imply that, for ¢ € [0, T] uniformly
O(t;e)up(e) — O(t;e)wy — 0, as ¢ — 0, (3.9)
O(t;e)wg — S()wp — 0, as e — 0, (3.10)
G(t;e)[*u ()] — 0, as & — 0. (3.11)

By (2.3), (2.4), (2.6), (3.5) and the properties of F(-), we have, for t € [0, T]
uniformly

t s ~
/ [G(t Cse)teF —S(t— s)]f(s) ds —0, ase— 0. (3.12)
0
Since for each ¢ > 0,

t
/ eff_;ds:gz[l —eiﬂ gsz —0, as e—0, (3.13)
0

we see that for 7 € [0, 7] uniformly
/0, e 2 f(s)ds — 0, as ¢— 0. (3.14)
Moreover, from (3.3) and (3.5) and the properties of F(-), we deduce that
70655 =70 = 6+ F) # 60) = £0] = [ Fl=5)llsss) = wls) s

t
— 82/ F(t—s)u"(s;¢)ds
0

=0+ F)x[f(t;e) = f(t)] = F(O)[u(t; &) — w(?)]
+ F(t)[uo(e) — wo] + &°F'(£)[uo () — wo)

+ &F (t)wy + EF (t)u (e) — /0 F'(t —s)u(s; ¢) — w(s)]ds

ps {/0 F'(t — s)u(s; &) ds + F' (0)u(t; &) + F(0)d (t;) |
(3.15)
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By (2.3), the properties of F(-), (A6), and (A7), we get

[ 16t si2)F(O)utsss) — wis)ds < (const) [ futssa) = wis) s,
(3.16)
/01 Gt — s:) /OXF’(S — (i) — w(r)] dr|ds
< (const) /0 (s ) — wis)| ds, (3.17)

where “const” means a constant that is independent of ¢ and ¢ € [0, T]. Also,
for ¢ € [0, T] uniformly

/OtG(f—S;S)(HF)*[f(s;S)—f(S)]ds—>0, as & — 0, (3.18)
/Ot G(t — s;€)F(s)[uo(e) — wo]ds — 0, as & — 0, (3.19)
/Ot G(t — s;€)e"F'(s)[uo(e) — wo]ds — 0, as & — 0, (3.20)
/Ol G(t — s;€)e’F'(s)wods — 0, as & — 0, (3.21)
/Ot G(t — s;8)F (s)[e*u; (¢)]ds — 0, as & — 0. (3.22)

Combining (3.8)—(3.12), (3.14)—(3.22), we have

[[u(z; ) — w(t)|[| <O(e, [0, T]) 4 (const) /0’ [[u(s3 €) — w(s)|| ds

"

/ot G(t —5;8)8 {/OSFH(S —nulrse)dr+ F(Quls; )

+ F(0)u(s; 8):| ds||, (3.23)

where 0(e, [0, T]) satisfies

0(¢,[0,7]) — 0 as ¢ — 0, uniformly for ¢ € [0, 7. (3.24)
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Next

& {/S F'(s — ryu(r;e)dr + F'(0)u(s; &) + F(0)u/'(s; 8)]

=¢ [/OSF”(S —ru(r;e)dr — /OSF"(S —rw(r)dr+ /OSF”(S —r)w(r)dr
+ F/(VO)u(s; &) — F'(0)w(s) + F'(0)w(s) + F(0)u'(s; ¢)]
= 82/0 F'(s — r)[u(r;e) — w(r)]dr + &F'(0)[u(s; &) — w(s)]

—+ 82 /OS F//(S — V)W(V) dr + 82F/(0)W(S) + 82F(0)u'(s; 8), (325)

and
/t G(t — ;)& F(0)u(s; 8) ds
= G(0;8)e*F(0)u(t; £) — G(t;6)e*F(0)uy(e)

/0 "Gt — 5:0)PF(0)u(s: ©)ds

= G(0:6)e’F (0)[u(t; ¢) — w(r)] + G(0; &) F (0)w(z)
= G(t;)eF(0)[uo(e) — wo] — G(t; )& F (0)wy

+ /0 G (t — 578)e*F(0)[u(s; &) — w(s)]ds
+ /t G (t — 5;8)e*F(0)w(s) ds. (3.26)

By (2.3), the properties of F(-), (A6), and the boundedness of w(-) on [0, 7],
we see that

< (const) /0 lu(s: €) — w(s)]| ds, (3.27)

/0 G(t — 5;8)e”F'(0)[u(s; &) — w(s)] ds|| < (const) / ||u(s; €) ()|l ds,
(3.28)

/0 G (t — s5;8)e*F(0)[u(s; ¢) — w(s)]ds|| < (const) / ||u(s; €) ()|l ds,

(3.29)
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1G(0; £)e*F(0)] < %, for ¢ small enough, (3.30)
and for ¢ € [0, 7] uniformly
t s
/ G(t — s; 8)82/ F'(s —r)w(r)drds — 0, as &¢—0, (3.31)
0 0
t
/ Gt — 5:)82F (0)w(s)ds — 0, as & — 0, (3.32)
0
G(0;¢)e?F(0)w(t) — 0, as &¢— 0, (3.33)
G(t;6)e*F(0)[ug(e) — wo] — 0, as & — 0, (3.34)
G(t;e)eF(0)wy — 0, as & — 0. (3.35)

Moreover, it follows from (2.2) that
[ 6= saeromss
= [0t -558) = Gt ) FO(5)as
= [[106 - 5:0) - st - s Owis) 8

+ / t[S(t—s) —e 2 — G(t — 5;8)]F(0)w(s)ds + / te*%F(O)w(s) ds.
0 0
(3.36)
By (2.3)-(2.6) and (3.13), we get, for ¢ € [0, T] uniformly

/ 10— 5:2) — S(t — $)F(Ow(s)ds — 0, as ¢ — 0, (3.37)
/ ’ [S(t ) —e T Gl —s; 3)}F(0)w(s) ds—0, ase—0,  (3.38)

t
/ ¢ 2F(0)w(s)ds — 0, as &— 0. (3.39)
0
Consequently, a combination of (3.23), (3.25)—(3.39) shows that
t
|lu(z; &) — w(z)|| < 0(e, [0, T]) + (const) / lu(s; &) — w(s)||ds, ¢€][0,T].
0

This, together with Gronwall’s inequality (cf., e.g., [8]), implies that
[[u(t;e) = w(D)]| <O(e, [0,T]), 1€]0,T].
This completes the proof. O
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Theorem 3.2. Let T > 0 be fixed, and (A1), (A2), (AS5)—(A7) hold. Also, assume
that B generates a strongly continuous semigroup on X and D(A) N D(B) is a core
of B. Let u(t; &) and w(t) be the solution of (1.3) and (1.4) on [0, T], respectively.
Then

u(t;e) — w(t) uniformly for t € [0,T] as ¢ — 0.

Proof. Since B generates a strongly continuous semigroup on X, and
D(A4) N D(B) is a core of B, we see that (A3) and (A4) hold. Thus we get the
conclusion by Theorem 3.1. [

In the case that the Assumption (A4) is not satisfied, then instead of (1.4),
we can consider

{:VV(((Q - ijzw(t) + [ K(t —s)Bow(s)ds + f(t), >0, (3.40)

whose solution is defined in a way similar to that of (1.4). Now, under the
assumption (A3), we know from [5] that B, generates a semigroup {S(¢)},-
satisfying (2.4)—(2.6), and the solutions of (3.40) are given by

w(t) = S(H)wo + /Ot S(t—s)f(s)ds, woy € D(By). (3.41)

That is, we have the same settings as before, thus, the arguments made
above for solutions of (1.3) and (1.4) can also be made for solutions of (1.3)
and (3.40). Therefore, we have

Theorem 3.3. Let T > 0 be fixed, and (A1)~(A3), (A5)—(A7) hold. Let u(t; ¢) and
w(t) be the solution of (1.3) and (3.40) on [0, T], respectively. Then

u(t;e) — w(t) uniformly for t € [0,T] as ¢ — 0.

Remark 3.4. Clearly, if K(-) =0, then F(-) =0, and hence f(t;¢) = f(t;¢),
7(£) = f(¢). Thus (3.6) and (3.7) give the generalized (i.e., mild) solution of (1.1)
and (1.2), respectively. Therefore, when K(-) =0, Theorem 3.3 goes back to
Theorems 3.3 and 8.4 in Fattorini [5] for equations without the integral term.
Furthermore it is easy to see that if 4 = 0, then (A4) holds due to the definition
of By and (A1). So Theorems 3.1 and 3.3 cover Theorem 2.1 in Liu [10].

Acknowledgements

The first author acknowledges support from the MPG, CAS and EMC. The
third author acknowledges support from the AvH, CAS and NSFC.



620 J. Liang et al. | Appl. Math. Comput. 163 (2005) 609-620

References

[1] W. Desch, R. Grimmer, Propagation of singularities for integrodifferential equations, J. Diff.
Eq. 65 (1986) 411-426.

[2] W. Desch, R. Grimmer, W. Schappacher, Propagation of singularities by solutions of second
order integrodifferential equations, Volterra integrodifferential equations in Banach spaces and
applications, in: G. Da Prato, M. Iannelli (Eds.), Pitman Research Notes in Mathematics, vol.
190, pp. 101-110.

[3] W. Desch, R. Grimmer, W. Schappacher, Some considerations for linear integrodifferential
equations, J. Math. Anal. Appl. 104 (1984) 219-234.

[4] H. Fattorini, in: Second Order Linear Differential Equations in Banach Spaces, North-
Holland, 1985, pp. 165-237.

[5] H. Fattorini, The hyperbolic singular perturbation problem: an operator theoretic approach, J.
Diff. Eq. 70 (1987) 1-41.

[6] J. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New
York, 1985.

[7] R. Grimmer, J. Liu, Singular perturbations in viscoelasticity, Rocky Mountain J. Math. 24
(1994) 61-75.

[8] J. Hale, in: Ordinary Differential Equations, Wiley-Interscience, 1969, pp. 36-37.

[9] J. Hale, G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic
equation, J. Diff. Eq. 73 (1988) 197-214.

[10] J. Liu, Singular perturbations of integrodifferential equations in Banach space, Proc. Am.
Math. Soc. 122 (1994) 791-799.

[11] D. Smith, Singular Perturbation Theory, Cambridge University Press, Cambridge, 1985.

[12] K. Tsuruta, Bounded linear operators satisfying second order integrodifferential equations in
Banach space, J. Integ. Eq. 6 (1984) 231-268.

[13] C. Travis, G. Webb, An abstract second order semi-linear Volterra integrodifferential
equation, SIAM J. Math. Anal. 10 (1979) 412-424.

[14] T. Xiao, J. Liang, On complete second order linear differential equations in Banach spaces,
Pacific J. Math. 142 (1990) 175-195.

[15] T. Xiao, J. Liang, The Cauchy problem for higher order abstract differential equations, in:
Lecture Notes in Mathematics, vol. 1701, Springer, Berlin, New York, 1998.



	Hyperbolic singular perturbations for integrodifferential equations
	Introduction
	Preliminaries
	Singular perturbation theorem
	Acknowledgements
	References


