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Abstract. We study the existence and uniqueness of mild and classical
solutions for a nonlinear impulsive evolution equation

u′(t) = Au(t) + f(t, u(t)), 0 < t < T0, t �= ti,

u(0) = u0,

∆u(ti) = Ii(u(ti)), i = 1, 2, ..., 0 < t1 < t2 < ... < T0,

in a Banach space X, where A is the generator of a strongly continuous semi-
group, ∆u(ti) = u(t+i ) − u(t−i ), and Ii’s are some operators. The impulsive
conditions can be used to model more physical phenomena than the tradi-
tional initial value problems u(0) = u0. We apply the semigroup theory to
first study the existence and uniqueness of the mild solutions, and then show
that the mild solutions give rise to classical solutions if f is continuously
differentiable.
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1 Introduction.

Recently, the differential equations with impulsive conditions have been stud-
ied quite extensively. In which case, the traditional initial value problems

u(0) = u0, (1.1)

are replaced by the impulsive conditions

u(0) = u0, ∆u(ti) = Ii(u(ti)), i = 1, 2, ... (1.2)

where 0 < t1 < t2 < ..., ∆u(ti) = u(t+i ) − u(t−i ), i = 1, 2, ..., and Ii’s are
some operators.

That is, the impulsive conditions are the combinations of the traditional
initial value problems and the short-term perturbations whose duration can
be negligible in comparison with the duration of the process. They have ad-
vantage over the traditional initial value problems because they can be used
to model other phenomena that cannot be modeled by the traditional initial
value problems, such as the dynamics of populations subjected to abrupt
changes (harvesting, diseases, etc.). See Bainov, Kamont and Minchev [1],
Chan, Ke and Vatsala [2], Guo and Liu [3], Liu and Willms [4], Rogovchenko
[6], Zavalishchin [7] and the references therein for more comments and cita-
tions.

For equations in finite dimensional spaces, or equations in general Banach
spaces but with bounded (or continuous) operators, the problems have been
examined, see, e.g., Guo and Liu [3], Liu and Willms [4], where the existence
and uniqueness of solutions (or other type of solutions like extremal solu-
tions), and stability and other properties are studied.

For the evolution equation with an unbounded operator A of the form

u′(t) = Au(t) + f(t, u(t)), t > 0, t �= ti, (1.3)
u(0) = u0, (1.4)
∆u(ti) = Ii(u(ti)), i = 1, 2, ..., (1.5)

where A is a sectorial operator, Rogovchenko [6] studied the existence and
uniqueness of the classical solutions by the successive approximations, with
some conditions given on the fractional operators Aα, α ≥ 0.

The purpose of this paper is to study the existence and uniqueness of mild
and classical solutions of the evolution equation (1.3)–(1.5) on [0, T0) with



a general unbounded operator A, (say, e.g., non-sectorial, so that the argu-
ments in Rogovchenko [6] don’t apply,) which generates a strongly continuous
semigroup T (·). And we will look at the problem using a semigroup approach.

First, we give conditions so as to prove the existence and uniqueness of
the mild solutions, given by

u(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, u(s))ds +
∑

0<ti<t

T (t − ti)Ii(u(ti)). (1.6)

Then, we follow the techniques in Pazy [5] to verify that when f is continu-
ously differentiable, the mild solutions give rise to classical solutions.

2 The Mild and Classical Solutions.

Consider the evolution equation

u′(t) = Au(t) + f(t, u(t)), 0 < t < T0, t �= ti, (2.1)
u(0) = u0, (2.2)
∆u(ti) = Ii(u(ti)), i = 1, 2, ..., p, (2.3)

in a Banach space (X, ‖·‖), where 0 < t1 < t2 < ... < tp < T0 < ∞, ∆u(ti) =
u(t+i ) − u(t−i ).

Let PC([0, T0], X) = {u : u is a map from [0, T0] into X such that u(t) is
continuous at t �= ti and left continuous at t = ti and the right limit u(t+i )
exists for i = 1, 2, ..., p}. Same as in [3], we see that PC([0, T0], X) is a
Banach space with the norm

‖u‖PC = sup
t∈[0,T0]

‖u(t)‖. (2.4)

We first study the existence and uniqueness of mild solutions using the
fixed point argument, under the following assumptions:

(H1). f : [0, T0] × X → X and Ii : X → X, i = 1, 2, ..., p, are continuous and
there exist constants L > 0, hi > 0, i = 1, 2, ..., p, such that

‖f(t, u) − f(t, v)‖ ≤ L‖u − v‖, t ∈ [0, T0], u, v ∈ X, (2.5)
‖Ii(u) − Ii(v)‖ ≤ hi‖u − v‖, u, v ∈ X. (2.6)



(H2). Let T (·) be the strongly continuous semigroup generated by the un-
bounded operator A, [5]. Let B(X) be the Banach space of all linear
and bounded operators on X. Denote

M ≡ max
t∈[0,T0]

‖T (t)‖B(X), (2.7)

then

M
[
LT0 +

p∑
i=1

hi

]
< 1. (2.8)

Note that from the semigroup properties and the Uniform Boundedness Prin-
ciple, ‖T (t)‖B(X) is bounded on [0, T0]. So M in Assumption (H2) is finite.

Under these assumptions, we can prove the following result.

Theorem 2.1. Let Assumptions (H1) – (H2) be satisfied. Then for every
u0 ∈ X, the equation for t ∈ [0, T0]

u(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, u(s))ds +
∑

0<ti<t

T (t − ti)Ii(u(ti)), (2.9)

has a unique solution.

Proof. Let u0 ∈ X be fixed. Define an operator Q on PC([0, T0], X) by

(Qv)(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, v(s))ds

+
∑

0<ti<t

T (t − ti)Ii(v(ti)), 0 ≤ t ≤ T0. (2.10)

Then it is clear that Q : PC([0, T0], X) → PC([0, T0], X). Also we have from
Assumption (H1),

‖(Qv)(t) − (Qw)(t)‖

≤
∫ t

0

‖T (t − s)‖B(X)‖f(s, v(s)) − f(s, w(s))‖ds

+
∑

0<ti<t

‖T (t − ti)‖B(X)‖Ii(v(ti)) − Ii(w(ti))‖ (2.11)

≤ MLT0‖v − w‖PC +
∑

0<ti<t

Mhi‖v(ti) − w(ti)‖ (2.12)



≤ MLT0‖v − w‖PC + M‖v − w‖PC

p∑
i=1

hi (2.13)

≤ M
[
LT0 +

p∑
i=1

hi

]
‖v − w‖PC , v, w ∈ PC([0, T0], X). (2.14)

Now from Assumption (H2), we find that Q is a contraction operator on
PC([0, T0], X). This completes the proof. �

Following the semigroup theory, the solutions of (2.9) are called the mild
solutions of Eq.(2.1)–(2.3).

Remark 2.1. In cases where Ii’s are constants, one has hi = 0, i =
1, 2, ..., p. So we only need MLT0 < 1 in Assumption (H2).

Next, we study the classical solutions. We first give the definition.

Definition 2.1. A classical solution of Eq.(2.1)–(2.3) is a function u(·) ∈
PC([0, T0], X) ∩C1((0, T0) \ {t1, t2, ..., tp}, X), u(t) ∈ D(A) (the domain of
A) for t ∈ (0, T0) \ {t1, t2, ..., tp}, which satisfies Eq.(2.1)–(2.3) on [0, T0).

Note that the classical solutions for evolution equations without the im-
pulsive conditions are defined in an obvious way. ([5]).

To be able to apply the method in Pazy [5], we also need the following
lemmas here.

Lemma 2.1. [5] Consider the evolution equation

u′(t) = Au(t) + f(t, u(t)), t0 < t < T0, (2.15)
u(t0) = u0. (2.16)

If u0 ∈ D(A), and f(·) ∈ C1((t0, T0) × X, X), then it has a unique classical
solution, which satisfies

u(t) = T (t − t0)u0 +
∫ t

t0

T (t − s)f(s, u(s))ds, t ∈ [t0, T0). (2.17)

Lemma 2.2. Let Assumptions (H1) – (H2) be satisfied, and assume that
u0 ∈ D(A) and that f ∈ C1((0, T0) × X, X). Then for the unique classical
solution u(·) = u(·, u0) on [0, t1) of Eq.(2.1)–(2.2) without the impulsive
conditions (guaranteed by Lemma 2.1), one can define u(t1) in such a way



that u(·) is left continuous at t1 and u(t1) ∈ D(A). (Note: t1 < T0.)

Proof. Consider the following evolution equation without the impulsive
condition on (0, T0),

w′(t) = Aw(t) + f(t, w(t)), 0 < t < T0, (2.18)
w(0) = u0. (2.19)

By Lemma 2.1, it has a classical solution given by

w(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, w(s))ds, t ∈ [0, T0), (2.20)

and w(t) ∈ D(A) for t ∈ [0, T0).

Next, applying Lemma 2.1 to u(·), one has, for t ∈ [0, t1) ⊂ [0, T0),

u(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, u(s))ds, t ∈ [0, t1). (2.21)

Now, define

u(t1) = T (t1)u0 +
∫ t1

0

T (t1 − s)f(s, u(s))ds, (2.22)

so that u(·) is left continuous at t1. Then, apply Lemma 2.1 or the proof of
Theorem 2.1 on [0, t1] to get

u(t) = w(t), t ∈ [0, t1]. (2.23)

Thus

u(t1) = w(t1) ∈ D(A). � (2.24)

Before we study the classical solutions of Eq.(2.1)–(2.3), we first prove
the following lemma.

Lemma 2.3. Assume that u0 ∈ D(A), qi ∈ D(A), i = 1, 2, ..., p, and that
f ∈ C1((0, T0) × X, X). Then the impulsive equation

u′(t) = Au(t) + f(t, u(t)), 0 < t < T0, t �= ti, (2.25)
u(0) = u0, (2.26)
∆u(ti) = qi, i = 1, 2, ..., p, (2.27)



has a unique classical solution u(·) which satisfies, for t ∈ [0, T0),

u(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, u(s))ds +
∑

0<ti<t

T (t − ti)qi. (2.28)

Proof. On J1 = [0, t1), Lemma 2.1 implies that the equation

u′(t) = Au(t) + f(t, u(t)), 0 < t < t1, u(0) = u0, (2.29)

has a unique classical solution u1(·) which satisfies

u1(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, u1(s))ds, t ∈ [0, t1). (2.30)

Now, define

u1(t1) = T (t1)u0 +
∫ t1

0

T (t1 − s)f(s, u1(s))ds, (2.31)

so that u1(·) is left continuous at t1, and u1(t1) ∈ D(A) using Lemma 2.2.
Next, on J2 = [t1, t2), consider the equation

u′(t) = Au(t) + f(t, u(t)), t1 < t < t2, u(t1) = u1(t1) + q1. (2.32)

Since u1(t1) + q1 ∈ D(A), we can use Lemma 2.1 again to get a unique
classical solution u2(·) satisfying for t ∈ [t1, t2)

u2(t) = T (t − t1)
[
u1(t1) + q1

]
+

∫ t

t1

T (t − s)f(s, u2(s))ds. (2.33)

Now, define u2(t2) accordingly so that u2(·) is left-continuous at t2.

It is easily seen that Lemma 2.2 can be applied to interval [t1, T0) to verify
that u2(t2) ∈ D(A). It is also easily seen that this procedure can be repeated
on Jk = [tk−1, tk), k = 3, 4, ..., p + 1 (here we need to define tp+1 = T0) to
get classical solutions

uk(t) = T (t − tk−1)
[
uk−1(tk−1) + qk−1

]
+

∫ t

tk−1

T (t − s)f(s, uk(s))ds,

for t ∈ [tk−1, tk), with ui(·) left continuous at ti and ui(ti) ∈ D(A), i =
1, 2, ..., p.



Now, define

u(t) =




u1(t), 0 ≤ x ≤ t1,
uk(t), tk−1 < t ≤ tk, k = 2, 3, ..., p,
up+1(t), tp < t < tp+1 = T0.

It is clear that u(·) is the unique classical solution of Eq.(2.25)-(2.27).

Next, we use induction to show that (2.28) is satisfied on [0, T0). First,
(2.28) is satisfied on [0, t1]. If (2.28) is satisfied on (tk−1, tk], then for t ∈
(tk, tk+1],

u(t) = uk+1(t) = T (t − tk)
[
uk(tk) + qk

]
+

∫ t

tk

T (t − s)f(s, uk+1(s))ds

= T (t − tk)
[
T (tk)u0 +

∫ tk

0

T (tk − s)f(s, u(s))ds

+
∑

0<ti<tk

T (tk − ti)qi + qk

]
+

∫ t

tk

T (t − s)f(s, uk+1(s))ds (2.34)

= T (t − tk)T (tk)u0 +
∫ tk

0

T (t − s)f(s, u(s))ds +
∑

0<ti<tk

T (t − ti)qi

+T (t − tk)qk +
∫ t

tk

T (t − s)f(s, u(s))ds (2.35)

= T (t)u0 +
∫ t

0

T (t − s)f(s, u(s))ds +
∑

0<ti<t

T (t − ti)qi. (2.36)

Thus (2.28) is also true on (tk, tk+1]. Therefore (2.28) is true on [0, T0). �

Now, we are in a position to verify that mild solutions give rise to classical
solutions if f ∈ C1((0, T0) × X, X).

Theorem 2.2. Let Assumptions (H1) – (H2) be satisfied, and let u(·) =
u(·, u0) be the unique mild solution of Eq.(2.1)–(2.3) guaranteed by Theo-
rem 2.1. Also assume that u0 ∈ D(A), Ii(u(ti)) ∈ D(A), i = 1, 2, ..., p,
and that f ∈ C1((0, T0) × X, X). Then u(·) gives rise to a unique classical
solution of Eq.(2.1)–(2.3).

Proof. Let u(·) be the mild solution. We can now define qi = Ii(u(ti)), i =
1, 2, ..., p. Then from Lemma 2.3, Eq.(2.25)–(2.27) has a unique classical so-



lution w(·) which satisfies for t ∈ [0, T0)

w(t) = T (t)u0 +
∫ t

0

T (t − s)f(s, w(s))ds +
∑

0<ti<t

T (t − ti)Ii(u(ti)). (2.37)

Now, u(·) is the mild solution of Eq.(2.1)–(2.3), so that using (2.9) we get
for t ∈ [0, T0],

w(t) − u(t) =
∫ t

0

T (t − s)
[
f(s, w(s)) − f(s, u(s))

]
ds. (2.38)

Then the proof of Theorem 2.1 can be applied to show that u(·) = w(·). This
implies that u(·) is also a classical solution. �

Remark 2.2. Another way to prove Theorem 2.2 is to directly show that
the mild solution is continuously differentiable on (tk, tk+1), k = 1, 2, ..., p,
using Pazy [5]’s method.

Remark 2.3. From the original proof in Pazy [5], we find that to be able to
use Lemma 2.1 to get differentiable solutions, we need, for j = 1, 2, ..., p,

T (t − tj)u(t+j ) = T (t − tj)
[
u(tj) + Ij(u(tj))

]
∈ D(A), t > tj . (2.39)

When the operator A generates a general strongly continuous semigroup T (·),
we need to prove that u(tj) ∈ D(A). So that (2.39) is true with the assump-
tion that Ij(u(tj)) ∈ D(A). When the operator A generates an analytical
semigroup T (·), then from the semigroup properties,

T (t)X ⊂ D(A), t > 0. (2.40)

So that (2.39) is satisfied automatically. Therefore, we have

Theorem 2.3. Let Assumptions (H1) – (H2) be satisfied, and let u(·) =
u(·, u0) be the unique mild solution of Eq.(2.1)–(2.3) guaranteed by Theorem
2.1. Assume further that the semigroup T (·) is an analytic semigroup, and
that f ∈ C1((0, T0) × X, X). Then for any u0 ∈ X, u(·) = u(·, u0) gives rise
to a unique classical solution of Eq.(2.1)–(2.3).

Remark 2.4. Theorem 2.3 above gives the same results about the existence
and the uniqueness as in Theorem 2.2 of Rogovchenko [6], but with different
assumptions and approaches.
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