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Abstract

Uniform boundedness, ultimate boundedness, uniform stability, and asymptotic stability are studied
by analyzing a Liapunov function satisfying

v′(t) ≤ −αv(t) +
√

v(t)

∫ t

#

ω(t, s)
√

v(s)ds, t ≥ t0 ≥ 0, (# = 0 or −∞).

The results are then applied to integrodifferential equations

x′(t) = A(t)
[
x(t) +

∫ t

#

F (t, s)x(s)ds
]
, t ≥ t0 ≥ 0, (# = 0 or −∞),

in real Hilbert space with unbounded linear operators A(·), which occur in viscoelasticity and in heat
conduction for materials with memory.

1 INTRODUCTION.

In qualitative studies of differential or integrodifferential equations, Liapunov or Liapunov -
Razumikhin methods are very effective in analyzing the asymptotic properties, which include
boundedness, ultimate boundedness, stability and asymptotic stability.

It is customary to require that the derivative of a Liapunov function or functional along a
solution be negative all the time, or Razumikhin conditions are imposed so that the derivative
is negative when the Liapunov function reaches its maximum at t on [0, t] or on (−∞, t], [3, 4].
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Recently, Hara, Yoneyama and Miyazaki [6] presented some new general results about
the asymptotic properties of an integrodifferential equation in �n in which the condition on
a Liapunov function is such that

v′(t) ≤ −αv(t) +
∫ t

0
ω(t, s)v(s)ds, t ≥ t0 ≥ 0, (1.1)

with

lim sup
t→∞

∫ t

0
ω(t, s)ds < α and lim

u→∞

∫ t

0
ω(u, s)ds = 0 for t > 0. (1.2)

It can be seen that v′(t) < 0 if v(t) reaches its maximum on [0, t] for large t. So it is in
the right spirit of a Razumikhin condition. However, due to the special forms of inequalities
(1.1)-(1.2), the proof of the results are very simple and elementary.

We are interested in the asymptotic properties of integrodifferential equations in real
Hilbert spaces, for example, equations of the forms

x′(t) = A(t)
[
x(t) +

∫ t

0
F (t, s)x(s)ds

]
, t ≥ t0 ≥ 0, x(s) = φ(s), 0 ≤ s ≤ t0, (1.3)

and

x′(t) = A(t)
[
x(t) +

∫ t

−∞
F (t, s)x(s)ds

]
, t ≥ t0 ≥ 0, x(s) = φ(s), s ≤ t0, (1.4)

with unbounded linear operators A(·), which can be used to model heat conduction or vis-
coelasticity for materials with memory. See Grimmer and Liu [3] for the motivation for
Eqs.(1.3)–(1.4) and other comments.

Similar to [3] we can construct a Liapunov function v(·) for Eqs.(1.3) and (1.4) in a natural
way. Deriving an inequality in the spirit of (1.1), we end up with

v′(t) ≤ −αv(t) +
√

v(t)
∫ t

#
ω(t, s)

√
v(s)ds, t ≥ t0 ≥ 0, (# = 0 or −∞) (1.5)

where ω is determined by F .

Formally, we can convert (1.5) into inequality (1.1), but condition (1.2) is not satisfied.
Thus results in [6] cannot be applied to Eq.(1.3) or (1.4) directly. However, (1.5) is “similar”
to (1.1), so we will demonstrate here that the techniques used in [6] can be modified to
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obtain the asymptotic properties under condition (1.5).

We will prove results in uniform stability and asymptotic stability, as well as uniform
boundedness and ultimate boundedness, which are not studied in [6]. The results are then
applied to Eqs.(1.3) and (1.4). An example in [6] indicates that in general, uniform asymp-
totic stability is not expected under conditions (1.1) and (1.2). See [5] for a study of uniform
asymptotic stability with additional conditions.

We remark that similar results about stability and asymptotic stability for Eqs.(1.3) and
(1.4) with A(t) = A, t ≥ 0, F (t, s) = F (t − s) are given in Grimmer and Liu [3] by Razu-
mikhin techniques. We will see that the treatment here is much simpler, only elementary
differential inequality is used. And results in uniform boundedness and ultimate bounded-
ness can also be obtained in a unified way.

Finally, note that for equation

x′(t) = Ax(t) +
∫ t

#
F (t, s)x(s)ds, t ≥ t0 ≥ 0, (# = 0 or −∞) (1.6)

in �n with inner product 〈, 〉, we can define v = 〈x, x〉 = ‖x‖2, then

v′(t) = 2〈x(t), x′(t)〉
= 2〈x(t), Ax(t) +

∫ t

#
F (t, s)x(s)ds〉

≤ 2〈x(t), Ax(t)〉 + 2
√

v(t)
∫ t

#
‖F (t, s)‖

√
v(s)ds. (1.7)

If A is a negative definite or a stable matrix, then inequality (1.5) can also occur naturally in
this situation. Therefore the study of the asymptotic properties of (1.6) can also be carried
out using (1.5).

2 A LEMMA.

In this section we prove a lemma which will be used in the next section to study the asymp-
totic properties under condition (1.5).

Lemma 2.1. Let α > 0 be a constant. Assume that ω(t, s) ≥ 0 is continuous for 0 ≤ s ≤ t,
with

sup
t≥0

∫ t

#
ω(t, s)ds < α and lim

u→∞

∫ t

#
ω(u, s)ds = 0 for t > 0. (# = 0 or −∞) (2.1)
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Consider all functions v(·) = v(·, t0) : [0,∞) → [0,∞), or (−∞,∞) → [0,∞), such that

v′(t) ≤ −αv(t) +
√

v(t)
∫ t

#
ω(t, s)

√
v(s)ds, t ≥ t0 ≥ 0. (2.2)

(a). If v(s) = v(s, t0) ≤ M for 0 ≤ s ≤ t0 when # = 0, or for s ≤ t0 when # = −∞, then
v(t) ≤ M, t ≥ t0.

(b). For any B > 0, B0 > 0 and t0 ≥ 0, there is a constant T = T (B,B0, t0) > 0 such that
if v(·) = v(·, t0) ≥ 0 is a function satisfying (2.2) with v(s) ≤ B0, here 0 ≤ s ≤ t0 when
# = 0 or s ≤ t0 when # = −∞, then v(t) < B, t ≥ T + t0.

Proof. (a): We only prove for # = 0 since the proof for # = −∞ is the same. Assume that
v(s) ≤ M, 0 ≤ s ≤ t0. If {v(t) ≤ M, t ≥ t0} is not true, then there is M1 > M and t1 > t0
such that v(t1) = M1 and v(t) ≤ M1, t ∈ [0, t1]. Now from (2.2) we have for t0 ≤ t ≤ t1,

v(t) ≤ v(t0)e
−α(t−t0) +

∫ t

t0
e−α(t−r)

(√
v(r)

∫ r

0
ω(r, s)

√
v(s)ds

)
dr. (2.3)

So that

M1 = v(t1) ≤ Me−α(t1−t0) + M1α
∫ t1

t0
e−α(t1−r)dr (2.4)

< M1

[
e−α(t1−t0) + α

∫ t1

t0
e−α(t1−r)dr

]
= M1, (2.5)

which is a contradiction.

(b): Again we only prove for # = 0 since the proof for # = −∞ is the same. If the result
is not true, then there exist B > 0, B0 > 0 and t0 ≥ 0, and sequence {vk(·) = vk(·, t0)}
satisfying (2.2) and tk → ∞, as k → ∞, such that vk(s) ≤ B0, 0 ≤ s ≤ t0 and vk(tk) ≥ B.

Accordingly, we can define nonempty sets

P =
{
sequence {uk(·) = uk(·, t0)} on [0,∞) | {uk(·)} satifies (2.2), and there are

sk → ∞ as k → ∞, such that uk(s) ≤ B0, 0 ≤ s ≤ t0 and uk(sk) ≥ B
}
, (2.6)

and

P ∗ =
{

lim sup
k→∞

uk(sk) | {uk(·)} ∈ P
}
. (2.7)
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Now, from result (a), uk(s) ≤ B0, 0 ≤ s ≤ t0 implies uk(sk) ≤ B0 for sk ∈ [0,∞). Then
P ∗ ⊆ [B,B0]. Thus

∞ > L ≡ max{p | p ∈ P ∗} ≥ B > 0.

From (2.1), there is 0 < γ < α with
∫ t

0
ω(t, s)ds < γ, t ≥ 0. (2.8)

Then there is θ with γ
α

< θ < 1. As (αθ+γ)L
2θα

< L, there is {uk(·)} ∈ P such that

lim sup
k→∞

uk(sk) >
(αθ + γ)L

2θα
. (2.9)

From the definition of L, it is easily seen that for this {uk(·)} ∈ P , there is H > 0 such that

uk(t) ≤ L

θ
, k ≥ H, t ≥ sH . (2.10)

Now from (2.1) we can find t∗ > max{H, sH , t0} such that
∫ sH

0
ω(u, s)ds <

(αθ − γ)L

2θB0

, u ≥ t∗. (2.11)

Thus from (2.2), (2.8), (2.10) and (2.11), one has for k ≥ H, t ≥ t∗, (note that from result
(a), uk(s) ≤ B0, 0 ≤ s ≤ t0 implies uk(t) ≤ B0, t ≥ 0)

uk(t) ≤ uk(t
∗)e−α(t−t∗) +

∫ t

t∗
e−α(t−r)

(√
uk(r)

∫ sH

0
ω(r, s)

√
uk(s)ds

)
dr (2.12)

+
∫ t

t∗
e−α(t−r)

(√
uk(r)

∫ r

sH

ω(r, s)
√

uk(s)ds
)
dr (2.13)

≤ B0e
−α(t−t∗) + B0

∫ t

t∗
e−α(t−r)

( ∫ sH

0
ω(r, s)ds

)
dr (2.14)

+
L

θ

∫ t

t∗
e−α(t−r)

( ∫ r

0
ω(r, s)ds

)
dr (2.15)

≤ B0e
−α(t−t∗) +

(αθ − γ)L

2θα
+

γL

θα
(2.16)

≤ B0e
−α(t−t∗) +

(αθ + γ)L

2θα
. (2.17)

Let k be large so that sk > t∗. Hence from (2.9) and (2.17),

(αθ + γ)L

2θα
< lim sup

k→∞
uk(sk) ≤ (αθ + γ)L

2θα
,
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which is a contradiction. �

Remark 2.2. If ω(t, s) = ω(t − s), then condition (2.1) is equivalent to
∫ ∞
0 ω(s)ds < α.

3 THE ASYMPTOTIC PROPERTIES.

In this section, we will study the asymptotic properties under conditions (2.1)–(2.2). The re-
sults include uniform boundedness, ultimate boundedness, uniform stability and asymptotic
stability. They can be applied to any differential or integrodifferential equations for which a
Liapunov function satisfying (2.1)–(2.2) can be constructed.

First, for convenient references, we give the following standard definitions for the case
# = 0. The definitions for # = −∞ are stated accordingly. Note that in the following, we
use “system” to denote any differential or integrodifferential equation in a space with norm
‖ · ‖.
Definition 3.1. For any t0 ≥ 0 and any continuous function φ on [0, t0], a solution u(·, t0, φ)
of a “system” is a function on [0,∞) satisfying the “system” for t ≥ t0 and u(s) = φ(s) for
s ∈ [0, t0].

Definition 3.2. Solutions u(·) = u(·, t0, φ) of a “system” are uniformly bounded if for
each B1 > 0 there is B2 = B2(B1) > 0 such that {‖φ(s)‖ ≤ B1, 0 ≤ s ≤ t0} imply
‖u(t)‖ < B2, t ≥ t0.

Definition 3.3. Solutions u(·) = u(·, t0, φ) of a “system” are ultimate bounded if there is a
bound B > 0 such that for each B3 > 0 and t0 ≥ 0 there is T = T (B,B3, t0) > 0 such that
{‖φ(s)‖ ≤ B3, 0 ≤ s ≤ t0} imply ‖u(t)‖ < B, t ≥ T + t0.

Definition 3.4. Assume u ≡ 0 is a solution of a “system”. Then solution u ≡ 0 is stable if
given ε > 0 and t0 ≥ 0, there exists a δ = δ(ε, t0) > 0 such that {‖φ(s)‖ < δ on [0, t0] and
u(t, t0, φ) being a solution of the system} imply ‖u(t, t0, φ)‖ < ε for t ≥ t0. It is uniformly
stable if it is stable and the δ is independent of t0.

Definition 3.5. Assume u ≡ 0 is a solution of a “system”. Then solution u ≡ 0 is asymptot-
ically stable if it is stable and for any t0 ≥ 0 there exists a constant r = r(t0) > 0 such that
{‖φ(s)‖ < r on [0, t0] and u(t, t0, φ) being a solution of the system} imply u(t, t0, φ) → 0, as
t → ∞.

Applying Lemma 2.1, we now have the following result.
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Theorem 3.6. Assume that there exist functions Wi, i = 1, 2, with Wi : [0,∞) → [0,∞)
and W1 strictly increasing. (Known as wedges.) Further, assume that there exists a function
V (known as a Liapunov function) such that for solutions u(·) of a “system”,

(c1). W1(‖u(t)‖) ≤ V (u(t)) ≤ W2(‖u(t)‖),
(c2). v(t) ≡ V (u(t)) satisfies (2.1)–(2.2).

Then solutions of the “system” are uniformly bounded and ultimate bounded, and zero so-
lution u ≡ 0 is uniformly stable and asymptotic stable.

Proof. Again, we only prove for # = 0 since the proof for # = −∞ is the same. From the
definition of Wi and condition (c1), we only need to prove the corresponding statements for
v(t) ≡ V (u(t)).

Uniform boundedness: For B1 > 0, choose B2 = B1. Then from Lemma 2.1(a), v(s) ≤
B1, 0 ≤ s ≤ t0 implies v(t) ≤ B1 = B2, t ≥ t0.

Ultimate boundedness: Choose B = 1. Then from Lemma 2.1(b), for any B3 (treat
it as B0 in Lemma 2.1(b)) > 0 and t0 ≥ 0, there is T = T (B,B3, t0) > 0 such that
v(s) ≤ B3, 0 ≤ s ≤ t0 implies v(t) < B, t ≥ T + t0.

Uniformly stability: Given ε > 0, choose δ(ε) = ε. Then from Lemma 2.1(a), ‖v(s)‖ ≤
δ(ε) = ε, 0 ≤ s ≤ t0 implies ‖v(t)‖ ≤ ε, t ≥ t0.

Asymptotic stability: Stability is proven already. Next, for any t0 ≥ 0, choose r = r(t0) =
1. Then from Lemma 2.1(b), for any ε (treat it as B in Lemma 2.1(b)) > 0, B0 ≡ r(= 1),
there is T = T (ε, 1, t0) = T (ε, t0) > 0 such that v(s) ≤ B0 = r, 0 ≤ s ≤ t0 implies
v(t) ≤ ε, t ≥ T + t0. (Thus v(t) → 0, t → ∞.) �

4 INTEGRODIFFERENTIAL EQUATIONS.

In this section, we will apply the above results to

x′(t) = A(t)
[
x(t) +

∫ t

0
F (t, s)x(s)ds

]
, t ≥ t0 ≥ 0, x(s) = φ(s), 0 ≤ s ≤ t0, (4.1)

and

x′(t) = A(t)
[
x(t) +

∫ t

−∞
F (t, s)x(s)ds

]
, t ≥ t0 ≥ 0, x(s) = φ(s), s ≤ t0, (4.2)

7



with unbounded operators A(·) in real Hilbert space X with inner product 〈, 〉. Since we only
study asymptotic properties here, we will assume the existence and uniqueness of solutions,
which can be found in, e.g., [1, 2, 7]. We define a Liapunov function V for z = (x,w) ∈ X×X
by

V (z) = 〈x, x〉 − 2〈x,w〉 +
3

2
〈w,w〉. (4.3)

Also we define ‖z‖2 ≡ ‖x‖2 +‖w‖2 and let z(t) = (x(t), w(t)) with x(·) a solution of Eq.(4.1)
or Eq.(4.2) and

w(t) = x(t) +
∫ t

#
F (t, s)x(s)ds, t ≥ 0 (# = 0 or −∞).

Then it is clear that in order to prove the asymptotic properties of solutions x(·) of Eq.(4.1)
or Eq.(4.2), we only need to prove the corresponding statements on z(·).
Theorem 4.1. Suppose that solutions x(·) of Eqs.(4.1) and (4.2) exist and are unique on
[0,∞) (when initial data satisfy certain conditions), and suppose that for some constants
λ > 0 and β > 0,

〈A(t)x, x〉 ≤ −λ〈x, x〉, x ∈ D(A(t)), t ≥ 0, (4.4)

and
〈F (t, t)x, x〉 ≥ β〈x, x〉, x ∈ X, t ≥ 0,

where D means domain. Then

(a). ‖z‖2/5 ≤ V (z) ≤ 3‖z‖2,

(b). v(t) ≡ V (z(t)) satisfies (2.1)–(2.2) with # = 0 for Eq.(4.1), or with # = −∞ for
Eq.(4.2), where

α = min
t≥0

1

3

{
λ − 3

2
‖F (t, t)‖, 2β − 3

2
‖F (t, t)‖

}
,

and

ω(t, s) = (6 + 3
√

6)‖ ∂

∂t
F (t, s)‖.

So that if

sup
t≥0

∫ t

0
ω(t, s)ds < α and lim

u→∞

∫ t

0
ω(u, s)ds = 0 for t ≥ 0,

then solutions of Eq.(4.1) are uniformly bounded and ultimate bounded, and zero solution
of Eq.(4.1) is uniformly stable and asymptotic stable.
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Similarly, if

sup
t≥0

∫ t

−∞
ω(t, s)ds < α and lim

u→∞

∫ t

−∞
ω(u, s)ds = 0 for t ≥ 0,

then solutions of Eq.(4.2) are uniformly bounded and ultimate bounded, and zero solution
of Eq.(4.2) is uniformly stable and asymptotic stable.

Proof. First, we have

V (z) ≥ ‖x‖2 − 2‖x‖‖w‖ +
3

2
‖w‖2

= (‖x‖ − ‖w‖)2 +
1

2
‖w‖2

=
1

6
(3‖w‖ − 2‖x‖)2 +

1

3
‖x‖2. (4.5)

Thus we obtain ‖z‖2/5 ≤ V (z) ≤ 3‖z‖2. Next, differentiating v(t) ≡ V (z(t)) with respect to
t yields (note that ∗ denotes convolution)

v′(t) =
d

dt
V (z(t)) = 2〈x′(t), x(t)〉 − 2〈x′(t), w(t)〉 − 2〈w′(t), x(t)〉 + 3〈w′(t), w(t)〉

= 〈A(t)w(t), w(t)〉 − 2〈F (t, t)x(t), x(t)〉 − 2〈x(t),
∂

∂t
F ∗ x(t)〉

+3〈F (t, t)x(t), w(t)〉 + 3〈 ∂

∂t
F ∗ x(t), w(t)〉

≤ −λ‖w(t)‖2 − 2β‖x(t)‖2 + 3‖F (t, t)‖‖x(t)‖‖w(t)‖
+

(
2‖x(t)‖ + 3‖w(t)‖

)
‖ ∂

∂t
F ∗ x(t)‖

≤ −λ‖w(t)‖2 − 2β‖x(t)‖2 +
3

2
‖F (t, t)‖

(
‖x(t)‖2 + ‖w(t)‖2

)

+
(
2
√

3 + 3
√

2
)√

v(t)‖ ∂

∂t
F ∗ x(t)‖ (from (4.5))

≤
(
− λ +

3

2
‖F (t, t)‖

)
‖w(t)‖2 +

(
− 2β +

3

2
‖F (t, t)‖

)
‖x(t)‖2

+
(
2
√

3 + 3
√

2
)√

v(t)‖ ∂

∂t
F ∗ x(t)‖

≤ −3α
(
‖x(t)‖2 + ‖w(t)‖2

)
+

(
2
√

3 + 3
√

2
)√

v(t)‖ ∂

∂t
F ∗ x(t)‖

≤ −αv(t) +
(
2
√

3 + 3
√

2
)√

v(t)
(√

3‖ ∂

∂t
F‖ ∗ √v(t)

)
(from (a))
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≤ −αv(t) +
√

v(t)
(
6 + 3

√
6
)(
‖ ∂

∂t
F‖ ∗ √v(t)

)
, (4.6)

where

‖ ∂

∂t
F‖ ∗ √v(t) =

∫ t

0
‖ ∂

∂t
F (t, s)‖

√
v(s)ds and

∫ t

−∞
‖ ∂

∂t
F (t, s)‖

√
v(s)ds

for Eqs.(4.1) and (4.2) respectively. �

Remark 4.2. It is known that A(t) ≡ ∂2

∂x2 , t ≥ 0 with domain H1
0 (0, 1) ∩ H2(0, 1) satisfy

(4.4) on X = L2(0, 1) with λ = 1. Thus applications can be carried out. We omit them here
for simplicity.
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