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1. INTRODUCTION
Consider the following semilinear Cauchy problem
u'(t) = Au(t) + f(t,u(t)), 0<t<T, (1.D
u(0) = uy, (1.2)

in a Banach space X with A4 the generator of a strongly continuous semigroup 7 (-). Equations
(1.1)—(1.2) have been studied by many authors. For example, Pazy [1] studied equations (1.1)-
(1.2) by first showing the existence and uniqueness of mild solutions, that is, solutions of

t
u(t)=T(z)u0+[T(l-s)f(s,u(s))ds, O0<t<T (1.3)
0

when f(z,u) is Lipschitz in u. A fixed point theorem was used in the proof. Then the mild
solutions were proven to be classical solutions if f € CI([0, T] X X, X).

Motivated by physical problems, Byszewski [2], Byszewski and Lakshmikantham [3], Jackson
[4] and references therein generalized the “classical” Cauchy problem (1.1)—(1.2) to the following
nonlocal Cauchy problem

W(t)=Au(t)+ f(t,u(t)), 0<t<T (1.4)
w(0) + gy, ... . tp,ulty), ..., ultp)) = uo, (1.5

where 0 <1 <, < -+ -1, < T. For example, g(t;, u(;)) may be given by

?
glty, ... tp,ultr),...,ulty)) = ZC,-u(t,-). (1.6)
i=1
where ¢; (i = 1,..., p) are given constants. In this case, (1.5) allows the measurements at ¢ =
0, n,...,tp, rather than just at 7 = 0. So more information is available. Thus equations (1.4)(1.5)

can be applied in physics with better effect than equations (1.1)—(1.2). See [2—4] and references
therein for more comments.

In Byszewski [2], techniques employed in Pazy [1] were generalized in the study of (1.4)—(1.5).
That is, existence and uniqueness of solutions (called mild solutions) of
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u(t) = T(t)[uo —g(n,..., tu(ty), ..., u(t,,))]
t
+IT(t—s)f(s,u(s))ds, 0<t<T, (1.7
0

was first proved, using a fixed point argument, when f (¢, ) is Lipschitz in ». Then the mild
solutions were shown to be classical solutions if £ € C'([0, T] x X, X).

Now, look at the following classical heat equation for material with memory, see, e.g. [5],

t
q(t, x) = —Eu,(t, x) — Jb(t — Su,(s, x) ds,
(1.8)

0
w (2, x) = —0g(t, x)}/ox + f(¢, x),
u(0, x) = up(x).

The first equation gives the heat flux and the second is the balance equation. Equation (1.8) can
be written as (assuming £ = 1)

2 t
u(t, x) = %[u(t, x) + J—b(t — 8u(s x) ds] + f(t,x), u(0,x)=up(x). (1.9)
0

It is clear that if nonlocal condition (1.5) is introduced to (1.9), then it will also have better
effect than the classical condition #(0, x) = ug(x), since the same comments as above apply here.
Therefore, we would like to extend the above results for (1.4)~(1.5) to the following semilinear
integrodifferential equation with nonlocal Cauchy problem

t
(1) = Aful) + fF(z —Su(s) ds| + f(Lu@), 0<t<T (1.10)
0

u(0) + gy, ..., tou(ty),..., u(tp)) = uy, (1.11)

in a Banach space X with 4 the generator of a strongly continuous semigroup and F (¢) a bounded
operator for ¢ € [0, T']. (For example, in (1.9), 4 = 92/9x? on H?(0, 1) n H} (0, 1) generates a
strongly continuous semigroup on L?(0, 1).) Since formulas (1.3) and (1.7) played very important
roles in the studies of (1.1)-(1.2) and (1.4)~(1.5), we are looking for a similar formula

u(t) = RO [ug - gltr,...., 1y, ultr), ..., ulty)) |
t
+JR(t—s)f(s,u(s))ds, 0<t=<T, (1.12)
0

where the semigroup 7°(-) in (1.3) and (1.7) is replaced by the resolvent operator R(-), the
counterpart of 7(-) for integrodifferential equations.

The existence, uniqueness, representation of solutions via variation of constants formula, and
other properties of resolvent operators have been studied, e.g. in [6-8], so we are able to use the
techniques developed in Pazy [1] and Byszewski [2] to study (1.10)—(1.11). Namely, we will first
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show the existence and uniqueness of solutions of (1.12) using a fixed point result (they are called
mild solutions). Then mild solutions are shown to be classical solutions if / € C'([0, T]x X, X).

In Section 2, we will provide some basic results about resolvent operator R(-), including the
representation of solutions via the variation of constants formula. In Section 3, we will study
the nonlocal Cauchy problem (1.10)-(1.11). Finally, in Section 4, we study the special case when
HR(O sy < Me™™, 0 <t < T for some constant & > 0 and when the nonlocal condition
(1.11) is given by (1.6). We will see that in this case, conditions in assumption (HS5) in Section 3
can be improved.

The study in this paper also has the following feature: assume that f is Ty—periodic in ¢ for
some Tp > 0 fixed and u(-) is a solution of (1.10). Then w(z) = u(t + Ty), t = 0, does not satisfy
(1.10), if F # 0. So it was remarked in, e.g. [9, p.88] that (1.10) has no Ty—periodic solutions
except for a “few” examples that periodic solutions do exist. (See [9] for more comments.) In
nonlocal conditions (1.11)and (1.6),if ug = 0, p = 1, {; = Ty, ¢; = —1, then one has u(0) = u(Tp).
So our results indicate that although (1.10) has no Ty—periodic solutions, it has a solution « on
[0, 7] such that u(0) = u(Tp), Ty < T. We may call such solutions “local periodic solutions”.
Note that they may not be Ty—periodic.

2. RESOLVENT OPERATORS

In this section, we collect some basic results about resolvent operators from [7,8]. We will make
the following assumptions

(H1) A4 generates a strongly continuous semigroup in Banach space X,

(H2) F) € B(X), 0<t < T F(t): Y — Y and for x(-) continuous in Y, AF(-)x(:) €
LY([0,T], X). For x € X, F'(t)x is continuous in ¢ € [0, T], where B(X) is the space of all
linear and bounded operators on X, and Y is the Banach space formed from D(A), the domain
of A4, endowed with the graph norm. Observe that in many applications, F(-) is a scalar or an
appropriate matrix, so (H2) is satisfied there. Now we give the following definitions.

Definition 2.1 [8]. R(-) is a resolvent operator of (1.10) with f = 0if R(1) € B(X) for0 <t < T
and satisfies

(I) R(0) = [ (the identity operator on X),

(2) forallu € X, R(t)uis continuous for0 <t < 7T,

(3) R)eB(Y),0<t<T ForyeV, R(-\)yeCH0,T],X)NnC(0, T]Y)and

t
d
SRy = A[R(t)y + JF(t — 5)R(s)y ds]
0
¢
=R(t)Ay+JR(t—s)AF(s)y ds, 0<t=<T 2.1y
0

Definition 2.2. u(-, up) € C([0, T1, X) is a mild solution of (1.10)—(1.11) if it satisfies

u(t) = RW)[uo — gltr, ..., tp ultr), ... u(ty))]
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t
+J—R(t—s)f(S,u(s))dS, 0<t=<T 2.2)
0

Definition 2.3. A classical solution of (1.10)-(1.11) is a function u(-) € C([0,T],Y) n
CY([0, T], X) which satisfies (1.10)—(1.11) on [0, T']. We denote it by u(-, up).

The existence and uniqueness of resolvent operators is guaranteed by the following result.

THEOREM 2.4. Let Assumptions (H1) and (H2) be satisfied. Then (1.10) with f = 0 has a unique
resolvent operator.

Proof. Consider (1.10)—(1.11) with f = 0, g = 0. Then theorem 2.2 in [7] shows that assump-
tions (H1) and (H2) imply the existence of a resolvent operator R(-). Next, note that when
f =0, g=0anduy € D(4), R(-)ug is the unique classical solution of (1.10)—(1.11). So if R;(-)
is another resolvent operator of (1.10) with f = 0, then for f € [0, T'] fixed, R;(to) = R{t)
on D(4). However, D(A) is dense in X, so R (fp) = R(%) on X . This proves the uniqueness of
R(-). [ ]

We also need the following result of [8, theorem 4.5] concerning the classical solutions of the
linear Cauchy problem when f(z,u) = f(¢t) and g = 0in (1.10)-(1.11).

THEOREM 2.5 [8]. Let assumptions (H1) and (H2) be satisfied and assume that f(¢,u) =
f@), g=0, up € D(A), and f(-) € CI([0, T], X). Then (1.10)—(1.11) has a unique classical
solution.

We close this section by stating the variation of constants formula given in, e.g. [6,8].

THEOREM 2.6. Let f € C([0, T] X X, X) and let R(-) be a resolvent operator for (1.10) with
f = 0. If uis a classical solution of (1.10)—(1.11), then it satisfies

14
u(t) = R()u(0) + JR(t ~9fGus)ds, 0<t<T (2.3)
0

3. NONLOCAL CAUCHY PROBLEM

In this section, we will use the techniques developed in Pazy [1] and Byszewski [2] to study
(1.10)—(1.11). We first study the existence and uniqueness of mild solutions using fixed point
argument, under the following assumptions

(H3) f:[0, T]1xX — X is continuousin ¢ € [0, T'] and there exists a constant L > 0 such that

lf(t,u)— fe.Mx <Lllu—vllx, t€[0,T], u veX, 3.1
(H4) g: [0, T}? x X? — X and there exists a constant K > 0 such that

gt ... tputr),..., u(ty)) —gltr, ... .ty v(t1),. .., v(tp) llx
< Kllu = vllcgorx), (3.2)
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(HS5) denote

M = max [|[R(®)lpx), (3.3)
€0, T]
then
MK+ TL) <1 (3.4)

Remark 3.1. If F = 0 in (1.10), then resolvent operator of (1.10) with f = 0 and the semigroup
generated by A are the same. Next, note that from definition 2.1 (2) and the uniform bound-
edness principle, ||R(¢)|| px) is bounded on [0, T]. So assumption (H5) makes sense. Also note
that if the inequality in assumption (H3) holds only for #, v in a small ball in X, as posed
in Byszewski [2], then similar conditions as those in [2] can be stated here. For simplicity, we
assume that (3.1) is true on X.

Under these assumptions, we can prove the existence and uniqueness of mild solutions.

THEOREM 3.2, Let assumptions (H1) - (H5) be satisfied. Then for every u € X, (1.10)—(1.11)
has a unique mild solution.

Proof Let uy € X be fixed. Define an operator Q : C([0, T'], X) — C([0, T'], X) by

(@) () = R@) [ug = b1, 5, v(11),...., v(1p)) |
t
+ JR(: _9fsvs)ds 0<t<T (3.5)
0

Then

Qv (1) — (W) ()l x
<R ligt,.... tpv(t), ..., vitp)) — gt ..., thw(ty),..., w(tp) llx

t
+jnRu—nhwmfmvm)—fuwumuds
4]

t
sMKm—mmmnm+MIumw—mmum
0

sMK+TDIly—wleqonx, »weC(0,T],X), t€[0,T] (3.6

Now, from assumption (HS), we find that Q is a contraction operator on C([0, T'], X). This
completes the proof. u

Next, we prove that mild solutions are classical solutions if £ € C}([0, T] X X, X).

THEOREM 3.3. Let assumptions (H1) - (HS5) be satisfied and let u(-) be the unique mild solution
of (1.10)—(1.11) guaranteed by theorem 3.2. Assume further that uy € D(4),g: [0, T]? X X? —
D(A) and that f € C'([0,T] X X, X). Then u(-) gives rise to a unique classical solution of
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(1.10)~(1.11).

Proof. Since all conditions of theorem 3.2 are satisfied, we may denote by u(-) = u(-, up) the
unique mild solution of (1.10)~(1.11) such that u(0) = uy —g(1,, . .., tp,u(ty),. .., u(tp)) . We will
show that u(-) € C'([0, T], X). To this end, we set

B(s) = %f(s, u), se€[0,7T] 3.7

and

4
k(t) = R(t) f(0, u(0)) + A[R(t)u(O) + JF(! — s)R(5)u(0) ds]
0

' 3
+ JR(t ~ )5 f(s ul) s (€[0T (3.8)

Note that now u(0) € Y, so from definition 2.1 and our assumptions, k(-) € C([0, T], X). Thus
the method used in Pazy (1, pp. 184-187] or in the proof of theorem 3.2 can be used here to
show that

t
w(t) = k(1) + JR(I -5)B(swis)ds, t €[0,T], (3.9
0

has a unique solution w(-) € C([0, T], X). Moreover, from our assumptions we have

Sis uls + b)) = f(su(s) = Bs)|uts + b) - u(s)] + w1 (s, b), (3.10)
and
Ss+huls+h)— fsuls+h) = a%f(s, u(s+ h))h + ws(s k), (3.11)
where
W wi(s W~ 0, k=0, (3.12)

uniformly on s € {0, T] for i = 1, 2. Define

u(t + h) —u(t) _
h

Then from (3.7), (3.8), (3.9), (3.13) and the fact that u(-) is a mild solution, we obtain

wi (1) = w(t), t€[0,T). (3.13)

wa() = (K [R( + Bu(0) - R)u(0) ]

t
~A[ROuO) + [ F - 9 RG)u(0) ds])
0
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!
+h7! JR(I - s)(wl(s,h) + (s, h)) ds
0
' 2 2
+ JR(I - s)(égf(s, u(s+h)) — —a;f(s, u(s))) ds
0
h
+(m! JR(: +h—9)f (s, u(s)) ds = R(0) £(0, u(0))
0

t
+ JR(I — $)B(s)wy(s) ds. (3.14)
0

From the definition of resolvent operator and our assumptions, it is clear that the norm of each
one of the four first terms on the right-hand side of (3.14) tends to zero as 4 — 0. Therefore, we
have

t
Iwn()lx < €Ch) + My J (o)l ds, (3.15)
0
where
My = max ||R(t — 5)B(s) |l ax) (3.16)
tel0,T)
and
€th) =0, h—0. (3.17)

From (3.15) it follows by Gronwall’s inequality that

lwn(t)lx < e(h)e™~*, ¢ €0, T] (3.18)
and, therefore,

lwe(t)lx =0, h—=0, t [0, T] (3.19)

This implies that «(z) is differentiable on [0, 7] and that its derivative is w(?). Since w(-) €
C([0, T1, X), u(-) € C'([0, T]. X).

Finally, to show that u(-) is the classical solution of (1.10)~(1.11) we note that since u(-) €
CY([0,T],X)and f € C1([0, TIxX X, X), t — f(t,u(t)) isin C'([0, T], X). Therefore, theorems
2.5 and 2.6 imply that the linear Cauchy problem

{
V() = A[v(t) + JF(: — 5)v(s) ds] + f(tu@), 0<t=<T, (3.20)
0

v(0) = up —glty,..., thulty),. .., ul(tp)), (3.21)

has a unique classical solution v(-) given by
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V(1) = RO o — gltr,.... tpult),..., u(tp) |
t
+JR([ - f(sus))ds 0<r<T. (3.22)
0

However, the right-hand side of (3.22) is just u(z) since u(-) is the mild solution. So we have
w(t) = u(t), t € [0, T] and, hence, u(-) is the classical solution of (1.10)~(1.11). This proves the
result. [ |

4 WHEN || R(T) sy <MET, 0<T<T a>0

In this section, we study the special case when ||[R(D)llpx) < Me™™, 0 <t < T for some
constant « > 0 and when the nonlocal condition (1.11) is given by (1.6). We will see that in this
case, conditions in assumption (HS5) in Section 3 can be improved. Since we can now first prove
the existence and uniqueness of mild solution (-, v) of Cauchy problem

t
W (1) = Afute) + JF([ ~ s)uls) ds| + fe,u(®), 0<t=<T
[0}

u(0) = v, 4.1

for any v € X, and then we are able to define an operator along the trajectory of u(-,v) and
show that the operator is a contraction, and finally argue that the fixed point of the operator
gives rise to a mild solution of (1.10)—(1.11). We now list the following assumptions

(H6) For some constant o > 0, the resolvent operator of (1.10) with f = 0 satisfies

IR px) < Me™, 0<t<T. (4.2)
(H7) Nonlocal condition (1.11) is given by (1.6) and

P
B=a-ML>0, M> |gle? <1 (Lfrom(3.1), « M from (4.2).) (4.3)

i=1

Remark 4.1. Note that condition (4.3) is better than (3.4) in some situations.

We need the following inequality from [10] in our proof.

LEMMA 4.2[10]. Let u(z) and b(t) be nonnegative continuous functions for ¢ > «, and let

I
u(t) <ae Y% 4 Je_y“_”b(s)u(s) ds, t>«

&

where a = 0 and y are constants. Then

t
u(t) < aexp ( -yt - )+ Jb(s) ds), t> o
o
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THEOREM 4.3. Let assumptions (H1) - (H3), (H6) and (H7) be satisfied. Then for every up € X,
(1.10)—(1.11) has a unique mild solution.

Proof. Let up € X be fixed. Then for any v € X, define an operator Q : C({0, T], X} —
C([0,T], X) by

(Qu)(t) = R(t)v+ JR(Z —8)f(su(s))ds 0<t<T. 44
0

Then

1(Qu) (r) — (@w) (D)l x

< J IR — ) lse) Ilf (s, u(s)) — f(s wis)lx ds
0

< MJLHu(s) —wis)lly ds
0

<MLt|lu—- W”C([O,T],X): u welC(0,T],X), tel0T] (45)

Using (4.4), (4.5) and induction on # it follows that

L n
(@@ — (@wW) Dy < (Mn,t) ftu — wlleqo, 1,000 (4.6)
hence
MLT)?
1Q'u— Q"'wllpwx) < ( o ) flu — wllcqo.rx- 4.7

For n large enough (MLT)"/n! < 1 and by the extension of the contraction principle, Q has a
unique fixed point u(-, v) (which is the mild solution of (4.1)) such that u{0) = v. Next, define
another operator @ : X — X by

?
O1v=1ug — z ciu(ts), (4.8)

i=1

where u(-) = u(-, v) is the unique fixed point of (4.4). Then if we denote for i = 1,2, (:) =
u;(+, v;), which is the unique fixed point of (4.4) with u;(0) = v;, we obtain

)
1Q1vi = Quvallx < 2 leilllur (1) = ua (2l x- 4.9)
i-1

Now, for w(-) = u;(+) — u(-), we have from (4.4),

H
Iw@®llx < IR sy llvi —vallx + J IRz — )l gy Il £ (s, w1 (5)) = f(s,ua(s)llx ds
0
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t
< Mllv, — vallye= + fMLe—““-” ey (5) — ia(s) 1 ds
0

t
= Mllv; — vallye™™ + jMLe“"‘(’“S)llw(s)HX ds te€[0T]
0

Thus from lemma 4.2,
Iwllx < My = valixe™ @Mt = My — wllxe™, t€[0, T (4.10)

Therefore, from (4.10), (4.9) becomes

14
11w = @wallx < (MY Jeile ) Ivy = wally. (4.11)

i=1

From assumption (H7), @, is a contraction operator on X. Thus Q; has a unique fixed point
vo € X. Therefore, for the unique fixed point u(-, vy) of (4.4) corresponding to vy, we obtain

?
u(0, vo) = vog = up — zc,-u(ti, Vo). (4.12)

i=1

This implies that

I3 t
u(t, vg) = R(t)[uo - Zc;u(ti, vo)] + JR(t - f(susw))ds, 0<t=<T
0

i=1

and, hence, u(-, v) is a mild solution of (1.10)~(1.11). Finally, we note that mild solutions of
(1.10)—(1.11) are unique. Since, if () is a mild solution of (1.10)—(1.11) with (1.11) given by
(1.6), then

?
u(0) = uy — > cults),
i=1
and u(-) is also the unique mild solution of (4.1) with v = u(0). However, Q, is a contraction
operator, so (4.6) implies that #(0) is uniquely determined by Q;. Next, Q is also a contraction
operator, so fixed point of (4.4) is uniquely determined by v = «(0). Thus it is clear that mild
solutions of (1.10)—(1.11) are unique. This completes the proof. u

Similar to theorem 3.3, we have the following result which says that mild solutions are classi-
cal solutions if f € C([0, T] X X, X).

THEOREM 4.4. Let assumptions (H1)-(H3), (H6) and (H7) be satisfied and let u(-) be the
unique mild solution of (1.10)-(1.11) guaranteed by theorem 4.3. Assume further that u, €
D(A), 37 cu(t;) € D(A) and that f € C'([0, T] X X, X). Then u(-) gives rise to a unique
classical solution of (1.10)—(1.11).
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