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Abstract

We study finite delay evolution equation{
x′(t) = Ax(t) + F (t, xt), t ≥ 0,
x0 = ϕ ∈ C ([−r, 0] , E) ,

where linear operator A is non-densely defined and satisfies the Hille-Yosida condition. First we obtain
some properties of “integral solutions” in this case, and prove the compactness of an operator determined
by integral solutions. This allows us to apply Horn’s fixed point theorem to prove the existence of periodic
integral solutions when integral solutions are bounded and ultimately bounded. This extends the study
of periodic solutions for densely defined operators to non-densely defined operators. An example is given.

1 INTRODUCTION.

In this note, we consider finite delay evolution equation{
x′(t) = Ax(t) + F (t, xt), t ≥ 0,
x0 = ϕ ∈ C ([−r, 0] , E) ,

(1.1)

where A is a non-densely defined linear operator in a Banach space E; C = C ([−r, 0] , E) is
the space of continuous functions from [−r, 0] (r > 0 is a constant) to E endowed with the
super-norm; and for every t ≥ 0, the function xt ∈ C is defined by

xt(·)(θ) = xt(θ) = x(t + θ), θ ∈ [−r, 0] ,

and F (t, ϕ) is a continuous function from � × C to E, and is ω−periodic in t.

It’s well known that if A is the infinitesimal generator of a C0-semigroup of bounded linear
operators, or equivalently

(i). D(A) = E, (D means domain),
(ii). there exist M ≥ 0 and τ ∈ � such that ]τ,∞[ ⊂ ρ(A), and
sup {(λ − τ)n |(λ − A)−n| : λ > τ, n ∈ N} ≤ M,
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where ρ(A) is the resolvent set of A, then the classical semigroup theory ensures the well-
posedness of Eq.(1.1). ([12]).

In this work we investigate the case when the operator A satisfies only the assumption
(ii) above, that is, when A is non-densely defined; and we are concerned with the existence
of periodic solutions for Eq.(1.1). The related studies and examples concerning non-densely
defined operators can be found in the references such as [1, 3, 4, 7]. For example, in [3], the
authors proved that Eq.(1.1) is wellposed in the set

C0 =
{
ϕ ∈ C ([−r, 0] , E) : ϕ(0) ∈ D(A)

}
.

The problem of finding periodic solutions is an important subject in the qualitative study
of ordinary and functional differential equations. The famous Massera’s theorem [9] on two-
dimensional periodic ordinary differential equations explains the relationship between the
bounded solutions and periodic solutions. Using Browder’s fixed point theorem, Yoshizawa
proved in [13] that if the solutions of an n−dimensional periodic ordinary differential equa-
tion are either uniformly bounded or uniformly ultimately bounded, then the system has a
periodic solution. Hale and Lopes [6] used Horn’s fixed point theorem to obtain the same
result for n−dimensional periodic ordinary and functional differential equations with finite
delay. In [11], Show studied the Massera’s theorem for some functional differential equations
in finite dimensional spaces and proved that the existence of a bounded solution implies the
existence of a periodic solution.

In many of those studies, the most important feature is to show that the operator

Pφ = xω(·, φ), (ω units along x) (1.2)

is compact (continuous and takes a bounded set into a precompact set), where ω is the
period of the system and x is the unique solution determined by φ. Then, some fixed point
theorem can be used to derive periodic solutions.

For equations in general Banach spaces (infinite dimensional), showing the compactness
of operator P is a very hard task, because the difficulty involving the abstract version of
Arzela-Ascoli’s theorem. As can be seen in [2, 8, 14], if this difficulty can be overcome,
then other steps for equations in finite dimensional spaces can be carried over to show that
operator P is compact, and hence to derive periodic solutions. For example, in [8], the
author treated the evolution equation{

x′(t) = A(t)x(t) + f(t, x(t), xt), t ≥ 0,
x0 = ϕ ∈ C ([−r, 0] , E) ,

where A(t) is ω−periodic in t and generates an evolution system (U(t, s))t≥s≥0 in a Banach
space E, and f(t, ., .) is ω−periodic in t; and proved the compactness of P and hence the
existence of periodic mild solutions using the boundedness and ultimate boundedness of mild
solutions when ω > r.
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When operator A in Eq.(1.1) satisfies only (ii) above, that is, when A is non-densely
defined, the appropriate solutions to work with will be integral solutions; see Definition 2.1.
To our knowledge, we have not seen results about periodic integral solutions, thus we would
like to provide one here. Similar to the cases for densely defined operators mentioned above,
the most important step here is to show that Pφ = xω(·, φ) is compact, where x is the unique
integral solution determined by φ. After this, we are able to apply Horn’s fixed point theorem
and prove, under the boundedness and ultimate boundedness assumptions, the existence of
ω−periodic integral solutions for Eq.(1.1) when ω > r. This way, we can extend the study
of periodic solutions for densely defined operators to non-densely defined operators. Finally,
we give an example of a partial functional differential equation in continuous functions space
with the super-norm.

2 THE COMPACTNESS OF OPERATOR P.

In this section we make the following assumptions.

(H1). The operator A is a Hille-Yosida operator. That means: there exist M > 0 and τ ∈ �
such that ]τ,∞[ ⊂ ρ(A), and sup {(λ − τ)n |(λ − A)−n| : λ > τ, n ∈ N} ≤ M .

(H2). The function F is continuous in t and is locally Lipschitz in the second variable in the
sense that for each h > 0 there exists a constant k1(h) > 0 such that

|F (t, ϕ1) − F (t, ϕ2)| ≤ k1(h) |ϕ1 − ϕ2| , for t ∈ [0, h] and |ϕ1| , |ϕ2| ≤ h.

We now list the following definitions.

Definition 2.1. Let b > 0. A continuous function x : [−r, b] → E is called an integral
solution of Eq.(1.1) if

i).
∫ t
0 x(s)ds ∈ D(A), for t ∈ [0, b] ,

ii). x(t) = ϕ(0) + A
∫ t
0 x(s)ds +

∫ t
0 F (s, xs)ds, for t ∈ [0, b] ,

iii). x0 = ϕ.

Definition 2.2. A continuous function x : [−r, b] → E is called a strict solution of Eq.(1.1)
if

i). x ∈ C1 ([0, b] , E) ∩ C ([0, b] , D (A)) ,
ii). x satisfies Eq.(1.1) for t ∈ [0, b],
iii). x0 = ϕ.

Remark 2.1. From the closedness of operator A, we see that if an integral solution x of
Eq.(1.1) is continuously differentiable, then x is a strict solution of Eq.(1.1).

We can use methods similar to those in [3] for autonomous equations to obtain the fol-
lowing existence and uniqueness results concerning integral solutions and strict solutions for
non-autonomous equations. Details are omitted here.

Theorem 2.1. Assume that (H1) and (H2) hold. Then for any ϕ ∈ C0 ={
ϕ ∈ C ([−r, 0] , E) : ϕ(0) ∈ D(A)

}
, there exists a unique integral solution x(., ϕ) of Eq.(1.1)
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with its maximal interval of existence [−r, tϕ[ , tϕ > 0, and

either tϕ = ∞, or lim sup
t→tϕ

|x(t, ϕ)| = ∞.

Moreover x(., ϕ) is a continuous function of ϕ in the sense that, for ϕ ∈ C0 and t ∈ [0, tϕ[,
there exist positive constants L and ε such that for any ψ ∈ C0 with |ϕ − ψ| < ε, we have

t ∈ [0, tψ[ and |x(s, ϕ) − x(s, ψ)| ≤ L |ϕ − ψ| , s ∈ [−r, t].

Theorem 2.2. Assume that (H1) and (H2) hold. Furthermore assume that F is continuously
differentiable, and for each h > 0, there exist positive constants k2(h) and k3(h) such that

|D1F (t, ϕ1) − D1F (t, ϕ2)| ≤ k2(h) |ϕ1 − ϕ2| ,
|D2F (t, ϕ1) − D2F (t, ϕ2)| ≤ k3(h) |ϕ1 − ϕ2| ,

for t ∈ [0, h] and |ϕ1| , |ϕ2| ≤ h, where D1 and D2 denote respectively the derivative of
F (t, ϕ) with respect to t and ϕ. Let ϕ ∈ C0 such that

ϕ′ ∈ C0, ϕ (0) ∈ D (A) , and ϕ
′
(0) = Aϕ (0) + F (0, ϕ) .

Then the integral solution x(ϕ) of Eq.(1.1) is a strict solution in [0, tϕ[ .

Remark 2.2. If we assume that function F (t, ϕ) is continuous and Lipschitz with respect
to the second argument, then the integral solution of Eq.(1.1) exists for all t ≥ 0. Moreover
the solutions x(t, ϕ) are locally bounded in t and ϕ. In the following, we’re concerned with
periodic integral solutions, so we will assume that all integral solutions exist on [0,∞).

Now, we introduce the part A0 of A in D(A), defined by

A0 = A on D(A0) =
{
x ∈ D(A) : Ax ∈ D(A)

}
.

Then it’s well known ([1, 7]) that the part A0 of A generates a strongly continuous semigroup
T0(·) on D(A); and for ϕ ∈ C0, the integral solution of Eq.(1.1) is given by

x(t) =

{
T0(t)ϕ(0) + limλ→∞

∫ t
0 T0(t − s)BλF (s, xs)ds, t ≥ 0,

ϕ(t), t ∈ [−r, 0] ,
(2.1)

where Bλ = λ(λ − A)−1; and x(t) ∈ D(A), t ≥ 0.

In the sequel, we need to prove the compactness of operator P , so we assume

(H3). The semigroup (T0(t))t≥0 is compact on D(A). That means for each t > 0, operator

T0(t) is compact on D(A).

Now, we are ready to prove our main result in this paper, that is, the compactness of
operator P .

Theorem 2.3. Assume that (H1), (H2), (H3) hold and that all integral solutions of Eq.(1.1)
exist for t ≥ 0 and are locally bounded (that is, for any t > 0, the integral solutions of Eq.(1.1)
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are bounded on [0, t] by a constant if their initial functions are bounded by a constant). Let
ω > r be fixed. Then the operator Pϕ = xω(., ϕ) on C0 is compact (continuous and takes a
bounded set into a precompact set).

Proof: The continuity of P follows from Theorem 2.1. Let B be a bounded set in C0. Then,
as integral solutions are locally bounded, it follows that the set

W = {xω(., ϕ) : ϕ ∈ B} (2.2)

is bounded in C0. Next, we will show that W is precompact in C0 by using Arzela-Ascoli’s
theorem. For that end we first prove that for every fixed θ ∈ [−r, 0],

{x(ω + θ, ϕ) : ϕ ∈ B}
is precompact in D(A). From (2.1), we have

x(ω + θ, ϕ) = T0(ω + θ)ϕ(0) + lim
λ→∞

∫ ω+θ

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds.

Since ω > r is fixed, we can choose ε > 0 such that ω + θ − ε > 0. Then∫ ω+θ

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds =

∫ ω+θ−ε

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds

+
∫ ω+θ

ω+θ−ε
T0(ω + θ − s)BλF (s, xs(., ϕ))ds,

and

lim
λ→∞

∫ ω+θ−ε

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds =

T0(ε) lim
λ→∞

∫ ω+θ−ε

0
T0(ω + θ − ε − s)BλF (s, xs(., ϕ))ds.

Therefore, by Assumption (H3) and the local boundedness assumption on integral solutions,
we see that {

lim
λ→∞

∫ ω+θ−ε

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds : ϕ ∈ B

}

= T0(ε)

{
lim

λ→∞

∫ ω+θ−ε

0
T0(ω + θ − ε − s)BλF (s, xs(., ϕ))ds : ϕ ∈ B

}

is precompact in D(A) because T0(ε) is applied to a bounded set. Next, for some positive
constant a, one has

| lim
λ→∞

∫ ω+θ

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds − lim

λ→∞

∫ ω+θ−ε

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds|

≤ | lim
λ→∞

∫ ω+θ

ω+θ−ε
T0(ω + θ − s)BλF (s, xs(., ϕ))ds| ≤ aε.

This implies that the set{
lim

λ→∞

∫ ω+θ

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds : ϕ ∈ B

}
(2.3)
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is totally bounded, and therefore the set {x(ω + θ, ϕ) : ϕ ∈ B} is precompact in D(A).

It remains to prove the equicontinuity of functions in set W . Let θ, θ0 ∈ [−r, 0] with
θ > θ0. Then ω + θ > ω + θ0 > 0, and

x(ω + θ, ϕ) − x(ω + θ0, ϕ) = [T0(ω + θ) − T0(ω + θ0)]ϕ(0)

+ lim
λ→∞

∫ ω+θ

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds

− lim
λ→∞

∫ ω+θ0

0
T0(ω + θ0 − s)BλF (s, xs(., ϕ))ds.

Notice that∫ ω+θ

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds =

∫ ω+θ0

0
T0(ω + θ − s)BλF (s, xs(., ϕ))ds

+
∫ ω+θ

ω+θ0

T0(ω + θ − s)BλF (s, xs(., ϕ))ds,

so we deduce that

|x(ω + θ, ϕ) − x(ω + θ0, ϕ)| ≤ |T0(ω + θ) − T0(ω + θ0)| |ϕ(0)|
+| lim

λ→∞

∫ ω+θ0

0
[T0(ω + θ − s) − T0(ω + θ0 − s)]BλF (s, xs(., ϕ))ds|

+| lim
λ→∞

∫ ω+θ

ω+θ0

T0(ω + θ − s)BλF (s, xs(., ϕ))ds|.
From assumption (H3) and a result in [10], semigroup (T0(t))t≥0 is uniformly continuous

for t > 0, which implies that

lim
θ→θ0

|T0(ω + θ) − T0(ω + θ0)| = 0,

since ω + θ > ω + θ0 > 0. Furthermore, there exists a positive constant b such that

| lim
λ→∞

∫ ω+θ

ω+θ0

T0(ω + θ − s)BλF (s, xs(., ϕ))ds| ≤ b (θ − θ0) .

We also have

limλ→∞
∫ ω+θ0
0 [T0(ω + θ − s) − T0(ω + θ0 − s)]BλF (s, xs(., ϕ))ds

= [T0(θ − θ0) − I] limλ→∞
∫ ω+θ0
0 T0(ω + θ0 − s)BλF (s, xs(., ϕ))ds.

As in (2.3), we obtain that there is a compact set K in D(A) such that

lim
λ→∞

∫ ω+θ0

0
T0(ω + θ0 − s)BλF (s, xs(., ϕ))ds ∈ K, for all ϕ ∈ B.

Thus, from Banach-Stenhauss’s theorem, we have

lim
θ→θ0

sup
x∈K

|(T0(θ − θ0) − I)x| = 0.

This implies that

lim
θ→θ+

0

|x(ω + θ, ϕ) − x(ω + θ0, ϕ)| = 0, uniformly for ϕ ∈ B.

The proof for θ < θ0 is similar. This completes the proof. �
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3 BOUNDEDNESS AND PERIODICITY.

After showing the compactness of operator P , we can follow [2, 8, 14] and derive periodic
integral solutions for Eq.(1.1). In the sequel we make the following assumption.

(H4) The function F (t, ϕ) is ω−periodic in t with ω > r.

We also need to bound certain terms involving integral solutions, so we define the follow-
ing.

Definition 3.1. We say that integral solutions of Eq.(1.1) are bounded if for each B1 > 0,
there is a B2 > 0 such that |ϕ| ≤ B1 implies |x(t, ϕ)| ≤ B2 for t ≥ 0.

Definition 3.2. We say that integral solutions of Eq.(1.1) are ultimate bounded if there is
a bound B > 0, such that for each B3 > 0, there is a k > 0 such that |ϕ| ≤ B3 and t ≥ k
imply |x(t, ϕ)| ≤ B.

We also list the following result as a reference.

Lemma 3.1. [6] (Horn’s fixed point Theorem). Let E0 ⊂ E1 ⊂ E2 be convex subsets
of Banach space Z, with E0 and E2 compact subsets and E1 open relative to E2. Let
P : E2 → Z be a continuous map such that for some integer m one has

P j(E1) ⊂ E2, 1 ≤ j ≤ m − 1,
P j(E1) ⊂ E0, m ≤ j ≤ 2m − 1,

then P has a fixed point in E2.

With these preparations, we can prove

Theorem 3.1. Assume that (H1), (H2), (H3) and (H4) hold. Furthermore suppose that
integral solutions of Eq.(1.1) are bounded and ultimate bounded. Then Eq.(1.1) has an
ω−periodic integral solution.

Proof: From Theorem 2.3, we know that operator Pφ = xω(·, φ) on C0 is compact. Let
B be the bound in the definition of ultimate boundedness, then by boundedness, there is
a B1 > 0 such that |ϕ| ≤ B implies |x(t, ϕ)| ≤ B1 for t ≥ 0. Furthermore, there is a
B2 > B1 such that |ϕ| ≤ B1 implies |x(t, ϕ)| ≤ B2 for t ≥ 0. Now, using ultimate bound-
edness, there is a positive integer m such that |ϕ| ≤ B1 implies |x(t, ϕ)| ≤ B for t ≥ (m−2)ω.

Let x(t) be an integral solution of Eq.(1.1) and define y(t) = x(t + ω). Then, for t ≥ 0,

y(t) = x(t + ω) = T0(t + ω)φ(0) + lim
λ→∞

∫ t+ω

0
T0(t + ω − h)BλF (h, xh)dh

= T0(t)T0(ω)φ(0) + lim
λ→∞

∫ ω

0
T0(t + ω − h)BλF (h, xh)dh

+ lim
λ→∞

∫ t+ω

ω
T0(t + ω − h)BλF (h, xh)dh

= T0(t)
[
T0(ω)φ(0) + lim

λ→∞

∫ ω

0
T0(ω − h)BλF (h, xh)dh

]
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+ lim
λ→∞

∫ t

0
T0(t − s)BλF (s, xω+s)ds

= T0(t)y(0) + lim
λ→∞

∫ t

0
T0(t − s)BλF (s, ys)ds. (3.1)

This implies that y(t) = x(t+ω) is also an integral solution of Eq.(1.1). Then the uniqueness
implies that Pmϕ = xmω(., ϕ) for ϕ ∈ C0. Thus, we have the following

|P j−1ϕ| = |x(j−1)ω(., ϕ)| < B2, j = 1, 2, ...,m − 1 and |ϕ| ≤ B1,
|P j−1ϕ| = |x(j−1)ω(., ϕ)| < B, j ≥ m and |ϕ| ≤ B1.

Let
H = {ϕ ∈ C0 : |ϕ| < B2} , E2 = cov.(P (H)),
K = {ϕ ∈ C0 : |ϕ| < B1} , E1 = K ∩ E2,

G = {ϕ ∈ C0 : |ϕ| < B} , E0 = cov.(P (G)),

where cov.(F ) is the convex hull of the set F . Then we see that E0, E1 and E2 are convex
subsets of C0 with E0 and E2 compact subsets and E1 open relative to E2, and

P j(E1) ⊂ P j(K) = PP j−1(K) ⊂ P (H) ⊂ E2, 1 ≤ j ≤ m − 1,
P j(E1) ⊂ P j(K) = PP j−1(K) ⊂ P (G) ⊂ E0, m ≤ j ≤ 2m − 1.

Consequently, from Horn’s fixed point theorem we know that operator P has a fixed point
φ. Then, for the integral solution x(·) = x(·, φ) with x0(·, φ) = φ, we see from (3.1) that
y(t) = x(t + ω, φ) is also an integral solution with y0 = xω(φ) = Pφ = φ. Thus the unique-
ness implies x(t, φ) = y(t) = x(t + ω, φ); therefore x(t, φ) is an ω−periodic solution. This
completes the proof. �

Next, we give a criteria as in [8] to guarantee the boundedness and ultimate boundedness
of integral solutions of Eq.(1.1). The proof can be found in [8].

Theorem 3.2. Assume that there exist functions Wi, i = 1, 2, 3 with Wi : [0,∞[ → [0,∞[ ,
Wi(0) = 0, Wi strictly increasing, and W1(t) → ∞, as t → ∞. Further assume that there
exists a Liapunov function V : E → � such that for some M > 0, when x is an integral
solution of Eq.(1.1) with |x(t)| ≥ M, then

W1(|x(t)|) ≤ V (x(t)) ≤ W2(|x(t)|), and
d
dt

V (x(t)) ≤ −W3(|x(t)|) or V (x(t)) − V (x(0)) ≤ − ∫ t
0 W3(|x(s)|)ds.

Then integral solutions of Eq.(1.1) are bounded and ultimate bounded.

4 AN EXAMPLE.

In the following, we apply our results here to the partial functional differential equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(t, x, ut(·, x)), u(t, 0) = u(t, 1) = 0, t ≥ 0, x ∈ [0, 1], (4.1)
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where ut(·, x) (not a partial derivative) is defined by ut(·, x)(θ) = u(t + θ, x), θ ∈ [−r, 0] ,
r > 0 is a constant.

We study Eq.(4.1) in E = C[0, 1], the space of all continuous functions on [0, 1] with the
super-norm, and define

Au = u′′, D(A) = {u ∈ C2[0, 1] : u(0) = u(1) = 0}. (4.2)

Then the closure of D(A) is

D(A) = C0[0, 1] = {u ∈ C[0, 1] : u(0) = u(1) = 0} 	= C[0, 1] = E, (4.3)

thus A is not densely defined on E.

Now, (10.2) in [4] is true, and it implies (1.1) in [4]. Thus Hille-Yosida condition (H1) in
our paper is satisfied.

Let E0 be the closure of D(A), that is,

E0 = D(A) = {u ∈ C[0, 1] : u(0) = u(1) = 0},
and define the part of A as

A0u = Au = u′′, (4.4)

on the domain

D(A0) = {u ∈ D(A) : Au ∈ E0}
= {u ∈ C2[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0}. (4.5)

Lemma 4.1. A0 generates a compact semigroup on E0 = D(A).

Proof: Let f ∈ E0 and consider (λ − A0)u = f for λ /∈ (−∞, 0], that is,

λu(t) − u′′(t) = f(t), u(0) = u(1) = u′′(0) = u′′(1) = 0. (4.6)

From [5], λu(t) − u′′(t) = f(t), u(0) = u(1) = 0 has a unique solution w (given on page 372
of [5]). Now, w ∈ E0 and f ∈ E0, so w′′ = λw − f ∈ E0. Thus w is also a unique solution of
Eq.(4.6). Therefore (λ − A0)

−1 is well defined on E0 for λ /∈ (−∞, 0].

Next, similar to the argument in [5], we have

‖(λ − A0)
−1‖B(E0) ≤ 1

|λ| cos(q/2)
, (4.7)

where q = arg λ and B(E0) is the Banach space of all bounded linear operators on E0.
Now from [4] or [10], A0 generates an analytic semigroup on E0. Then similar to [10],
the analytic semigroup is continuous in the uniform operator topology for t > 0; and
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(λ − A0)
−1, λ /∈ (−∞, 0], maps bounded set in E0 into bounded set in E0 with a uni-

form bound on their first derivatives. It now follows from Arzela-Ascoli’s theorem that
(λ − A0)

−1, λ /∈ (−∞, 0], is a compact operator. Therefore the semigroup in compact ac-
cording to [10]. �

For this example, conditions (H1)–(H4) can be met, so that results here can be applied.
Details are left to the reader.
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