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A b s t r a c t - - I n  this note, we establish some results concerning the existence and regularity of "in- 
tegral solutions" for some nondensely defined evolution equations with nonlocal condition, where the 
linear part satisfies the Hille-Yosida condition. They extend the results of densely defined evolution 
equations. (~ 2002 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - N o n d e n s e l y  defined, Nonlocal conditions. 

1 .  I N T R O D U C T I O N  

In this work, we are concerned with the following nonlocal  evolut ion equat ion:  

du(t) _ Au(t)  + F(t ,  u(t)), 
dt 

~(o) + g(~) = ~ o ,  

t e [0, T], 
(1) 

where A : D(A)  C E ~ E, is a nondense ly  defined closed l inear opera tor  on a Banach  space E,  

F :  [0, T] × E --~ E is cont inuous,  and g :  C([O,T];E) ---* E is cont inuous ,  where C([O,T];E) is 

the space of cont inuous  funct ions with the uniform norm topology. 

As indica ted  in [1-4] and  the references therein,  the nonlocal  condi t ion  u(0) + g(u) = Uo can be 

applied in physics wi th  be t te r  effect t h a n  the classical Cauchy problem u(0) = uo. For example,  

in [4], the au thor  used 
p 

g(~) = ~ ,  c~(t~), (2) 
i=1 
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where c.i, i = 1 , . . . , p ,  are given constants and 0 < tl < t2 < . < tp < T, to describe the 
diffusion phenomenon of a small amount of gas in a t ransparent  tube. In this case, equation (2',) 
allows the additional measurements at t~, i = 1, 2 , . . .  ,p. 

When operator A generates a Co semigroup, or equivalently, when a closed linear operator A 
satisfies 

(i) D(A)  = E, (D means domain), 

(ii) the Hille-Yosida condition that  is, there exist M _> 0 and r E ~ such that  ]r, oc[C 

p(A), sup{(A - ~)~l(AZ - A)-~I  : A > T, n • N} < M, 

where p(A) is the resolvent set of A and I is the identity operator,  then equation (1) with 
nonlocal conditions have been studied extensively. Existence, uniqueness, and regularity, among 
other things, are derived. See [1-7]. See also [8] for a s tudy of integrodifferential equations with 
nonlocal conditions, 

[ /0 l du(t) _ A u(t) + H ( t -  s )u ( s )ds  + f ( t , u ( t ) ) ,  O< t < T, 
dt (3) 

+ h ( t l , . . ,  t , ,  = 

where A generates a Co semigroup on a Banach space and h : [0, T] p x E p -~ E is continuous 
and H(t)  is a bounded linear operator for t E [0, T]. 

However, as indicated in [9], we sometimes need to deal with the nondensely defined operators. 
For example, when we look at a one-dimensional heat equation with Dirichlet conditions on [0, 1] 

0 2 
and consider A = ~ in C([0, 1], ~)  in order to measure the solutions in the sup-norm, then 
domain 

D(A)  = {O c C2([0, 1 ] ,~ ) :  O(0) = 4(1) = 0} 

is not dense in C([0, 1], ~) with the sup-norm. See [9] for more examples and remarks concerning 
the nondensely defined operators. 

Therefore, our purpose here is to extend the results of densely defined evolution equations 
with nonlocal conditions to nondensely defined evolution equations with nonlocal conditions. We 

first use the fixed-point methods to derive the existence and uniqueness of "integral solutions" 
(when the operator A is nondensely defined), then we verify tha t  integral solutions are "strict 
solutions" if additional conditions are assumed. In doing so, we apply the two approaches that  are 
commonly used in recent publications: the contraction mapping principle and Leray-Schauder 's 
alternative. We remark tha t  Leray-Schauder 's alternative requires some compactness conditions; 
thus, to use it, some compactness conditions must be imposed on the function g in equation (1). 
In this regard, we point out that  the proof of the main result in [7] is not complete and additional 
compactness conditions on g should be assumed there for the proof to go through. See [6,10 i for 
similar remarks. 

This paper  is organized as follows. In Section 2, we state some facts about  integrated semi- 
groups and integral solutions tha t  will be used later. In Section 3, we prove the existence, 
uniqueness, and regularity of integral solutions for equation (1) when A is not necessarily densely 

defined but satisfies the Hille-Yosida condition. We also give an optimal result about  the exis- 
tence of integral solutions when A is a sectorial operator. The remaining section is devoted to an 
application. 

2. P R E L I M I N A R I E S  A N D  B A S I C  R E S U L T S  

Let us introduce some notions which will be used in this paper. 

DEFINITION 1. (See [11].) Let E be a real Banach space. An  integrated semigroup is a family 

(S(t))t>o of bounded linear operators S(t)  on E with the following properties: 

(i) S(O) O; 
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(ii) t ~ S(t) is strongly continuous; 
(iii) S(s)S( t )  = fo (S( t  + r) - S(r))dr ,  for ali t , s  >_ O. 

DEFINITION 2. (See [12].) An opera tor  A is called a generator of an in tegrated semigroup if  there  
exists w E ~ such that ]w, ec[ C p(A) (p(A), is the resolvent set of A) and there  exists a strongly 
continuous exponentially bounded family ( S( t ) )t>o of bounded operators such that S(0) = 0 and 
()~1 - A ) - I  = ~ f o  e-XtS(t)  dt exists for all A with A > w. 

PROPOSITION 1. (See [11].) Let A be the genera tor  of an integrated semigroup (S(t))t>o. Then 
f o r a l l x E  E and t >0,  

/o /o S(s)x  ds E D(A) and S(t)x  = A S(s)x  ds + tx. 

DEFINITION 3. (See [12].) 

(i) An integrated semigroup (S(t) )t>_o iS called locally Lipsehitz continuous if, for all r > O. 
there exists a constant L such that 

IS(t)-  S(s)l < _ L l t - s l ,  t, s e  [0,~-]. 

(ii) An integrated semigroup (S(t))t>o is called nondegenerate if  S( t )x  = O, for a11 t > 0 
implies that x = O. 

DEFINITION 4. We say that a linear operator A satisfies the "Hille-Yosida condition" if there 
exist M >_ 0 and a~ E ~ such tha t  ]w, oo[ C p( A ) and 

sup {(A - cJ) ~ I ( A I -  A ) - n l :  n E N, A > w} < M. 

THEOREM 2. (See [12].) The following assertions are equivalent: 

(i) A is the generator of a nondegenerate, locally Lipschitz continuous integrated semigroup; 
(ii) A satisfies the Hille-Yosida condition. 

If A is the genera tor  of an integrated semigroup (S(t))t>o which is locally Lipschitz, then  
from [11], S(.)x is cont inuously differentiable if and only if x E D(A) and (S'(t))t>_o is a Co 
semigroup on D(A).  Here and hereafter,  we assume tha t  

(H1) A satisfies the Hille-Yosida condition. 
Let  (S(t))t>o, be the integrated semigroup generated by A, then one has the  following. 

THEOREM 3: (See [11,12].) Let  f : [0, T] -~ E be a continuous function. Then for Y0 E D(A), 
there exists a unique continuous function y : [0, T] --* E such that 

(i) fo y(s)ds  E D(A),  t E [0,T], 

(ii) y(t) = Yo + m f t  y(s) ds + J~ f ( s )  ds, t E [0,T], 

(iii) ly(t)l < Me~t(lYol + fo e-~Slf(s) lds) ,  t E [0, T]. 

Moreover,  y satisfies the following variat ion of constant  formula: 

y(t) : S'(t)yo + --~ S(t - s ) f ( s )  ds, t > O. (4) 

I~et Bx = AR(A,A), then  for a l l x  E D(A), Bax ~ x as A -~ oc. As a consequence,  i f y  
satisfies (4), then  

/0' y(t) : S'(t)yo + lira S'(t  - s )Bx f ( s )  ds, t >_ O. (5) 
,X ~ O o  
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3 .  E X I S T E N C E  A N D  R E G U L A R I T Y  O F  S O L U T I O N S  

Now, we s tudy equat ion (1) with nonlocal conditions. 

DEFINITION 5. We say that u E C([0, T]; E) is an integral solution of equation (1) if  the following 
assertions are true: 

(i) ./~4s)ds ~ D(A) ,  t C [0, T]; 

(ii) ~(t) Uo - 9(u) + A Jo u(s) ds + Jo F(s, u(s)) ds, t C [0, T]. 

DEFINITION 6. ~Ve say that u C C([0, T]; E) is a strict solution of equation (1) it" u ~ C J([0. T!: 
E) r? C ( [ 0 ,  T]; D( A ) ) and u satisfies equation (1). 
R E M A R K  1. 

(A) If u is an integral solution of equat ion (1), then for all t ~ [0, T], u(t) ff D(A).  In 

part icular ,  u(0) E D(A).  If the integral solution u exists then by Theorem 3, it is given 
by 

d for ~(t) s' ( t ) [uo - g(~)J + Z s ( t  - s )v (s ,  ~(s)) ds, for t ~ [0. T]. 

(B) If u is an integral solution of equat ion (1) such tha t  u c C~([0, T ] ; E )  or u E C([0, T]; 
D(A)) ,  then u is a strict solution of' equat ion (1). 

3.1.  I n t e g r a l  a n d  S t r i c t  S o l u t i o n s  

In the sequel, we assume the following. 

(H2) There  exists a positive constant  a such tha t  

I f ( t , x ) - F ( t , y ) l ~ a l z - . V l ,  t ~ [0, Z], ~',U ~ F.  

(Ha) g " C([0, T]; E) ~ D(A)  and there  exists a positive constant  b such tha t  

pg(u) - g(v)l ~ bllu - vile, u, v c C([0, T]; E).  

Now. let r > 0 and define the following constants,  

N =  sup ]g(u)l and c =  sup IF( t ,0 ) l .  
I lu l lc<_r  te[0,T] 

THEOREM 4. Assume that Assumptions (H1)-(H3) hold. Let r, T > 0 be chosen such that 

Me~r [!~ol +N+(~,.+e)l(l_e .~r)] <r. (6) 

a n d  ¸ 

M e  "~T b + -- ( 1 -  e -"~T < 1, (7) 
cO 

where M and ~ are from the Hille-Yosida condition. Let Uo ~ D(A) ,  then equation (1) has a 

unique integral solution u on [0, T]. 

PROOF. Let  u0 E D(A)  and let C,. = {u C C([O,T];E):  tl~llc < "}. For  ~ ~ C([O, T]; Z) ,  define 

K u  by 

K ~ ( t )  : s ' ( t ) [~0  - g(~)]  + 7 /  s(t - ~ ) F ( s ,  ~ ( s ) )  & t ~ [0, T ]  
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We will apply the contraction mapping principle to show that  K has a unique fixed point. For 
u c C,., we can use the results in Theorem 3 and condition (6) to obtain 

[gu(t)l < Me~t [luol+ N + / o t e - ~ l F ( s , u ( s ) ) l d s ]  

[ /o ] < M e  ~t l u o l + N +  e - ' ° s L f ( s , u ( s ) ) - f ( s , O ) + f ( s , O ) l d s  

[ /o' /o' ] <_Me ~t luol+N+ e-~alu(s)Lds+ e-~SlF(s,O)lds 

[ / ; ]  <_ Me  ~T lu01 + N + (at + c) e -~°~ ds 

<_ Me  ~T lu01 + N + (at + c)~  

(8) 

hence, we get KCr C Cr. Next, let u,v  C C([O,T];E), then 

d [ ~  ds IKu - Kvl <_ S'(t)[g(v) - g(u)] + ~ S(t  - s)[F(s,u(s))  - F(s,v(s))]  
~ u  

I /o ] <_ Me ~t bllu - vllc + e-~SlF(s ,u(s))  - f ( s , v ( s ) )  Ids 

<_Me ~r b + - ( 1 - e  -~T I l u - v l l c .  
CO 

(9) 

Consequently, by applying condition (7) and the contraction mapping principle, K has a unique 
fixed point. Then by Theorem 3, we see that  equation (1) has a unique integral solution on 
[0, T]. | 

To obtain the regularity of the integral solution u, we assume the following. 
(H4) F is continuously differentiable. 

THEOREM 5. Assume that Assumptions (H1)-(H4) hold. Let r , T  > 0 be chosen as in Theorem 4 
and let u be the unique integral solution of equation (1) guaranteed by Theorem 4. In addition, 
suppose that uo - g(u) E D(A ) and A[uo - g(u)] + F(O, uo - g(u)) C D(A).  Then u is a strict 
solution of equation (1). 

PROOF. Let u be the unique integral solution of equation (1) guaranteed by Theorem 4. Consider 
the equation 

dr(t) _ Av(t) + D1F(t, u(t)) + D2F(t, u(t))v(t) 
dt 
v(O) = Au(O) + F(O, u(O)), 

t ~ [0, T], (10) 

where D1 and D2 are the partial derivatives to the first and second variables, respectively. Then 
by the contraction mapping principle we can prove that  equation (10) has an integral solution v 
on [0, T] which is given by 

, /0  t v(t) = S'(t)[Au(O) + F(O, u(0))] + ~ S(t - s)[D1F(s, u(s)) + D2F(s, u(s))v(s)] ds. (11) 

On the other hand, we have, 

F(s  + It, u(s)) - F(s, u(s)) = D1F(s, u(s))h + wl(s ,  h), (12) 
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and 
F(s ,  u(s + h)) - F(s ,  u(s))  = D2F(s ,  u(s))[u(s + h) - tL(s)] + w2(s, h), 

where w~(s, h ) /h  ~ 0 as h ---, 0 uniformly for s c [0, T]. Define 

vh(t) = u(t + h) - u(t)  - v(t),  t ~ [0, T]. 
h 

Then 

(13) 

Therefore, from 

s ' ( t  + h) - s ' ( t )  ~(o) = 
h h 

s ( t  + h) - s ( t )  

and 

s ( t  + h) - h S ( t )  F(O, ~(0)) 

[Au(0) + F(0, u(0))] - S(t + h) - S( t)  F(0, u(0)) 
h 

1 d f t + h  = S(s)F(O, ~(o)) ds 

l d j~oh 
= -fi d-t S ( t  + h - s )F(O,  "~(0)) ds, 

~(t  + I~) - z,(t) 

d ft+h 
- S ( s ) F ( t  + h - s, u( t  + h - s))  ds = [ s ' ( t  + ~) s'(t)] ~(o) + ~ ~ 

dfo~ dJi' + -~ s ( s ) F ( t  + h - s, ~(t  + h - s))  as - [fi s ( s ) F ( t  - s, ~(t - s)) as 

d foh (14) = [s'(t + h) - s '( t)] ~(o) + -~ s ( t  + h - s )F(s ,  ~(s)) ds 

d~ S ( s ) [ F ( t + h - s , u ( t + h - s ) ) - F ( t - s , u ( t + h - s ) ) ] d s  

+ ~ S(s )[F( t  - s, u(t  + h -  s)) - F( t  - s, u(t  - s))] ds. 

Then by (12),(13), one has 

u(t + h ) - u ( t ) = [ S ' ( t  + h) - S'(t)]u(O) + -~ S( t  + h -  s )F(s ,  u ( s ) )d s  

+ h d / o  ~ d f o ~  dt S( t  - s )D1F(s ,  u(s + h)) ds + -~ S( t  - S)Wl (s, h) ds (15) 

+ ~  S ( t - s ) D 2 F ( s ,  u(s))[u(s + h ) - u ( s ) ] d s 4 - - ~  S ( t - s ) w 2 ( s , h ) d s .  

Thus, we have 

vh(t) = S ' ( t  + h) - S ' ( t )u(O) - S'(t)[Au(O) + F(O, u(0))] 
h 

"fo + -dr S( t  - s)[D1F(s,  u(s + h)) - DIF( s ,  u(s))] ds 

(16) 
l d /oo t + - ~  s ( t -  s)[~,(s,h)+~2(s,h)]ds 

~dfoh dfo~ + -~-~ s ( t  + h - s)F(s, u ( s ) ) d s  + ~ s ( t  - s ) n ~ F ( s ,  ~(s))~h(~)ds. 

On the other hand, by Proposition 1, we have 

s ' ( t  + h)  - s ' ( t )  ~ ( o )  : s ( t  + h)  - S(t)A~,(O) 
h h 
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we conclude t h a t  (16) becomes  

vh(t )  = S(t  + h) - S(t)  [Au(0) + F(0 ,  u(0))] - S'(t)[Au(O) + F(O, u(0))] } 
h 

+ -~ S(t  - s)[D1F(s, u(s + h)) - D1F(s,  u(s))] ds 

1 d  for + S(t - s)[wl(s ,h)  +w2( s ,h ) ]d s  

l d foh + -~ -~ S( t  + h - s)[F(s, u(s))  - F(0 ,  u(0))] ds 

+ -~ S(t  - s )D2F(s ,  u(s))vh(s)  ds. 

(17) 

I t  is now clear t h a t  the  first four t e rms  on the  r ight -hand side of (17) go to zero as h ---* 0. 
Consequently,  there  e x i t s  a posi t ive cons tant  d such t ha t  

~0 t Ivh(t)l ~ ¢(h) ÷ d Ivh(s)l ds, 

with c(h) ~ 0 as h ~ 0. By  Gronwal l ' s  l emma,  vh(t) --* O, h --* O. Thus ,  u is cont inuously 
differentiable on [0, T]. Hence, u is a s tr ict  solution of equat ion  (1). | 

3 .2.  T h e  G e n e r a l  C a s e  

Here,  we will prove the  existence of integral  solutions under  the  condit ions given in [7], which 
are weaker  t h a n  the  Lipschitz condit ion assumed in T h e o r e m  5. Among  those  condit ions,  we 
note t h a t  F is not  required to be continuous.  Now, we list the  condit ions in [7]. 

(Hs) For each t E [0,T], the  funct ion F(t,  .) is continuous; and for each x, the  funct ion F( . ,x )  
is s t rongly  measurable .  

(H6) T h e  ope ra to r  S'( t)  is compac t  in D(A)  whenever  t > 0. 

(H7) The re  exists  a cont inuous funct ion m : [0, T] ~ R + and a cont inuous nondecreasing 
funct ion f t :  [0, oc[-~ [0, oc[ such t h a t  

IF(t ,x)l  <_ m(t) f t ( lx l ) ,  t E [0, T], x E E.  

(Hs) g : C([0, T]; D(A))  ~ D(A)  is compac t  (i.e., cont inuous and takes  a bounded  set into a 
c om pac t  set) and there  exists G > 0 such t h a t  [g(u)l _< G, for all u. 

We also need the  following well-known Leray-Schauder  lemma.  

LEMMA 6. (See [7].) Let V be a convex subset of  a no rmed  l inear  space  X and assume 0 E V. 
Let K : V -~ V be compact (i.e., cont inuous and takes a bounded set  into a compact set). Let 

~(K) = { x E  V : x =  AKx,  for s o m e O <  A < 1}. 

Then either 

(i) ~(K)  is unbounded, or 
(ii) K has a fixed point. 

Under  these condit ions,  we are going to prove the  existence of integral  solutions for equa t ion  (1) 
using the idea similar to the  one in [7]. However,  we point  out  t ha t  addi t ional  compac tness  
condit ions should be  assumed in order  to  use the  Leray-Schauder  lemma.  
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THEOREM 7. Assume that Assumptions (H1), (Hs ) - (Hs )  hold. I f  uo ~ D(A) ,  and 

max(w, M m ( s ) )  ds < (18) 
' ( l u o l + a )  s + f ~ ( s ) '  

where M and co are f rom the Hille-Yosida condition, then equation (1) has  a t  least  one ingegral 
solution on [0, T]. 

PaOOF. Let K :  C([O,T];D(A)) -~ C([O,T];D(A)) be defined by 

Ku(t )  = S'(t)[uo - g(u)] + d t  S(t - s)F(s,  u(s)) ds, t < [0, T]. 

We claim tha t  ( ( K )  is bounded.  In fact, for u E { (K) ,  there  exists t ~ (0, 1) such t ha t  u = lKu:  
t ha t  is 

~(t) = as ' ( t ) [~o - g(,~)! + aa7 s ( t  - s ) f ( s ,  ~(s)) ds, t ~ [0, T]. 

Using Assumpt ions  (Hr) , (Hs) ,  we get 

e -~°t lu(t)F _< M lu01 + a + e-~Sm(s)f~(lu(s)l) ds . (19) 

Let z(t) denote  the r igh t&and  side of (19), then  

z'(t) = Me-~tm( t )a( lu( t ) l ) ,  for t e [0, r ]  and z(0) = M(luo I + G). 

From (19), we have lu(t)l _< e~tz(t). Then  

z ' ( t )  < M e - ~ t ~ ( t ) a  (e~tz( t ) ) ,  t c [0, T]. 

Accordingly, we have 

(e'~tz(t)) ' < max{w, Mm( t ) }  (e~tz(t) + a(e~°tz(t))) , t E [0, T], 

which implies, f rom assumpt ion  (18), t ha t  

~ '~( t )  d s < max(w,  Mm(s) )  ds < t ~ [0, T]. 
vM(r~ol+¢)) s + f i(s)  - ¢(i~,,1+c) s + f t (s)  

Now, we deduce t ha t  there  exists a posit ive cons tant  a which depends  on T and the functions m 
and t2 such tha t  ]u(t)] _< a for all u c { (K) ,  which implies t ha t  { (H)  is bounded.  

I t  remains  to prove t ha t  K is compact .  Let  {Yn} be a sequence in C = C([0, T]; D(A)) with 
limn--+oc y,~ = 9 in C. By  the  cont inui ty  of  F wi th  respect  to the  second a rgument ,  we deduce 
t ha t  for each s E [0, T], f ( s ,  y,~(s)) converges to F(s, y(s)) in E;  and we have 

[ /; i [ K y n - K y l  <- Me"~z I9(Yn)--9(Y)I+ e-~°*lF(s,y,~(s))-  F ( s , y ( s ) ) l  ds 

The  sequence {Yn} is bounded  in C, then  by Assumpt ion  (Hr) ,  and using Lebesgue domina ted  
convergence theo rem and the  cont inui ty  of g, we obta in  t ha t  

lim Kyn = Ky,  in C, 
7 t  - ~  O O  

which implies t ha t  the  m a p p i n g  K is cont inuous on C. 
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Next, we use Ascoli-Arzela's theorem to prove tha t  K maps every bounded set into a compact  

set. Let B be a bounded set of C and let t E [0, T] be fixed, then we need to prove that  

{ K y ( t ) :  y e B}  is relatively compact  in E. I f t  = 0, then { K y ( 0 ) :  y • B} = {u0 - g(y) : y • B}  
is relatively compact  since we assumed tha t  g is compact.  If  t • (0, T], choose e such that  
O < ¢ < t .  Then 

K y ( t )  = S'(t)[uo - g(y)] + S'( t  - s ) B x F ( s ,  y(s))  ds 

= S'(t)[uo - g(y)] + S'(E) S ' ( t  - ~ - s)B:~F(s, y(s))  ds 

+ lira ft s'(t- s ) B ~ F ( s , y ( s ) ) d s .  
A--*c~ J t _  e 

Since S'(¢) is compact ,  we deduce tha t  there exists a compact  set D1 such tha t  

2im  S'(e) S ' ( t  - ~ - s )B~F(s ,  y ( s ) )d s  • D1, for y • B. 

Fhrthermore,  by Assumption (H7), there exists a positive constant bl such tha t  

lira [ t  s )B;~F(s ,y ( s ) )ds  A---*oo J t - ¢  S t ( t  - < ble, for y • B. 

Moreover, g is compact,  it follows tha t  {S'(t)[uo - g ( y ) ]  : y • B} is relat ively compact.  We 
conclude tha t  { K y ( t )  : y • B}  is totally bounded, and therefore, it is relatively compact  in E. 

Finally, let us show tha t  K B  is equicontinuous. For every 0 __ to < t _< T and y • B, 

K y ( t )  - Ky( to )  = [S'(t) - S'(to)] [uo - g(y)] 

+ [S'(t - s) - S'(to - s)] B.xF(s,  y(s))  ds 

+ lim f t  S ' ( t  - s )B~F(s ,  y(s))  ds. 
A -* oo ,]to 

Next, we have 

sup r/ t  S'(t - s)B~F(s, y(s)) ds ~ O, 
y E B  J to  

and 

lim /o  t° 
A---* oc 

[S'(t - s) - S'(to - s)] B~F(s ,  y(s))  ds 

: [ s ' ( t  - t o )  - z] }ira f0 t° 

t ~ to,  

S'(to - s )B~F(s ,  y(s))  ds. 

Since we have proved tha t  {Ky( t  ) : y C B} is relatively compact  for any fixed t C [O,T], there 

exists a compact  set D2 such tha t  

l i m  /o t° S'(to - s ) B x F ( s ,  y ( s ) )d s  E D2, for y E B. 

Now, it is well known from the operator  theory tha t  

lim sup [(S'(h) - I)z] = O. 
h ~ O +  zED2 

Moreover, {u0 - g(y) : y c B }  is relatively compact,  therefore, we obtain 

lim sup [Ky(t)  - Ky(to)[ = 0. (20) 
t - * t  + y E B  

Similarly, for 0 < to, we can prove 

lira sup IKy( t )  - Ky( to) l  = 0. (21) 
t - * t  o y E B  

Thus, K B  is equicontinuous. Consequently, the mapping K is compact  and Lemma 6 implies 
that  K has at least one fixed point, which gives rise to an integral solution of equation (1). I 
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3.3. Optimal Regularity 

K. EZZINBI AND J. H. LIU 

In this section, we study the optimal regularity for equation (l), with additional regularity 
conditions on the operator A, such as the sectorial condition. For more details about this topic. 
see [13]. In what follows, all the notations are taken from 1131. We suppose the following. 

(Hg) A is nondensely defined and sectorial; that means there exist w E R, Q E (7r/2.~), M > 0 

such that 

p(A) > So+, = {X E C : X # w and larg(X - w)I < S} : 

lHX!A)I 5 &3 for all X E SO+. 

Now, for every t > 0, define the linear operator etA by 

e tA 1 
=- 

2xi J 
etxR(X, A) dX, 

w+an, ,7, 

where r > 0, 77 E (7r/2,8) and%,, is the curve {X E C : 1 arg XJ = q, 1x1 > r} U {A E C : 

I arg Xl 5 v, 1x1 = r>. Let YO E D(A), and let y be the function satisfying (i)-(iii) of Theorem 3. 

then from [13], y satisfies 

y(t) = etAyO + 
J 

t e(t-“)Af(s) ds, t E [O, T]. (22) 
0 

THEOREM 8. Assume that assumptions of Theorems 4 or 7 are satisfied. Suppose that there 

exist 77 > 0 and B E (0,l) such that 

IV6 XI - F(s, Y)l 5 rl [It - SIB + 12 - Yl] 7 for t, s E (0, T] and Z, y E E. (23) 

Let ug E D(A), and let u be an integral solution of equation (1) guaranteed b-y Theorems 4 or 7. 

Then 21 is continuously differentiable in (0, T] and satisfies equation (1) for t > 0. 

The proof is based on the following lemmas. Let I be an interval of !R, then the Banach space 

of Holder continuous functions, CQ(f, E), a E (0, I), is defined by 

sup 
If(t) - f(s)1 

(t - sy 
<cc 

t,sEl,t#s 1 

LEMMA 9. [See [13].) Let f E L’(O,T; E) n L”([&,T]; E) f or every E E (0, T). If in addition 

yo E D(A), then y in (22) belongs to CQ([&,T]; E) for every E E (0, T) and cy +S (0,l). 

LEMMA 10. (See j13j.j Let f? E (0,l) and Iet f E Ll(O,T; E) ~IC’([E,T]; E) for everyE E (0,T). 

If in addition yo E D(A), then y in (22) belongs to C’(O,T; E) and satisfies y’(t) = Ay(t) + 

f(t), ~(0) = ~0, for t E (0, Tl. 

PROOF OF THEOREM 8. According to formula (22), u is now given by 

u(t) = etA[uO -g(u)] + ~ie(r*)AF(s,u(s))ds, t E [O.T]. 

By Lemma 9, the integral solution u belongs to P([E,T]; E) for every E E (0,T) and CY E (0,-l). 

In particular, u belongs to C’([E,T]; E) f or every E E (0,T). Using assumption (23), we get that 

F(.,u(.)) belongs to @([&,T];E) for every E E (O,T), which implies, by Lemma 10, that, the 

integral solution u is continuously differentiable and satisfies equation (1) on (0, T]. I 
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3.4. A Spec ia l  Case  

In this section, we suppose that  the nonlocal condition is given by 

P 

g(~) = Z c,~(t~), 
i=1 

where C~, i = 1 , . . .  ,p, is a bounded operator form D(A) into D(A),  such that  

]C~x - Ciyl <_ ~dx - Yt, x, y ~ D(A),  

for some positive constant ~ ,  i = 1, 2 . . . .  , p. We make the following assumption. 
(H10) There exist positive constants M and # such that  IS'(t)l < Me -" t ,  for t > 0. 

PROPOSITION 11. Assume that Assumptions (Hi), (H2), and (H10) hold. I f  we suppose that 

P 

Z = # - Ma > 0 and M E f l ~ e - f l t '  < 1, (24) 
i=1 

then for all uo E D(A), equation (1) has a unique integral solution on [0, T]. 

PROOF. The proof is similar to the one in [8]. Note that  condition (24) is better  than those given 
in Theorem 4. Let v E D(A),  then by using the contraction mapping principle, we can prove the 
existence of a unique continuous function u : [0, T] --+ D(A) such that  

 J00 < u(t, v) = S ' ( t ) v+  -~ S(t - s)F(s,  u(s, v)) ds, for t C [0, T]. (25) 

Define a mapping Q : D(A) ~ D(A) by 

P 

i =1  

It is sufficient to prove that  Q has a unique fixed point. Let v, v I E D(A),  then 

i=~l P IQv - Qvll = Ciu(t i ,v)  - Ciu( t i ,v ' )  < ~--~i lu(t~,v) - u(t~,v ' ) l .  (26) 
i=1 

Since u(., v) and u(., v') are solutions of equation (25) with initial data  v and v', respectively, one 
has 

[ /0' ] l u ( t , v ) - u ( t , v ' ) l < M e  -"t I v - v ' l + a  e"S lu ( s , v ) -u ( s , v ' ) l d s  , t~[O,Z].  

Using Gronwall's lemma, we get 

lu( t ,  v)  - u ( t ,  v ' ) l  <_ ~/[ iv - v'l  e - ( " - M a ) t  for t E [0, Z], 

which implies, from (26), that  

I Q v - Q v '  I<_ M ~ie -zt~ I v - v ' l .  

Thus, we conclude that  Q has a unique fixed-point v such that  

P 
= uo - ~ c ~ ( t i ,  ~), 

i=1 

Therefore, (25) becomes 

u(t ,v)  = S / ( t )  u o -  C~u(ti,v) + ~  S ( t - s ) F ( s , u ( s , v ) ) d s ,  t e  [0, T]. 

Accordingly, u is the unique integral solution of equation (1) on [0, T]. I 
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4. A N  A P P L I C A T I O N  

To apply  the  previous result, we consider the following par t ia l  equation:  
O 

~ v ( t ,  z) = Av  (t, x) + f (t, v(t, x) ) ,  0 < t < 2/', a: ~ fL 

v( t , z )=0 ,  0_< t<T ,  z~0f~, (27) 
p 

i=l  

where Q is a bounded  open set o f R  ~ with regular  bounda ry  cof~, u0 E C(fL  IR') ,  f is a continuous 
function from [0, T] x t) into R such tha t  for some cons tant  k > 0, 

t f ( t , x ) - f ( t , y ) l  <_klx-y[ ,  z, yEt ) ,  tE [0,2"], 
n 02 

and A = ~ k = l  ~ and c~ are given real numbers .  Consider  E = C(t ) ) ,  the Banach  space of 

cont inuous funct ions on t) with values in R. Define the  linear ope ra to r  A in E by 

A z = A z ,  i n D t A ) = { z E C ( t ) ) :  z = 0 ,  o n S f L  2xz ~ C ( t 2 ) } .  (28) 

Now, we have D(A) = C0(t)) = {v 5 C ( [ ) ) :  v = 0 o n c O t 2 } .  I t  is well known from [9] tha t  A is 
sectorial, ]0, +oc[  C p(A) and for A > 0, 

1 
IR(a,A)I < 

It  follows t h a t  A generates  an integrated semigroup (S(t))t>o and tha t  ]S'(t)l  < e -"t fbr t > 0 
and some cons tant  # > 0. By  the following changes: 

u(t)(x) = v(t,z), t >0 ,  x fi, 
p 

F ( t , u ) ( z ) = f ( t , u ( x ) ) ,  g ( u ) ( x ) = E c ~ u ( t , ) ( x ) ,  u E C ( ~ ) ,  :~:E~. 

equat ion (27) takes the  abs t rac t  form (1). By Propos i t ion  11, we have the  following. 

PROPOSITION 12. I f  we assume that uo E C0(t)),  k < # and P ~ . = i  c~e-(t~ k)t, < 1, then equa- 
tion (27) (or equation (1)) has a unique integral solution on [0, T]. Moreover, if we assume that f 
satisfies condition (23), then the integral solution of equation (27) is continuously differentiable 
on (0, T] and satisfies equation (27) for t > O. 
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