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ABSTRACT: The result of Da Prato and Sinestrari [3] concerning the
non-autonomous evolution operators of hyperbolic type for the equation

u′(t) = A(t)u(t) + f(t), t ∈ [0, T ], w(0) = w0,

is applied to the study of

u′(t) = A(t)
[
u(t)+

∫ t

−∞
G(t, s)u(s)ds

]
+K(t)u(t)+f(t), t ∈ [0, T ], u(s) = ϕ(s), s ≤ 0,

which models linear viscoelasticity. Here A(·) satisfies all the requirements of Kato’s
semigroup approach except for the density of the common domain of A(t). An appli-
cation in linear viscoelasticity is given.

AMS (MOS) subject classification : 45K, 45N.

1 INTRODUCTION.

Let us consider the following equation

u′(t) = A(t)u(t) + f(t), t ∈ [0, T ], u(0) = u0, (1.1)

in a Banach space E. Eq. (1.1) is studied using the semigroup approach if A(t) is
independent of t. If for each fixed t ∈ [0, T ], A(t) generates a strongly continuous
semigroup, then Eq. (1.1) is studied in Kato [10], Pazy [12] and Tanabe [13] using
the evolution operators.

But some applications in partial differential equations involve nondensely defined
operators A(·). For example, when seeking pointwise estimates of solutions and their
derivatives in continuous functions spaces. Thus Da Prato and Sinestrari [2, 3] ex-
tended the results of Kato [10], Pazy [12] and Tanabe [13] to Eq. (1.1) with nondensely
defined operators A(·), and proved that if A(·) satisfies (C4) (see Section 2, which is
essentially the counterpart of the Hille – Yosida conditions in semigroup approach),
and if

u0 ∈ D, A(0)u0 + f(0) ∈ D, f ∈ W 1,p([0, T ], E), (1 ≤ p < ∞)



then Eq. (1.1) has a strict solution (see Definition 2.1). Here D is the common domain
of A(t), t ∈ [0, T ]. See [1, 11, 14] for the connection of these results and the integrated
semigroup theory.

We would like to apply this result to integrodifferential equations. So that, for
example, equations in linear viscoelasticity can be examined.

Let us look at an equation in viscoelasticity,
ρ(t, x)utt(t, x) + k(t, x)ut(t, x) = Ψx(t, x) + h(t, x),

Ψ(t, x) = E(t, x)ux(t, x) +
∫ t

−∞
b(t, s)ux(s, x)ds, (t, x) ∈ [0, T ] × [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ], u(s, x) = φ(s, x), (s, x) ∈ (−∞, 0] × [0, 1],

(1.2)

and see what kind of equations we are going to consider. Here the first equation is the
linear momentum equation, while the second gives the constitutive relation between
stress and strain. Note that

Ψx(t, x) =
∂

∂x

{
E(t, x)

[
ux(t, x) +

1

E(t, x)

∫ t

−∞
b(t, s)ux(s, x)ds

]}
= Ex(t, x)

[
ux(t, x) +

1

E(t, x)

∫ t

−∞
b(t, s)ux(s, x)ds

]
+E(t, x)

∂

∂x

[
ux(t, x) +

1

E(t, x)

∫ t

−∞
b(t, s)ux(s, x)ds

]
.

So that if we let

w = ut, v = ux, ′ = d/dt,

then we obtain[
v(t)
w(t)

]′
=

[
0 ∂x

E(t)
ρ(t)

∂x + Ex(t)
ρ(t)

0

] { [
v(t)
w(t)

]

+
1

E(t)

∫ t

−∞

[
b(t, s) 0

0 0

] [
v(s)
w(s)

]
ds

}

+

[
0 0

0 −k(t)
ρ(t)

] [
v(t)
w(t)

]
+

[
0

h(t)
ρ(t)

]
, t ∈ [0, T ], (1.3)(

v(s), w(s)
)

=
(
φx(s), φt(s)

)
, s ≤ 0,

with v(t) = v(t)(·) and v(t)(x) = v(t, x) for x ∈ [0, 1], and the same is true for
w,E, ρ, k, h. So the equation of the form u′(t) = A(t)

[
u(t) +

∫ t

−∞
G(t, s)u(s)ds

]
+ K(t)u(t) + f(t), t ∈ [0, T ],

u(s) = ϕ(s), s ≤ 0,
(1.4)

occurs naturally. Here G(t, s),K(t) are bounded operators for s ≤ t, and A(t) is an
unbounded operator. Note that in this setting, we require

u(t) +
∫ t

−∞
G(t, s)u(s)ds ∈ D(A(t)), (D means the domain)



but each term in the addition may not be in D(A(t)). See [7] for comments about
the difference of Eq. (1.4) and other forms of integrodifferential equations.

Observe that the boundary conditions u(t, 0) = u(t, 1) = 0 in Eq. (1.2) implies
w(0) = w(1) = 0. So if we want to obtain pointwise estimates of the solutions
and their derivatives and hence consider Eq. (1.3) in continuous functions space
C[0, 1] × C[0, 1] with the sup norm, then the leading operator in Eq. (1.3) will have
domain {(v, w) ∈ C1[0, 1] × C1[0, 1] : w(0) = w(1) = 0}, which is not dense in
C[0, 1] × C[0, 1].

The method we use in Section 2 to study Eq. (1.4) is as follows: First, we define

w(t) = u(t) +
∫ t

−∞
G(t, s)u(s)ds, t ≥ 0,

and assume that G(t, s) has partial derivatives so we can rewrite Eq. (1.4) as[
u(t)
w(t)

]′
=

[
K(t) A(t)

K(t) + G(t, t) A(t)

] [
u(t)
w(t)

]
+

∫ t

0

[
0 0

Gt(t, s) 0

] [
u(s)
w(s)

]
ds

+

[
f(t)

f(t) +
∫ 0
−∞ Gt(t, s)ϕ(s)ds

]
, t ∈ [0, T ], (1.5)

(
u(0), w(0)

)
=

(
ϕ(0), ϕ(0) +

∫ 0

−∞
G(0, s)ϕ(s)ds

)
, (u(s) = ϕ(s), s ≤ 0)

on X = E × E, where E is a Banach space, and prove that the leading operator in
Eq. (1.5) satisfies (C4).

Next, we treat Eq. (1.5) as

x′(t) = Q(t)x(t) +
∫ t

0
H(t, s)x(s)ds + g(t), t ∈ [0, T ], x(0) = x0, (1.6)

on Banach space X, and rewrite Eq. (1.6) as an ordinary differential equation[
x(t)
z(t)

]′
=

[
Q(t) δ
H(t) Ds

] [
x(t)
z(t)

]
+

[
g(t)
0

]
, t ∈ [0, T ],

[
x(0)
z(0)

]
=

[
x0

0

]
, (1.7)

on Banach space P = X × F , where F, δ,H(t) and Ds will be made clear in Section
2. We will prove that the leading operator in Eq. (1.7) satisfies (C4), so that we can
apply the results in Da Prato and Sinestrari [3] to Eq. (1.7).

The method of reformulating an integrodifferential equation into an ordinary dif-
ferential equation in a product space has been proven to be very effective in dealing
with integrodifferential equations, see [4, 5, 6, 7, 8] and the references therein for the
cases when A(·) is a constant operator, or when A(t) is densely defined.

Finally, in Section 3, we prove with some conditions on ρ(t, x) and E(t, x) that the
leading operator in Eq. (1.3) satisfies (C4). So that we can apply the results here to
study Eq. (1.3), and hence Eq. (1.2).

2 INTEGRODIFFERENTIAL EQUATIONS.

For the equation

y′(t) = P (t)y(t) + h(t), t ∈ [0, T ], y(0) = y0 ∈ Y0, (2.1)



we first list the following conditions from Da Prato and Sinestrari [3].

(C1). For all t ∈ [0, T ], P (t) : Y0 → Y is a linear operator between the Banach space
(Y0, ‖ · ‖Y0) and (Y, ‖ · ‖Y ) .

(C2). Y0 ⊂ Y and there exists c > 0 such that for all t ∈ [0, T ] and y ∈ Y0,

c−1‖y‖Y0 ≤ ‖y‖Y + ‖P (t)y‖Y ≤ c‖y‖Y0.

(C3). There exist ω,M ∈ 	 (the reals) such that (ω,∞) ⊂ ρ(P (t)), t ∈ [0, T ] and for
each n ∈ N (the integers) we have

(λ − ω)n‖R(λ, t1, . . . , tn)‖B(Y ) ≤ M

when t0 ≤ tn ≤ · · · ≤ t1 ≤ T and λ > ω. Here we denote the resolvent set of
P (t) : Y0 ⊂ Y → Y by ρ(P (t)) and denote B(X,Y ) the Banach space of linear
bounded operators from X to Y , B(X,Y ) = B(Y ) if X = Y , and set

R(λ, t1, . . . , tn) = (λ − P (t1))
−1 · · · (λ − P (tn))−1.

(C4). P ∈ C1([0, T ], B(Y0, Y )) verifies (C1 – C3). More over, for each k ∈ N (the
integers) there exists Pk ∈ C4([0, T ], B(Y0, Y )) verifying (C1 – C3) with c, ω,M
independent of k and such that

lim
k→∞

‖P − Pk‖C1([0,T ],B(Y0,Y )) = 0.

Now we define strict solutions and state the results of Da Prato and Sinestrari [3]
for reference.

Definition 2.1. [3] A strict solution of equation (2.1) on Banach spaces Y0 and Y is
a function y(·) ∈ C1([0, T ], Y ) ∩ C([0, T ], Y0) verifying Eq. (2.1) in [0, T ].

Definition 2.2. A strict solution of Eq. (1.4) on Banach spaces E0 and E is a function
u(·) ∈ C1([0, T ], E) verifying Eq. (1.4) in [0, T ] and u(t) +

∫ t
−∞ G(t, s)u(s)ds ∈ E0 is

continuous in t ∈ [0, T ].

Theorem 2.3. [3] Suppose that P (·) satisfies (C4). Then for each h ∈ W 1,p([0, T ], Y )
and y0 ∈ Y0 such that

P (0)y0 + h(0) ∈ Y0, (2.2)

equation (2.1) has a strict solution. �

Observe that by writing Eq.(1.5) in components, we have

u′(t) = A(t)w(t) + K(t)u(t) + f(t),

w′(t) = A(t)w(t) + K(t)u(t) + f(t) + G(t, t)u(t) +
∫ t

−∞
Gt(t, s)u(s)ds

= u′(t) +
d

dt

∫ t

−∞
G(t, s)u(s)ds.

So the initial conditions in Eq.(1.5) implies

w(t) = u(t) +
∫ t

−∞
G(t, s)u(s)ds, t ∈ [0, T ].



Hence the first component in Eq.(1.5) gives rise to a solution of Eq. (1.4). Also note
that it has been shown, e.g., in Desch and Schappacher [4] and Grimmer [5], that the
first component of Eq. (1.7) gives rise to a solution of Eq. (1.6). So what we need
to do here is to show that the leading operators in Eq.(1.5) and Eq. (1.7) satisfy (C4).

To this end, let us first prove some perturbation results.

Lemma 2.4. Let P (·) satisfy (C1 – C3) on (Y0, ‖ · ‖Y0) and (Y, ‖ · ‖Y ).

(i). If P1(·) ∈ B(Y ) with ‖P1(t)‖B(Y ) ≤ β < 1, t ∈ [0, T ], β > 0 is a constant, then
P (·) + P1(·) satisfy (C1 – C3) on (Y0, ‖ · ‖Y0) and (Y, ‖ · ‖Y ).

(ii). Assume that (Z0, ‖·‖Z0) is a Banach space in (Y, ‖·‖Y ) and P2(t) ∈ B(Y ) is invert-
ible and P2(t) : Y0 → Z0, P

−1
2 (t) : Z0 → Y0, with ‖P−1

2 (t)‖B(Z0,Y0), ‖P2(t)‖B(Y0,Z0),
‖P−1

2 (t)‖B(Y ) and ‖P2(t)‖B(Y ) ≤ K, t ∈ [0, T ] for a constant K > 0, and that for
t2 ≤ t1, ‖P−1

2 (t1)P2(t2)‖B(Y ) ≤ 1. Further, assume that P (·) satisfy (C3) with
M = 1. Then P2(·)P (·)P−1

2 (·) satisfy (C1 – C3) on (Z0, ‖ · ‖Z0) and (Y, ‖ · ‖Y ).

(iii). In (ii), M = 1 for P (·) in (C3) is not required if P2(·) is independent of t.

Remark 1. Conditions in perturbation results for time-dependent operators are
restrictive. Fortunately, with some assumptions on ρ(t, x), E(t, x) in Eq. (1.3), we are
able to make suitable choices of P1(·) and P2(·) so as to verify that these conditions
are satisfied.

Proof. (i). It is clear that (C1) is satisfied. Next, (C3) is true by a result in Pazy [12,
page 132]. So we only need to prove that (C2) is true. Now

‖y‖Y + ‖
[
P (t) + P1(t)

]
y‖Y ≥ ‖y‖Y + ‖P (t)y‖Y − ‖P1(t)y‖Y

≥ ‖y‖Y − ‖P1(t)‖B(Y )‖y‖Y + ‖P (t)y‖Y = (1 − ‖P1(t)‖B(Y ))‖y‖Y + ‖P (t)y‖Y

≥ (1 − β)‖y‖Y + ‖P (t)y‖Y ≥ (1 − β)
[
‖y‖Y + ‖P (t)y‖Y

]
≥ (1 − β)c−1‖y‖Y0,

where c comes from (C2) for P (·). Similarly, we have

‖y‖Y + ‖
[
P (t) + P1(t)

]
y‖Y ≤ (1 + β)

[
‖y‖Y + ‖P (t)y‖Y

]
≤ (1 + β)c‖y‖Y0. (2.3)

(Note that in proving (2.3), β can be any positive number.)

(ii). First it is clear that (C1) is satisfied. For z ∈ Z0,

‖z‖Y + ‖P2(t)P (t)P−1
2 (t)z‖Y = ‖P2(t)P

−1
2 (t)z‖Y + ‖P2(t)P (t)P−1

2 (t)z‖Y

≤ ‖P2(t)‖B(Y )

[
‖P−1

2 (t)z‖Y + ‖P (t)
(
P−1

2 (t)z
)
‖Y

]
≤ ‖P2(t)‖B(Y )c‖P−1

2 (t)z‖Y0

≤ Kc‖P−1
2 (t)‖B(Z0,Y0)‖z‖Z0

≤ K2c‖z‖Z0,

where (C2) for P (·) is used. Next since ‖y‖Y ≤ ‖P−1
2 (t)‖B(Y )‖P2(t)y‖Y , y ∈ Y , we

have

‖z‖Y + ‖P2(t)P (t)P−1
2 (t)z‖Y = ‖P2(t)P

−1
2 (t)z‖Y + ‖P2(t)P (t)P−1

2 (t)z‖Y

≥ 1

‖P−1
2 (t)‖B(Y )

[
‖P−1

2 (t)z‖Y + ‖P (t)
(
P−1

2 (t)z
)
‖Y

]
≥ K−1c−1‖P−1

2 (t)z‖Y0

≥ K−2c−1‖z‖Z0, (since ‖z‖Z0 ≤ ‖P2(t)‖B(Y0,Z0)‖P−1
2 (t)z‖Y0)



where, again, c comes from (C2) for P (·). Finally, note that for t2 ≤ t1,(
λ − P2(t1)P (t1)P

−1
2 (t1)

)−1(
λ − P2(t2)P (t2)P

−1
2 (t2)

)−1

=
(
P2(t1)

[
λ − P (t1)

]−1
P−1

2 (t1)
)(

P2(t2)
[
λ − P (t2)

]−1
P−1

2 (t2)
)

= P2(t1)
[
λ − P (t1)

]−1(
P−1

2 (t1)P2(t2)
)[

λ − P (t2)
]−1

P−1
2 (t2).

So that for P2(·)P (·)P−1
2 (·), we have

(λ − ω)n‖R(λ, t1, . . . , tn)‖B(Y ) ≤ ‖P2(t1)‖B(Y )‖P−1
2 (tn)‖B(Y ) ≤ K2.

(iii). Clear. �

Lemma 2.5. Let Pi(·) satisfy (C1 – C3) on (Y 0
i , ‖ · ‖Y 0

i
) and (Yi, ‖ · ‖Yi

), i = 1, 2.
Then [

P1(·) 0
0 P2(·)

]
satisfy (C1 – C3) on Y0 = (Y 0

1 × Y 0
2 , ‖ · ‖Y0) and Y = (Y1 × Y2, ‖ · ‖Y ), with

‖ · ‖Y = max{‖ · ‖Y1, ‖ · ‖Y2} and ‖ · ‖Y0 = max{‖ · ‖Y 0
1
, ‖ · ‖Y 0

2
}.

Proof. By a routine check. �

In the following, the norm on a product space is always taken as the maximum
of individual norms. Now we can prove the following results concerning the leading
operators in Eq. (1.5) and Eq. (1.7).

Theorem 2.6. Let A(·) satisfy (C4) on E0 and E. Let K(t), G(t, t) ∈ B(E)
with ‖K(t)‖B(E) + ‖G(t, t)‖B(E) ≤ β < 1, β > 0 is a constant, and K(·), G(·, ·) ∈
C1([0, T ], B(E)) such that for each k ∈ N there exists Kk(·), Gk(·) ∈ C4([0, T ], B(E))
with

lim
k→∞

‖K(·) − Kk(·)‖C1([0,T ],B(E)) = 0, lim
k→∞

‖G(·, ·) − Gk(·)‖C1([0,T ],B(E)) = 0.

Then

Q(t) ≡
[

K(t) A(t)
K(t) + G(t, t) A(t)

]
(2.4)

satisfies (C4) on Y0 = E × E0 and Y = E × E.

Proof. We have

Q(t) =

[
0 A(t)
0 A(t)

]
+

[
K(t) 0

K(t) + G(t, t) 0

]
≡ P0(t) + P1(t).

Next, let I be the identity operator on E, then

P0(t) =

[
0 A(t)
0 A(t)

]
=

[
I I
0 I

] [
0 0
0 A(t)

] [
I −I
0 I

]
≡ P2P (t)P−1

2 .

Note that by Lemma 2.5, P (·) satisfies (C1 – C3) on Y0 = E × E0, Y = E × E. Also
note that P2, P

−1
2 ∈ B(Y0) ∩ B(Y ) are independent of t, so Lemma 2.4 (iii) implies



that P0(·) satisfies (C1 – C3) on Y0, Y . Next, observe that P1(·) satisfies conditions
in Lemma 2.4 (i), so Q(·) satisfies (C1 – C3) on Y0, Y by using Lemma 2.4 again.
Finally, it can be checked that Q(·) also satisfies (C4). �

Now we define according to Eq.(1.5) and Eq.(1.6),

H(t, s) ≡
[

0 0
Gt(t, s) 0

]
, g(t) ≡

[
f(t)

f(t) +
∫ 0
−∞ Gt(t, s)ϕ(s)ds

]
, t ≥ 0, s ≤ t. (2.5)

Let X0, X be Banach spaces. In the following, we use FX to denote a subspace
of BU(X) (the space of all bounded uniformly continuous functions on [0,∞) into
Banach space X). It is assumed that FX is a Banach space with a norm stronger than
the sup norm on BU(X), (see [5]). Further, assume that for each t ≥ 0, H(t+ ·, t)x ∈
FX for every x ∈ X0 ⊂ X where H(t + ·, t)x(s) = H(t + s, t)x for s ≥ 0. This
then defines an operator H(t) : X0 → FX . Furthermore, Ds denotes the generator
of translation semigroup (T (t)f)(·) = f(t + ·) on FX with domain D(Ds), D(Ds)
equipped with the graph norm is a Banach space. δf = f(0) for f ∈ FX . Now, we
have

Theorem 2.7. Assume that Q(·) satisfies (C4) on X0 and X. Assume further that
‖ · ‖FX

= (1 + γ)‖ · ‖BU(X), γ > 0 is a constant, (so ‖ · ‖FX
is stronger than ‖ · ‖BU(X),

[5]), and that for t ≥ 0, ‖H(t)x‖FX
≤ (1 + γ)−1‖x‖X , x ∈ X0. Finally, assume that

H(·) ∈ C1([0, T ], B(X0, FX)) and there exist Hk(·) ∈ C4([0, T ], B(X0, FX)) such that
limk→∞ ‖H − Hk‖C1([0,T ],B(X0,FX)) = 0. Then

P (t) ≡
[

Q(t) δ
H(t) Ds

]

satisfies (C4) on Y0 = X0 × D(Ds) and Y = X × FX .

Proof. Since Ds generates a strongly continuous semigroup on FX , Ds satisfies (C1
– C3) on Ds, FX . Thus Lemma 2.5 implies that

P (t) ≡
[

Q(t) 0
0 Ds

]

satisfies (C1 – C3) on Y0 = X0 ×D(Ds), Y = X × FX . Next, we have for (x, f) ∈ Y ,

‖
[

0 δ
H(t) 0

] [
x
f

]
‖Y = ‖

[
f(0)

H(t)x

]
‖Y

= max
{
‖f(0)‖X , ‖H(t)x‖FX

}
≤ max

{
‖f(·)‖BU(X), (1 + γ)−1‖x‖X

}
= max

{
(1 + γ)−1‖f(·)‖FX

, (1 + γ)−1‖x‖X

}
= (1 + γ)−1‖

[
x
f

]
‖Y .

Thus

‖
[

0 δ
H(t) 0

]
‖B(Y ) ≤ (1 + γ)−1 < 1.

Now we can apply Lemmas 2.4 (i) to show that P (·) satisfies (C1 – C3) on Y0, Y . It
is also clear that (C4) is true for P (·). �



Now, we can study the strict solutions of Eq.(1.4) on E0, E. (See Definition 2.2.)
Note that BU(E), FE will be defined accordingly. (See the notations before Theorem
2.7.) Assume that for each t ≥ 0, Gt(t + ·, t)e ∈ FE for every e ∈ E where Gt(t +
·, t)e(s) = Gt(t + s, t)e for s ≥ 0. This then defines an operator Gt(t) : E → FE. We
now make the following assumptions.

(A1). A(·),K(·), G(·, ·) satisfy the conditions in Theorem 2.6 on E0, E. Assume that
‖ · ‖FE

= (1 + γ)‖ · ‖BU(E), γ > 0 is a constant, and that for t ≥ 0, ‖Gt(t)e‖FE
≤

(1+γ)−1‖e‖E, e ∈ E. Finally, assume that Gt(·) ∈ C1([0, T ], B(E,FE)) and there
exist Gk

t (·) ∈ C4([0, T ], B(E,FE)) such that limk→∞ ‖Gt−Gk
t ‖C1([0,T ],B(E,FE)) = 0.

(A2). f ∈ W 1,p([0, T ], E). (1 ≤ p < ∞.)
∫ 0
−∞ Gt(t, s)ϕ(s)ds ∈ W 1,p([0, T ], E) if

ϕ(·) ∈ L1((−∞, 0], E).

(A3). ϕ(·) ∈ L1((−∞, 0], E). w0 ≡ ϕ(0) +
∫ 0
−∞ G(0, s)ϕ(s)ds ∈ E0, and[

K(0) + G(0, 0)
]
ϕ(0) + A(0)w0 + f(0) +

∫ 0
−∞ Gt(0, s)ϕ(s)ds ∈ E0.

We will prove that Eq.(1.4) has a strict solution under these assumptions.

Theorem 2.8. Let Assumptions (A1 – A2) be satisfied. Then given
(
ϕ(0), ϕ(·)

)
satisfying (A3), Eq.(1.4) has a strict solution on E0 and E.

Proof. Let X0 = E × E0, X = E × E,FX = FE × FE , and let Q(t), H(t, s), g(t) be
given by (2.4) and (2.5). By Assumption (A1) and Theorem 2.6, Q(·) satisfies (C4)
on X0, X. Next, define

y(t) ≡
[

x(t)
z(t)

]
, h(t) ≡

[
g(t)
0

]
, P (t) ≡

[
Q(t) δ
H(t) Ds

]
, t ∈ [0, T ],

on Y0 = X0 × D(Ds), Y = X × FX according to Eq.(1.7) and Eq.(2.1). Then for
(f1, f2) ∈ FX ,

‖
[

f1

f2

]
‖FX

= max
{
‖f1‖FE

, ‖f2‖FE

}
= max

{
(1 + γ)‖f1‖BU(E), (1 + γ)‖f2‖BU(E)

}
= (1 + γ)‖

[
f1

f2

]
‖BU(X),

and for x = (e, e0) ∈ X0 = E × E0,

‖H(t)x‖FX
= ‖

[
0 0

Gt(t) 0

] [
e
e0

]
‖FX

= ‖Gt(t)e‖FE

≤ (1 + γ)−1‖e‖E ≤ (1 + γ)−1‖x‖X .

Other conditions in Theorem 2.7 can also be checked. Hence P (·) satisfies (C4) on
X0 × D(Ds), X × FX . Finally, from Eq.(1.5) and Eq.(1.7), one has

y0 ≡
[

x0

0

]
, x0 ≡

[
ϕ(0)

ϕ(0) +
∫ 0
−∞ G(0, s)ϕ(s)ds

]
.

So with assumptions (A2 – A3), one can check that

h ∈ W 1,p([0, T ], X×FX), y0 ∈ X0×D(Ds), P (0)y0+h(0) ∈ X0 × D(Ds) = X0×FX .



Thus Theorem 2.3 implies that Eq. (1.7) (and hence Eq. (1.5)) has a strict solution.
Therefore the first component of Eq. (1.5) (which comes from the first component of
Eq. (1.7)) gives rise to a strict solution of Eq. (1.4). �

3 AN APPLICATION IN VISCOELASTICITY.

In this section, we will put some conditions on ρ(t, x), E(t, x), k(t, x), b(t, s), h(t, x),
φ(t, x) so as to verify that assumptions in (A1 – A3) in Section 2 are satisfied for
Eq. (1.3).

We let C[0, 1] be the space of all continuous functions on [0, 1] with the sup norm.
Let E = C[0, 1]×C[0, 1] with ‖(u, v)‖E = max{‖u‖C[0,1], ‖v‖C[0,1]}. If f ∈ C[0, 1], then
f can be regarded as an bounded linear operator on C[0, 1] by defining (f(g))(x) =
f(x)g(x), g ∈ C[0, 1], x ∈ [0, 1]. Define

Y0 ≡
{
(y, z) ∈ E : y, z ∈ C1[0, 1], y(0) + z(0) = y(1) + z(1) = 0

}
. (3.1)

Then it has been shown in Grimmer and Sinestrari [9] that

P0 ≡
[

∂x 0
0 −∂x

]
(3.2)

with domain Y0 satisfies λ ∈ ρ(P0) and ‖λ(λ − P0)
−1‖B(E) ≤ 1 if λ > 0. Next, define

E0 ≡
{
(v, w) ∈ E : v, w ∈ C1[0, 1], w(0) = w(1) = 0

}
, (3.3)

and define the norms on Y0, E0 by

‖(y, z)‖Y0 = ‖(y, z)‖E + ‖P0(y, z)T‖E, (3.4)

‖(v, w)‖E0 = ‖(v, w)‖E + ‖
[

0 ∂x

∂x 0

]
(v, w)T‖E, (3.5)

where T indicates transpose. Then by a suitable choice of a 2 × 2 matrix, we find
that if ρ(t, ·), E(t, ·) ∈ C1[0, 1], t ∈ [0, T ], then

P2(t) ≡ 1√
2

 1 −1√
E(t,·)
ρ(t,·)

√
E(t,·)
ρ(t,·)

 : Y0 → E0, (3.6)

P−1
2 (t) ≡ 1√

2

 1
√

ρ(t,·)
E(t,·)

−1
√

ρ(t,·)
E(t,·)

 : E0 → Y0, (3.7)

and the leading operator in Eq.(1.3) can be written as

A(t) ≡
[

0 ∂x
E(t,·)
ρ(t,·) ∂x + Ex(t,·)

ρ(t,·) 0

]
=

[
0 ∂x

E(t,·)
ρ(t,·) ∂x 0

]
+

[
0 0

Ex(t,·)
ρ(t,·) 0

]

= P2(t)
[√√√√E(t, ·)

ρ(t, ·) P0

]
P−1

2 (t) +

 0 −
√

E(t,·)
ρ(t,·)

(
∂
∂x

√
ρ(t,·)
E(t,·)

)
Ex(t,·)
ρ(t,·) 0


≡ P̃0(t) + P̃1(t). (3.8)



So we want to prove that P (t) ≡
√

E(t,·)
ρ(t,·) P0 satisfies (C1 – C3) and that other pertur-

bation conditions in Lemma 2.4 are satisfied so as to show that A(·) satisfies (C1 –
C3). We need the following lemma, its proof is a modification of the one in Grimmer
and Sinestrari [9].

Lemma 3.1. Let q(·) ∈ C[0, 1] with q(x) > 0, x ∈ [0, 1]. Then for λ > 0, λ ∈
ρ(q(·)P0) and

‖λ(λ − q(·)P0)
−1‖B(E) ≤ 1. (3.9)

Proof. Let λ > 0. U = (y, z) ∈ D(P0) is a solution of λUT − q(·)P0U
T = λe, e =

(f, g) ∈ E, if and only if y, z ∈ C1[0, 1] and
λy(x) − q(x)y′(x) = λf(x),
λz(x) + q(x)z′(x) = λg(x),
y(0) + z(0) = y(1) + z(1) = 0.

(3.10)

Define k(x) = λ/q(x)(> 0), x ∈ [0, 1]. Then Eq.(3.10) has a unique solution given by

y(x) = e
∫ x

0
k(s)dsy(0) −

∫ x

0
e
∫ x

s
k(h)dhk(s)f(s)ds, (3.11)

z(x) = e−
∫ x

0
k(s)dsz(0) +

∫ x

0
e−

∫ x

s
k(h)dhk(s)g(s)ds. (3.12)

Consider y(x) + z(x) and use boundary conditions in (3.10), we obtain

y(0)=
(
e
∫ 1

0
k(s)ds− e−

∫ 1

0
k(s)ds

)−1
∫ 1

0

[
e
∫ 1

s
k(h)dhk(s)f(s) − e−

∫ 1

s
k(h)dhk(s)g(s)

]
ds. (3.13)

Thus

|y(0)| ≤
(
e
∫ 1

0
k(s)ds − e−

∫ 1

0
k(s)ds

)−1
∫ 1

0

[
e
∫ 1

s
k(h)dhk(s) + e−

∫ 1

s
k(h)dhk(s)

]
ds‖e‖E

= ‖e‖E. (3.14)

Next, from (3.11) and (3.13), we obtain

y(1) = e
∫ 1

0
k(s)dsy(0) −

∫ 1

0
e
∫ 1

s
k(h)dhk(s)f(s)ds

=
(
e
∫ 1

0
k(s)ds − e−

∫ 1

0
k(s)ds

)−1{
e−

∫ 1

0
k(s)ds

∫ 1

0
e
∫ 1

s
k(h)dhk(s)f(s)ds

−e
∫ 1

0
k(s)ds

∫ 1

0
e−

∫ 1

s
k(h)dhk(s)g(s)ds

}
. (3.15)

So similar to (3.14), one has |y(1)| ≤ ‖e‖E. Now let x0 ∈ [0, 1] be such that |y(x0)| =
‖y‖C[0,1]. If 0 < x0 < 1, then y′(x0) = 0. So from (3.10),

‖y‖C[0,1] = |y(x0)| = |f(x0)| ≤ ‖e‖E.

On the other hand, if x0 = 0 or x0 = 1, then (3.14) and (3.15) imply ‖y‖C[0,1] ≤ ‖e‖E.
Similarly, from the boundary conditions in (3.10), one has ‖z‖C[0,1] ≤ ‖e‖E. There-

fore ‖λ(λ − q(·)P0)
−1e‖E = ‖U‖E ≤ ‖e‖E and hence the proof is completed. �

Next, we show that (A1 – A3) in Section 2 are satisfied for Eq.(1.3) with the
following assumptions.



(Ã1). ρ(t, ·), E(t, ·) ∈ C1[0, 1], t ∈ [0, T ] with ρ(t, x), E(t, x) > 0. There is a constant
c > 0 with c−1 ≤ ρ(t, x), E(t, x), ρx(t, x) ≤ c, (t, x) ∈ [0, T ] × [0, 1]. For any

x ∈ [0, 1], E(t,x)
ρ(t,x)

is nondecreasing in t ∈ [0, T ]. There is a constant 0 < β < 1

such that

max(t,x)∈[0,T ]×[0,1]

{
Ex(t,x)
ρ(t,x)

,
√

E(t,x)
ρ(t,x)

(
∂
∂x

√
ρ(t,x)
E(t,x)

)
, |b(t,t)|

E(t,x)
, |k(t,x)|

ρ(t,x)

}
≤ β < 1. ∂

∂t
k(t,x)
ρ(t,x)

and

∂
∂t

b(t,t)
E(t,x)

are continuous in (t, x) ∈ [0, T ] × [0, 1]. There is a constant γ > 0 such

that for t ≥ 0, max(s,x)∈[0,∞)×[0,1] | ∂
∂t

b(t+s,t)
E(t,x)

| ≤ (1 + γ)−2 and ∂2

∂t2
b(t+s,t)
E(t,x)

is bounded

and uniformly continuous for (t, s, x) ∈ [0, T ] × [0,∞) × [0, 1]. ‖ · ‖FC[0,1]
=

(1 + γ)‖ · ‖BU(C[0,1]).

(Ã2). h(t,·)
ρ(t,·) ∈ W 1,p([0, T ], C[0, 1]), 1 ≤ p < ∞. ∂2

∂t2
b(t,s)
E(t,x)

is bounded and uniformly

continuous for (t, s, x) ∈ [0, T ] × (−∞, 0] × [0, 1].

(Ã3). Define C0[0, 1] ≡ {f ∈ C[0, 1] : f(0) = f(1) = 0}. Then

φt, φx ∈ L1((−∞, 0], C[0, 1]), φ(0, 0) = φ(0, 1) = 0,

φt(0, ·) ∈ C1[0, 1] ∩ C0[0, 1],

φx(0, ·) +
∫ 0

−∞
b(0, s)

E(0, ·)φx(s, ·)ds ∈ C1[0, 1] ∩ C0[0, 1],∫ 0

−∞
φx(s, ·) ∂

∂t

b(0, s)

E(0, ·)ds ∈ C[0, 1],

E(0, ·) ∂

∂x

[
φx(0, ·) +

∫ 0

−∞
b(0, s)

E(0, ·)φx(s, ·)ds
]
+ h(0, ·) ∈ C0[0, 1].

Lemma 3.2. Let (Ã1) be satisfied. Then A(·) defined by (3.8) satisfies (C4) in
Section 2 on E0 and E.

Proof. First, note that with (Ã1) and Lemma 3.1, P (t) ≡
√

E(t,·)
ρ(t,·) P0 in (3.8) satisfies

(C1 – C3) with M = 1. Next, consider P2(·), P−1
2 (·) defined in (3.6) and (3.7). For

t2 ≤ t1,

P−1
2 (t1)P2(t2) =

1

2

 1
√

ρ(t1,·)
E(t1,·)

−1
√

ρ(t1,·)
E(t1,·)


 1 −1√

E(t2,·)
ρ(t2,·)

√
E(t2,·)
ρ(t2,·)



=
1

2

 1 +
√

ρ(t1,·)E(t2,·)
E(t1,·)ρ(t2,·)

√
ρ(t1,·)E(t2,·)
E(t1,·)ρ(t2,·) − 1√

ρ(t1,·)E(t2,·)
E(t1,·)ρ(t2,·) − 1 1 +

√
ρ(t1,·)E(t2,·)
E(t1,·)ρ(t2,·)

 .

From (Ã1),
√

ρ(t1,·)E(t2,·)
E(t1,·)ρ(t2,·) ≤ 1, then

‖P−1
2 (t1)P2(t2)‖B(E) ≤ 1

2
max
x∈[0,1]

{
1 +

√√√√ρ(t1, ·)E(t2, ·)
E(t1, ·)ρ(t2, ·) + 1 −

√√√√ρ(t1, ·)E(t2, ·)
E(t1, ·)ρ(t2, ·)

}
= 1.

It can also be checked that P2(t) ∈ B(Y0, E0), P
−1
2 (t) ∈ B(E0, Y0) are bounded in

t ∈ [0, T ]. Therefore conditions in Lemma 2.4 (ii) are satisfied and hence P̃0(t) de-
fined in (3.8) satisfies (C1 – C3) on E0, E. (Use Y = E,Z0 = E0 in Lemma 2.4 (ii).)



Next, observe that P̃1(t) defined in (3.8) satisfies conditions in Lemma 2.4 (i), so that
A(·) satisfies (C1 – C3). Finally it is clear that (C4) is also true for A(·). �

Now we check other conditions. We define according to Eq.(1.3) and Eq.(1.4),

G(t, s) ≡
[

b(t,s)
E(t,·) 0

0 0

]
, K(t) ≡

[
0 0

0 −k(t,·)
ρ(t,·)

]
, t ∈ [0, T ], (3.16)

f(t) ≡
[

0
h(t,·)
ρ(t.·)

]
, t ∈ [0, T ], ϕ(s) ≡

[
φx(s)
φt(s)

]
, s ≤ 0. (3.17)

With the above definitions, we have

Lemma 3.3. Let (Ã1) be satisfied. Then A(t),K(t), G(t, s) defined by (3.8) and
(3.16) satisfies (A1) in Section 2 on E0 and E.

Proof. For e = (e1, e2) ∈ E = C[0, 1] × C[0, 1], one has

‖Gt(t)e‖FE
= ‖

[
∂
∂t

b(t+s,t)
E(t,·) 0

0 0

] [
e1

e2

]
‖FE

= ‖ ∂

∂t

b(t + s, t)

E(t, ·) e1‖FC[0,1]
= (1 + γ)‖ ∂

∂t

b(t + s, t)

E(t, ·) e1‖BU(C[0,1])

≤ (1 + γ)−1‖e1‖C[0,1] ≤ (1 + γ)−1‖e‖E.

Other conditions can be checked accordingly. �

Finally, observe that Assumptions (Ã2, Ã3) are made according to Assumptions
(A2, A3). So by a routine check (details are omitted for simplicity), one shows that if

Assumptions (Ã2, Ã3) are true, then Assumptions (A2, A3) are true. Thus we obtain
the following result concerning the strict solutions of Eq. (1.3), and hence solutions
of Eq. (1.2).

Theorem 3.4. Let Assumptions (Ã1, Ã2) be satisfied. Then given
(
φ(0, ·), φ, φx(0, ·),

φt(0, ·), φx, φt

)
satisfying (Ã3), Eq. (1.3) (when treated as a form of Eq. (1.4)) has a

strict solution. Hence there is a function u(t, x) satisfies Eq. (1.2) and such that

utt, uxt,
∂

∂x

[
ux(t, x) +

1

E(t, x)

∫ t

−∞
b(t, s)ux(s, x)ds

]
∈ C([0, T ] × [0, 1],	).
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