SINGULAR PERTURBATIONS OF INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACE

J. H. Liu*

Abstract

Let $\varepsilon > 0$ and consider

$$\varepsilon^{2}u''(t;\varepsilon) + u'(t;\varepsilon) = Au(t;\varepsilon) + \int_{0}^{t} K(t-s)Au(s;\varepsilon)ds + f(t;\varepsilon), \quad t \ge 0,$$

$$u(0;\varepsilon) = u_{0}(\varepsilon), \quad u'(0;\varepsilon) = u_{1}(\varepsilon),$$

and

$$w'(t) = Aw(t) + \int_0^t K(t-s)Aw(s)ds + f(t), \ t \ge 0, \ w(0) = w_0,$$

in a Banach space X when $\varepsilon \to 0$. Here A is the generator of a strongly continuous cosine family and a strongly continuous semigroup, and K(t) is a bounded linear operator for $t \geq 0$. With some convergence conditions on initial data and $f(t;\varepsilon)$ and smoothness conditions on $K(\cdot)$, we prove that if $\varepsilon \to 0$, then $u(t;\varepsilon) \to w(t)$ in X uniformly for $t \in [0,T]$ for any fixed T>0. We will apply this to an equation in viscoelasticity.

1 INTRODUCTION.

We study integrodifferential equations

$$\varepsilon^{2}u''(t;\varepsilon) + u'(t;\varepsilon) = Au(t;\varepsilon) + \int_{0}^{t} K(t-s)Au(s;\varepsilon)ds + f(t;\varepsilon), \quad t \ge 0,$$

$$u(0;\varepsilon) = u_{0}(\varepsilon), \quad u'(0;\varepsilon) = u_{1}(\varepsilon), \quad (1.1)$$

and

$$w'(t) = Aw(t) + \int_0^t K(t-s)Aw(s)ds + f(t), \quad t \ge 0, \quad w(0) = w_0, \tag{1.2}$$

in a Banach space X, with A the generator of a strongly continuous cosine family and a strongly continuous semigroup, and K(t) a bounded linear operator for $t \geq 0$. We regard

 $\ensuremath{\mathsf{Key}}$ Words : Singular perturbation. Convergence in solutions.

^{*} Department of Mathematics, James Madison University, Harrisonburg, VA 22807. Liujh@jmu.edu AMS Subject Classification: 47D05, 45D, 45J, 45N.

Eq.(1.2) as the limiting equation of Eq.(1.1) as $\varepsilon \to 0$. Now, Eq.(1.2) is of lower order of derivative (in t), in this sense we say that we are dealing with the singular perturbation problems.

There are many studies on singular perturbations, see e.g., Goldstein [6], Hale and Raugel [10], Smith [13], Grimmer and Liu [8], and the references therein. Since this work was influenced by Fattorini [5], we only state some results of [5].

Fattorini [F] considered the singular perturbations for

$$\varepsilon^{2}u''(t;\varepsilon) + u'(t;\varepsilon) = Au(t;\varepsilon) + f(t;\varepsilon), \quad t \ge 0,$$

$$u(0;\varepsilon) = u_{0}(\varepsilon), \quad u'(0;\varepsilon) = u_{1}(\varepsilon),$$
(1.3)

and

$$w'(t) = Aw(t) + f(t), \quad t \ge 0, \quad w(0) = w_0, \tag{1.4}$$

with A the generator of a strongly continuous cosine family and a strongly continuous semi-group in a Banach space X and proved that:

For any
$$T > 0$$
, if $f(\cdot; \varepsilon) \to f$ in $L^1([0, T], X)$ and $u_0(\varepsilon) \to w_0$, $\varepsilon^2 u_1(\varepsilon) \to 0$ as $\varepsilon \to 0$, then $u(t; \varepsilon) \to w(t)$ in X uniformly for $t \in [0, T]$ as $\varepsilon \to 0$.

We will prove here with some smoothness conditions on $K(\cdot)$ that exactly the same statements as above hold for Eqs.(1.1) and (1.2). The methods we will use in studying the singular perturbations for integrodifferential equations are as follows: We first use the technique introduced in [1, 2, 11, 12] to change Eqs.(1.1) and (1.2) into equations that look like Eqs.(1.3) and (1.4), and then estimate $u(t;\varepsilon) - w(t)$. Note that $u(\cdot;\varepsilon) - w(\cdot)$ will also appear as an integrand, so Gronwall's inequality is used to solve the problem. Finally we apply this result to an equation in viscoelasticity.

2 SINGULAR PERTURBATIONS.

In this paper we make the following hypotheses:

- (H1). Operator A generates a strongly continuous cosine family $C(\cdot)$ and a strongly continuous semigroup $S(\cdot)$. (See [5].)
- (H2). For $t \ge 0$, K(t), K'(t), $K''(t) \in B(X)$, (B(X) = space of all bounded linear operators on X). For $x \in X$, Kx, K'x, K''x, $E(t) \in E(t)$. Here E(t) are the strong derivatives.
- (H3). $f(\cdot;\varepsilon), f \in C^1(R^+,X)$, where $\varepsilon > 0, R^+ = [0,\infty)$.

We say that $u: R^+ \to X$ is a solution of Eq.(1.1) if $u \in C^2(R^+, X), u(t) \in D(A)$ (domain of A) for $t \geq 0$ and Eq.(1.1) is satisfied on R^+ . Solutions of Eq.(1.2) are defined in a similar way. In order to verify the existence of solutions of Eq.(1.1) we change it to another more common form. (See [5].) Let

$$u(t;\varepsilon) = e^{-t/2\varepsilon^2}v(t/\varepsilon).$$

Then Eq.(1.1) can be replaced by

$$v''(t/\varepsilon) = \left(A + \frac{1}{4\varepsilon^2}\right)v(t/\varepsilon) + \int_0^t K(t-s)e^{(t-s)/2\varepsilon^2}Av(s/\varepsilon)ds + e^{t/2\varepsilon^2}f(t;\varepsilon).$$

Now let $h = t/\varepsilon$ and then change h to t to get

$$v''(t) = \left(A + \frac{1}{4\varepsilon^2}\right)v(t) + \int_0^t \hat{K}(t-s)Av(s)ds + \hat{f}(t),$$

$$v(0;\varepsilon) = u_0(\varepsilon), \quad v'(0;\varepsilon) = \frac{1}{2\varepsilon}u_0(\varepsilon) + \varepsilon u_1(\varepsilon),$$
(2.1)

where $\left(A + \frac{1}{4\varepsilon^2}\right)$ generates a strongly continuous cosine family and

$$\hat{K}(t) = \varepsilon K(\varepsilon t)e^{t/2\varepsilon}, \quad \hat{f}(t) = f(\varepsilon t; \varepsilon)e^{t/2\varepsilon}, \quad t \ge 0.$$

Note that the existence and uniqueness of solutions of Eqs.(2.1) and (1.2) were obtained in [3, 4, 7, 14, 15], and we are only interested in singular perturbations in this paper, so we may assume that Eqs.(1.1) and (1.2) have unique solutions $u(t;\varepsilon)$ and w(t) respectively for every $\varepsilon > 0$.

Now we can state and prove the following result concerning the convergence of solutions, with the following hypotheses:

(H4).
$$u_0(\varepsilon), w_0 \in D(A), u_0(\varepsilon) \to w_0, \varepsilon^2 u_1(\varepsilon) \to 0$$
, as $\varepsilon \to 0$.

(H5). For any
$$T > 0$$
, $f(\cdot; \varepsilon) \to f(\cdot)$ in $L^1([0, T], X)$ as $\varepsilon \to 0$.

Theorem 2.1. Assume that hypotheses (H1) – (H5) are satisfied. Then for any $T > 0, u(t; \varepsilon) \to w(t)$ in X uniformly for $t \in [0, T]$, as $\varepsilon \to 0$.

Proof. Define

$$R * H(t) = \int_0^t R(t-s)H(s)ds$$
 and $\delta * H = H$.

Then we can find the solution F of F + K + F * K = 0. (See [1, 2, 11, 12].) So that

$$(\delta + F) * (\delta + K) = \delta. \tag{2.2}$$

Now write (1.1) as

$$\varepsilon^2 u''(\varepsilon) + u'(\varepsilon) = (\delta + K) * Au(\varepsilon) + f(\varepsilon).$$

Then we have

$$(\delta + F) * \left[\varepsilon^2 u''(\varepsilon) + u'(\varepsilon) \right] = Au(\varepsilon) + (\delta + F) * f(\varepsilon).$$

Hence

$$\varepsilon^2 u''(\varepsilon) + u'(\varepsilon) = Au(\varepsilon) + (\delta + F) * f(\varepsilon) - F * \left[\varepsilon^2 u''(\varepsilon) + u'(\varepsilon) \right].$$

Integration by parts yields

$$F * u'(t;\varepsilon) = \int_0^t F'(t-s)u(s;\varepsilon)ds + F(0)u(t;\varepsilon) - F(t)u_0(\varepsilon),$$

$$F * u''(t;\varepsilon) = \int_0^t F''(t-s)u(s;\varepsilon)ds + F(0)u'(t;\varepsilon) - F(t)u_1(\varepsilon) + F'(0)u(t;\varepsilon) - F'(t)u_0(\varepsilon).$$

Therefore Eq.(1.1) can be replaced by

$$\varepsilon^{2}u''(t;\varepsilon) + u'(t;\varepsilon) = Au(t;\varepsilon) + \hat{f}(t;\varepsilon), \quad t \ge 0,$$

$$u(0;\varepsilon) = u_{0}(\varepsilon), \quad u'(0;\varepsilon) = u_{1}(\varepsilon),$$
(2.3)

with

$$\hat{f}(t;\varepsilon) = (\delta + F) * f(t;\varepsilon) - F * \left[\varepsilon^{2} u''(t;\varepsilon) + u'(t;\varepsilon) \right]
= (\delta + F) * f(t;\varepsilon) - \int_{0}^{t} F'(t-s)u(s;\varepsilon)ds - F(0)u(t;\varepsilon) + F(t)u_{0}(\varepsilon) - \varepsilon^{2} \left[\int_{0}^{t} F''(t-s)u(s;\varepsilon)ds + F'(0)u(t;\varepsilon) - F'(t)u_{0}(\varepsilon) + F(0)u'(t;\varepsilon) - F(t)u_{1}(\varepsilon) \right].$$
(2.4)

Similarly, Eq.(1.2) can be replaced by

$$w'(t) = Aw(t) + \hat{f}(t), \quad t \ge 0, \quad w(0) = w_0, \tag{2.5}$$

with

$$\hat{f}(t) = (\delta + F) * f(t) - F * w'(t)
= (\delta + F) * f(t) - \int_0^t F'(t - s)w(s)ds - F(0)w(t) + F(t)w_0.$$
(2.6)

So we can use results in [5] to get for $t \geq 0$,

$$w(t) = S(t)w_0 + \int_0^t S(t-s)\hat{f}(s)ds,$$

$$u(t;\varepsilon) = e^{-t/2\varepsilon^2}C(t/\varepsilon)u_0(\varepsilon) + \frac{1}{2}R(t,\varepsilon)u_0(\varepsilon)$$

$$+G(t,\varepsilon)\left[\frac{1}{2}u_0(\varepsilon) + \varepsilon^2u_1(\varepsilon)\right] + \int_0^t G(t-s)\hat{f}(s,\varepsilon)ds,$$

where $S(\cdot)$, $C(\cdot)$ are given in (H1), $R(\cdot;\varepsilon)$, $G(\cdot;\varepsilon)$ are linear operators defined in [5] using the Bessel functions, and they have the following properties: For some constants $\alpha, \omega > 0$,

(P1).
$$||C(t)||, ||S(t)|| \le \alpha e^{\omega^2 t}, t \ge 0, \varepsilon > 0.$$

(P2).
$$||G(t;\varepsilon)||, \varepsilon^2 ||G'(t;\varepsilon)|| \le \alpha e^{\omega^2 t}, t \ge 0, \varepsilon > 0.$$

(P3).
$$\varepsilon^2 G'(t;\varepsilon) = e^{-t/2\varepsilon^2} C(t/\varepsilon) + \frac{1}{2} [R(t;\varepsilon) - G(t;\varepsilon)].$$

(P4). If
$$t(\varepsilon) > 0$$
 for $\varepsilon > 0$ with $t(\varepsilon)/\varepsilon^2 \to \infty$ as $\varepsilon \to 0$, then for every $T > 0$,
$$\lim_{\varepsilon \to 0} \sup_{t(\varepsilon) < t < T} \|R(t;\varepsilon)x - S(t)x\| = 0, \text{ and } \lim_{\varepsilon \to 0} \sup_{t(\varepsilon) < t < T} \|G(t;\varepsilon)x - S(t)x\| = 0,$$

uniformly for x in bounded subsets of X.

(P5).
$$\|e^{-t/2\varepsilon^2}C(t/\varepsilon)u_0(\varepsilon) + \frac{1}{2}R(t;\varepsilon)u_0(\varepsilon) + G(t;\varepsilon)\left[\frac{1}{2}u_0(\varepsilon) + \varepsilon^2u_1(\varepsilon)\right] - S(t)w_0\|$$

$$\leq \alpha e^{\omega^2 t}\left[\varepsilon^2(1+\omega^2 t)\|Aw_0\| + \|u_0(\varepsilon) - w_0\| + \varepsilon^2\|u_1(\varepsilon)\|\right], \quad t \geq 0.$$

Now let T > 0 be fixed and consider for $t \in [0, T]$,

$$u(t;\varepsilon) - w(t) = e^{-t/2\varepsilon^2} C(t/\varepsilon) u_0(\varepsilon) + \frac{1}{2} R(t;\varepsilon) u_0(\varepsilon) + G(t;\varepsilon) \left[\frac{1}{2} u_0(\varepsilon) + \varepsilon^2 u_1(\varepsilon) \right]$$

$$-S(t) w_0 + \int_0^t \left[G(t-s;\varepsilon) \hat{f}(s;\varepsilon) - S(t-s) \hat{f}(s) \right] ds.$$
(2.7)

By (H4) and (P5), we can write (2.7) as

$$u(t;\varepsilon) - w(t) = 0(\varepsilon, [0,T]) + \int_0^t \left[G(t-s;\varepsilon)\hat{f}(s;\varepsilon) - S(t-s)\hat{f}(s) \right] ds$$

$$= 0(\varepsilon, [0,T]) + \int_0^t G(t-s;\varepsilon) \left[\hat{f}(s;\varepsilon) - \hat{f}(s) \right] ds$$

$$+ \int_0^t \left[G(t-s;\varepsilon) - S(t-s) \right] \hat{f}(s) ds, \tag{2.8}$$

where $0(\varepsilon, [0, T])$ satisfies

$$0(\varepsilon, [0, T]) \to 0 \text{ as } \varepsilon \to 0, \text{ uniformly for } t \in [0, T].$$
 (2.9)

Note that w is locally bounded and $f \in L^1([0,T],X)$, then $\hat{f} \in L^1([0,T],X)$. So from [5],

$$\int_0^t \left[G(t-s;\varepsilon) - S(t-s) \right] \hat{f}(s) ds = 0(\varepsilon, [0,T]), \ t \in [0,T].$$
 (2.10)

Next, we have

$$\int_{0}^{t} G(t-s;\varepsilon) \left[\hat{f}(s;\varepsilon) - \hat{f}(s) \right] ds = \int_{0}^{t} G(t-s;\varepsilon) \left[\hat{f}(s;\varepsilon) - \hat{f}(s) + \varepsilon^{2} F(0) u'(s;\varepsilon) \right] ds - \int_{0}^{t} G(t-s;\varepsilon) \varepsilon^{2} F(0) u'(s;\varepsilon) ds.$$
(2.11)

Now from (P3),

$$\begin{split} &\int_0^t G(t-s;\varepsilon)\varepsilon^2 F(0)u'(s;\varepsilon)ds \\ &= \varepsilon^2 G(0;\varepsilon) F(0)u(t;\varepsilon) - \varepsilon^2 G(t;\varepsilon) F(0)u_0(\varepsilon) \\ &+ \varepsilon^2 \int_0^t G'(t-s;\varepsilon) F(0)u(s;\varepsilon)ds \\ &= \varepsilon^2 G(0;\varepsilon) F(0)u(t;\varepsilon) - \varepsilon^2 G(t;\varepsilon) F(0)u_0(\varepsilon) \\ &+ \varepsilon^2 \int_0^t G'(t-s;\varepsilon) F(0) \Big[u(s;\varepsilon) - w(s)\Big] ds + \varepsilon^2 \int_0^t G'(t-s;\varepsilon) F(0)w(s) ds \\ &= \varepsilon^2 G(0;\varepsilon) F(0) \Big[u(t;\varepsilon) - w(t)\Big] + \varepsilon^2 G(0;\varepsilon) F(0)w(t) \\ &- \varepsilon^2 G(t;\varepsilon) F(0)u_0(\varepsilon) + \varepsilon^2 \int_0^t G'(t-s;\varepsilon) F(0) \Big[u(s;\varepsilon) - w(s)\Big] ds \\ &+ \int_0^t \Big\{e^{-(t-s)/2\varepsilon^2} C((t-s)/\varepsilon) + \frac{1}{2} \Big[R(t-s;\varepsilon) - G(t-s;\varepsilon)\Big] \Big\} F(0)w(s) ds. \end{split}$$
 (2.12)

Observe that w(s) is locally bounded, so use property (P4) with $t(\varepsilon) = \varepsilon$ to obtain for any $t, s \in [0, T]$ with s < t,

$$\left[R(t-s;\varepsilon) - G(t-s;\varepsilon)\right]F(0)w(s) \to 0, \quad \varepsilon \to 0. \tag{2.13}$$

Hence the dominated convergence theorem can be used to prove that

$$\int_0^t \left[R(t-s;\varepsilon) - G(t-s;\varepsilon) \right] F(0)w(s)ds \to 0, \quad \varepsilon \to 0, \tag{2.14}$$

uniformly for $t \in [0, T]$. Next, assume that $\varepsilon > 0$ is so small that $4\varepsilon\omega^2 \le 1$, then from (P1),

$$\int_{0}^{t} e^{-(t-s)/2\varepsilon^{2}} \|C((t-s)/\varepsilon)\| ds = \int_{0}^{t} e^{-s/2\varepsilon^{2}} \|C(s/\varepsilon)\| ds$$

$$\leq \alpha \int_{0}^{t} e^{-s/2\varepsilon^{2} + \omega^{2}s/\varepsilon} ds = \left[2\alpha\varepsilon^{2}/(1 - 2\varepsilon\omega^{2}) \right] \left[1 - e^{(2\varepsilon\omega^{2} - 1)t/2\varepsilon^{2}} \right]$$

$$\leq 4\alpha\varepsilon^{2} \to 0, \quad \varepsilon \to 0, \tag{2.15}$$

uniformly for $t \in [0, T]$. Also observe that $w(\cdot)$ is locally bounded and $u_0(\varepsilon)$ has a limit as $\varepsilon \to 0$, then from (P2),

$$\varepsilon^2 G(0;\varepsilon) F(0) w(t), \quad \varepsilon^2 G(t;\varepsilon) F(0) u_0(\varepsilon) \longrightarrow 0, \varepsilon \longrightarrow 0,$$

uniformly for $t \in [0, T]$, and

$$\|\varepsilon^2 \int_0^t G'(t-s;\varepsilon)F(0) \Big[u(s;\varepsilon) - w(s) \Big] ds \|$$

$$\leq \alpha e^{\omega^2 T} \|F(0)\| \int_0^t \|u(s;\varepsilon) - w(s)\| ds.$$

Thus by (2.12), (2.14), (2.15), and property (P2), we obtain

$$\| \int_0^t G(t-s;\varepsilon)\varepsilon^2 F(0)u'(s;\varepsilon)ds - \varepsilon^2 G(0;\varepsilon)F(0) \left[u(t;\varepsilon) - w(t) \right] \|$$

$$\leq (\text{type } 1) + 0(\varepsilon, [0, T]), \tag{2.16}$$

where (type 1) is of the form

(constant)
$$\int_0^t \|u(s;\varepsilon) - w(s)\| ds. \tag{2.17}$$

Next we have

$$\begin{split} &\int_0^t G(t-s;\varepsilon) \Big[\hat{f}(s;\varepsilon) - \hat{f}(s) + \varepsilon^2 F(0) u'(s;\varepsilon) \Big] ds \\ &= \int_0^t G(t-s;\varepsilon) \Big\{ \Big[f(s;\varepsilon) - f(s) \Big] + \int_0^s F(s-h) \Big[f(h;\varepsilon) - f(h) \Big] dh \\ &+ F(s) \Big[u_0(\varepsilon) - w_0 \Big] - \int_0^s F'(s-h) \Big[u(h;\varepsilon) - w(h) \Big] dh + F(s) \varepsilon^2 u_1(\varepsilon) + \varepsilon^2 F'(s) u_0(\varepsilon) \\ &- \Big[\varepsilon^2 F'(0) + F(0) \Big] \Big[u(s;\varepsilon) - w(s) \Big] - \varepsilon^2 F'(0) w(s) - \varepsilon^2 \int_0^s F''(s-h) \Big[u(h;\varepsilon) - w(h) \Big] dh \\ &- \varepsilon^2 \int_0^s F''(s-h) w(h) dh \Big\} ds. \end{split}$$

Note that from (P2),

$$\begin{split} &\| \int_0^t G(t-s;\varepsilon) \int_0^s F(s-h) \big[f(h;\varepsilon) - f(h) \big] dh ds \| \\ &\leq \alpha e^{\omega^2 T} \big[\int_0^T \| F(s) \| ds \big] \big[\int_0^T \| f(s;\varepsilon) - f(s) \| ds \big], \\ &\| \int_0^t G(t-s;\varepsilon) F(s) \big[u_0(\varepsilon) - w_0 \big] ds \| \\ &\leq \alpha e^{\omega^2 T} \| u_0(\varepsilon) - w_0 \| \int_0^T \| F(s) \| ds, \\ &\| \int_0^t G(t-s;\varepsilon) \int_0^s F'(s-h) \big[u(h;\varepsilon) - w(h) \big] dh ds \| \\ &\leq \alpha e^{\omega^2 T} \big[\int_0^T \| F'(s) \| ds \big] \big[\int_0^T \| u(s;\varepsilon) - w(s) \| ds \big]. \end{split}$$

Other terms can be treated similarly. So it is clear that with property (P2), hypotheses (H1) – (H5), and the fact that $w(\cdot)$ is locally bounded, we obtain

$$\|\int_0^t G(t-s;\varepsilon) \left[\hat{f}(s;\varepsilon) - \hat{f}(s) + \varepsilon^2 F(0) u'(s;\varepsilon) \right] ds \| \le (\text{type } 1) + 0(\varepsilon, [0,T]). \tag{2.18}$$

Combine (2.8), (2.10), (2.11), (2.16), and (2.18), we get

$$\|(1+\varepsilon^2 G(0;\varepsilon)F(0))[u(t;\varepsilon)-w(t)]\| \le (\text{type } 1) + 0(\varepsilon,[0,T]), \tag{2.19}$$

Now assume $\varepsilon > 0$ is so small that $2\|\varepsilon^2 G(0;\varepsilon)F(0)\| < 1$, then

$$||u(t;\varepsilon) - w(t)|| \le 0(\varepsilon, [0,T]) + (\text{constant}) \int_0^t ||u(s;\varepsilon) - w(s)|| ds, \ t \in [0,T].$$
 (2.20)

So that the Gronwall's inequality ([9]) can be used to obtain

$$||u(t;\varepsilon) - w(t)|| \le 0(\varepsilon, [0, T]), \quad t \in [0, T]. \tag{2.21}$$

This proves the theorem. \Box

Finally, we briefly indicate its applications in viscoelasticity. Let us consider

$$\rho u_{tt}(t;\rho) + \alpha u_{t}(t;\rho) = \Delta u(t;\rho) + \int_{0}^{t} K(t-s)\Delta u(s;\rho)ds + f(t;\rho), \quad t \ge 0,$$

$$u(0;\rho) = u_{0}(\rho), \quad u_{t}(0;\rho) = u_{1}(\rho), \quad (2.22)$$

in $L^2(\Omega)$, where u is the displacement, ρ is the density per unit area, and α is the coefficient of viscosity of the medium. With appropriate boundary conditions the Laplacian operator Δ in Eq.(2.22) generates a strongly continuous cosine family and a strongly continuous semigroup. So with some convergence conditions on initial data and $f(t;\varepsilon)$ and smoothness conditions on $K(\cdot)$, Theorems 2.1 can be used to show that when density $\rho \to 0$, solutions of (2.22) will converge to solutions of the "limiting" heat equation

$$\alpha w_t(t) = \Delta w(t) + \int_0^t K(t-s)\Delta w(s)ds + f(t), \quad t \ge 0, \quad w(0) = w_0.$$
 (2.23)

Details are omitted here. This result also relates to a concept called "change the type" (from hyperbolic to parabolic).

Acknowledgements: I would like to thank Professor Ronald Grimmer for his valuable suggestions and comments.

References.

- 1. W. Desch, R. Grimmer, Propagation of singularities for integrodifferential equations, J. Diff. Eq., 65(1986), 411-426.
- 2. W. Desch, R. Grimmer and W. Schappacher, *Propagation of singularities by solutions of second order integrodifferential equations*, Volterra Integrodifferential Equations in Banach Spaces and Applications, G. Da Prato and M. Iannelli (eds.), Pitman Research Notes in Mathematics, Series 190, 101-110.

- 3. W. Desch, R. Grimmer and W. Schappacher, Some considerations for linear integrodifferential equations, J. Math. Anal. & Appl., 104(1984), 219-234.
- 4. W. Desch and W. Schappacher, A semigroup approach to integrodifferential equations in Banach space, J. Integ. Eq., 10(1985), 99-110.
- 5. H. Fattorini, Second order linear differential equations in Banach spaces, North Holland, 1985, 165-237.
- 6. J. Goldstein, Semigroups of linear operators and applications, Oxford University Press, New York, 1985.
- 7. R. Grimmer and J. Liu, *Integrodifferential equations with nondensely defined operators*, Differential Equations with Applications in Biology, Physics, and Engineering, J. Goldstein, F. Kapple, and W. Schappacher (eds.), Marcel Dekker, Inc., New York, 1991, 185-199.
- 8. R. Grimmer and J. Liu, *Singular perturbations in viscoelasticity*, Rocky Mountain Journal of Mathematics, to appear.
- 9. J. Hale, Ordinary differential equations, Wiley Interscience, 1969, 36-37.
- 10. J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq., 73(1988), 197-214.
- 11. R. MacCamy, An integro differential equation with application in heat flow, Q. Appl. Math., **35**(1977), 1-19.
- 12. R. MacCamy, A model for one dimensional nonlinear viscoelasticity, Q. Appl. Math., **35**(1977), 21-33.
- 13. D. Smith, Singular perturbation theory, Cambridge University Press, Cambridge, 1985.
- 14. K. Tsuruta, Bounded linear operators satisfying second order integrodifferential equations in Banach space, J. Integ. Eq., 6(1984), 231-268.
- 15. C. Travis and G. Webb, An abstract second order semi linear Volterra integrodifferential equation, SIAM J. Math. Anal., 10(1979), 412-424.