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Abstract

Let ε > 0 and consider

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) +

∫ t

0

K(t − s)Au(s; ε)ds + f(t; ε), t ≥ 0,

u(0; ε) = u0(ε), u′(0; ε) = u1(ε),

and

w′(t) = Aw(t) +

∫ t

0

K(t − s)Aw(s)ds + f(t), t ≥ 0, w(0) = w0,

in a Banach space X when ε → 0. Here A is the generator of a strongly continuous cosine family and a
strongly continuous semigroup, and K(t) is a bounded linear operator for t ≥ 0. With some convergence
conditions on initial data and f(t; ε) and smoothness conditions on K(·), we prove that if ε → 0, then
u(t; ε) → w(t) in X uniformly for t ∈ [0, T ] for any fixed T > 0. We will apply this to an equation in
viscoelasticity.

1 INTRODUCTION.

We study integrodifferential equations

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) +
∫ t

0
K(t − s)Au(s; ε)ds + f(t; ε), t ≥ 0,

u(0; ε) = u0(ε), u′(0; ε) = u1(ε), (1.1)

and

w′(t) = Aw(t) +
∫ t

0
K(t − s)Aw(s)ds + f(t), t ≥ 0, w(0) = w0, (1.2)

in a Banach space X, with A the generator of a strongly continuous cosine family and a
strongly continuous semigroup, and K(t) a bounded linear operator for t ≥ 0. We regard
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Eq.(1.2) as the limiting equation of Eq.(1.1) as ε → 0. Now, Eq.(1.2) is of lower order of
derivative (in t), in this sense we say that we are dealing with the singular perturbation
problems.

There are many studies on singular perturbations, see e.g., Goldstein [6], Hale and Raugel
[10], Smith [13], Grimmer and Liu [8], and the references therein. Since this work was influ-
enced by Fattorini [5], we only state some results of [5].

Fattorini [F] considered the singular perturbations for

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) + f(t; ε), t ≥ 0,

u(0; ε) = u0(ε), u′(0; ε) = u1(ε), (1.3)

and

w′(t) = Aw(t) + f(t), t ≥ 0, w(0) = w0, (1.4)

with A the generator of a strongly continuous cosine family and a strongly continuous semi-
group in a Banach space X and proved that:

For any T > 0, if f(·; ε) → f in L1([0, T ], X) and u0(ε) → w0, ε2u1(ε) → 0 as
ε → 0, then u(t; ε) → w(t) in X uniformly for t ∈ [0, T ] as ε → 0.

We will prove here with some smoothness conditions on K(·) that exactly the same state-
ments as above hold for Eqs.(1.1) and (1.2). The methods we will use in studying the singular
perturbations for integrodifferential equations are as follows: We first use the technique in-
troduced in [1, 2, 11, 12] to change Eqs.(1.1) and (1.2) into equations that look like Eqs.(1.3)
and (1.4), and then estimate u(t; ε) − w(t). Note that u(·; ε) − w(·) will also appear as an
integrand, so Gronwall’s inequality is used to solve the problem. Finally we apply this result
to an equation in viscoelasticity.

2 SINGULAR PERTURBATIONS.

In this paper we make the following hypotheses:

(H1). Operator A generates a strongly continuous cosine family C(·) and a strongly continuous
semigroup S(·). (See [5].)

(H2). For t ≥ 0,K(t),K ′(t),K ′′(t) ∈ B(X), (B(X) = space of all bounded linear operators on
X). For x ∈ X,Kx,K ′x,K ′′x ∈ L1

loc(R
+, X). Here K ′,K ′′ are the strong derivatives.

(H3). f(·; ε), f ∈ C1(R+, X), where ε > 0, R+ = [0,∞).
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We say that u : R+ → X is a solution of Eq.(1.1) if u ∈ C2(R+, X), u(t) ∈ D(A) (domain
of A) for t ≥ 0 and Eq.(1.1) is satisfied on R+. Solutions of Eq.(1.2) are defined in a similar
way. In order to verify the existence of solutions of Eq.(1.1) we change it to another more
common form. (See [5].) Let

u(t; ε) = e−t/2ε2

v(t/ε).

Then Eq.(1.1) can be replaced by

v′′(t/ε) =
(
A +

1

4ε2

)
v(t/ε) +

∫ t

0
K(t − s)e(t−s)/2ε2

Av(s/ε)ds + et/2ε2

f(t; ε).

Now let h = t/ε and then change h to t to get

v′′(t) =
(
A +

1

4ε2

)
v(t) +

∫ t

0
K̂(t − s)Av(s)ds + f̂(t), (2.1)

v(0; ε) = u0(ε), v′(0; ε) =
1

2ε
u0(ε) + εu1(ε),

where
(
A + 1

4ε2

)
generates a strongly continuous cosine family and

K̂(t) = εK(εt)et/2ε, f̂(t) = f(εt; ε)et/2ε, t ≥ 0.

Note that the existence and uniqueness of solutions of Eqs.(2.1) and (1.2) were obtained in
[3, 4, 7, 14, 15], and we are only interested in singular perturbations in this paper, so we
may assume that Eqs.(1.1) and (1.2) have unique solutions u(t; ε) and w(t) respectively for
every ε > 0.

Now we can state and prove the following result concerning the convergence of solutions,
with the following hypotheses:

(H4). u0(ε), w0 ∈ D(A), u0(ε) → w0, ε
2u1(ε) → 0, as ε → 0.

(H5). For any T > 0, f(·; ε) → f(·) in L1([0, T ], X) as ε → 0.

Theorem 2.1. Assume that hypotheses (H1) – (H5) are satisfied. Then for any T >
0, u(t; ε) → w(t) in X uniformly for t ∈ [0, T ], as ε → 0.

Proof. Define

R ∗ H(t) =
∫ t

0
R(t − s)H(s)ds and δ ∗ H = H.

Then we can find the solution F of F + K + F ∗ K = 0. (See [1, 2, 11, 12].) So that

(δ + F ) ∗ (δ + K) = δ. (2.2)

Now write (1.1) as
ε2u′′(ε) + u′(ε) = (δ + K) ∗ Au(ε) + f(ε).
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Then we have
(δ + F ) ∗

[
ε2u′′(ε) + u′(ε)

]
= Au(ε) + (δ + F ) ∗ f(ε).

Hence
ε2u′′(ε) + u′(ε) = Au(ε) + (δ + F ) ∗ f(ε) − F ∗

[
ε2u′′(ε) + u′(ε)

]
.

Integration by parts yields

F ∗ u′(t; ε) =
∫ t

0
F ′(t − s)u(s; ε)ds + F (0)u(t; ε) − F (t)u0(ε),

F ∗ u′′(t; ε) =
∫ t

0
F ′′(t − s)u(s; ε)ds + F (0)u′(t; ε) − F (t)u1(ε) + F ′(0)u(t; ε) − F ′(t)u0(ε).

Therefore Eq.(1.1) can be replaced by

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) + f̂(t; ε), t ≥ 0, (2.3)

u(0; ε) = u0(ε), u′(0; ε) = u1(ε),

with

f̂(t; ε) = (δ + F ) ∗ f(t; ε) − F ∗
[
ε2u′′(t; ε) + u′(t; ε)

]
(2.4)

= (δ + F ) ∗ f(t; ε) −
∫ t

0
F ′(t − s)u(s; ε)ds − F (0)u(t; ε) + F (t)u0(ε) −

ε2
[ ∫ t

0
F ′′(t − s)u(s; ε)ds + F ′(0)u(t; ε) − F ′(t)u0(ε) + F (0)u′(t; ε) − F (t)u1(ε)

]
.

Similarly, Eq.(1.2) can be replaced by

w′(t) = Aw(t) + f̂(t), t ≥ 0, w(0) = w0, (2.5)

with

f̂(t) = (δ + F ) ∗ f(t) − F ∗ w′(t)

= (δ + F ) ∗ f(t) −
∫ t

0
F ′(t − s)w(s)ds − F (0)w(t) + F (t)w0. (2.6)

So we can use results in [5] to get for t ≥ 0,

w(t) = S(t)w0 +
∫ t

0
S(t − s)f̂(s)ds,

u(t; ε) = e−t/2ε2

C(t/ε)u0(ε) +
1

2
R(t, ε)u0(ε)

+G(t, ε)
[1

2
u0(ε) + ε2u1(ε)

]
+

∫ t

0
G(t − s)f̂(s, ε)ds,

where S(·), C(·) are given in (H1), R(·; ε), G(·; ε) are linear operators defined in [5] using the
Bessel functions, and they have the following properties: For some constants α, ω > 0,
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(P1). ‖C(t)‖, ‖S(t)‖ ≤ αeω2t, t ≥ 0, ε > 0.

(P2). ‖G(t; ε)‖, ε2‖G′(t; ε)‖ ≤ αeω2t, t ≥ 0, ε > 0.

(P3). ε2G′(t; ε) = e−t/2ε2
C(t/ε) + 1

2

[
R(t; ε) − G(t; ε)

]
.

(P4). If t(ε) > 0 for ε > 0 with t(ε)/ε2 → ∞ as ε → 0, then for every T > 0,

lim
ε→0

sup
t(ε)≤t≤T

‖R(t; ε)x − S(t)x‖ = 0, and lim
ε→0

sup
t(ε)≤t≤T

‖G(t; ε)x − S(t)x‖ = 0,

uniformly for x in bounded subsets of X.

(P5). ‖e−t/2ε2
C(t/ε)u0(ε) + 1

2
R(t; ε)u0(ε) + G(t; ε)

[
1
2
u0(ε) + ε2u1(ε)

]
− S(t)w0‖

≤ αeω2t
[
ε2(1 + ω2t)‖Aw0‖ + ‖u0(ε) − w0‖ + ε2‖u1(ε)‖

]
, t ≥ 0.

Now let T > 0 be fixed and consider for t ∈ [0, T ],

u(t; ε) − w(t) = e−t/2ε2

C(t/ε)u0(ε) +
1

2
R(t; ε)u0(ε) + G(t; ε)

[1

2
u0(ε) + ε2u1(ε)

]

−S(t)w0 +
∫ t

0

[
G(t − s; ε)f̂(s; ε) − S(t − s)f̂(s)

]
ds. (2.7)

By (H4) and (P5), we can write (2.7) as

u(t; ε) − w(t) = 0(ε, [0, T ]) +
∫ t

0

[
G(t − s; ε)f̂(s; ε) − S(t − s)f̂(s)

]
ds

= 0(ε, [0, T ]) +
∫ t

0
G(t − s; ε)

[
f̂(s; ε) − f̂(s)

]
ds

+
∫ t

0

[
G(t − s; ε) − S(t − s)

]
f̂(s)ds, (2.8)

where 0(ε, [0, T ]) satisfies

0(ε, [0, T ]) → 0 as ε → 0, uniformly for t ∈ [0, T ]. (2.9)

Note that w is locally bounded and f ∈ L1([0, T ], X), then f̂ ∈ L1([0, T ], X). So from [5],
∫ t

0

[
G(t − s; ε) − S(t − s)

]
f̂(s)ds = 0(ε, [0, T ]), t ∈ [0, T ]. (2.10)

Next, we have
∫ t

0
G(t − s; ε)

[
f̂(s; ε) − f̂(s)

]
ds =

∫ t

0
G(t − s; ε)

[
f̂(s; ε) − f̂(s) + ε2F (0)u′(s; ε)

]
ds

−
∫ t

0
G(t − s; ε)ε2F (0)u′(s; ε)ds. (2.11)
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Now from (P3),
∫ t

0
G(t − s; ε)ε2F (0)u′(s; ε)ds

= ε2G(0; ε)F (0)u(t; ε) − ε2G(t; ε)F (0)u0(ε)

+ε2
∫ t

0
G′(t − s; ε)F (0)u(s; ε)ds

= ε2G(0; ε)F (0)u(t; ε) − ε2G(t; ε)F (0)u0(ε)

+ε2
∫ t

0
G′(t − s; ε)F (0)

[
u(s; ε) − w(s)

]
ds + ε2

∫ t

0
G′(t − s; ε)F (0)w(s)ds

= ε2G(0; ε)F (0)
[
u(t; ε) − w(t)

]
+ ε2G(0; ε)F (0)w(t)

−ε2G(t; ε)F (0)u0(ε) + ε2
∫ t

0
G′(t − s; ε)F (0)

[
u(s; ε) − w(s)

]
ds

+
∫ t

0

{
e−(t−s)/2ε2

C((t − s)/ε) +
1

2

[
R(t − s; ε) − G(t − s; ε)

]}
F (0)w(s)ds. (2.12)

Observe that w(s) is locally bounded, so use property (P4) with t(ε) = ε to obtain for any
t, s ∈ [0, T ] with s < t,

[
R(t − s; ε) − G(t − s; ε)

]
F (0)w(s) → 0, ε → 0. (2.13)

Hence the dominated convergence theorem can be used to prove that
∫ t

0

[
R(t − s; ε) − G(t − s; ε)

]
F (0)w(s)ds → 0, ε → 0, (2.14)

uniformly for t ∈ [0, T ]. Next, assume that ε > 0 is so small that 4εω2 ≤ 1, then from (P1),
∫ t

0
e−(t−s)/2ε2‖C((t − s)/ε)‖ds =

∫ t

0
e−s/2ε2‖C(s/ε)‖ds

≤ α
∫ t

0
e−s/2ε2+ω2s/εds =

[
2αε2/(1 − 2εω2)

][
1 − e(2εω2−1)t/2ε2

]

≤ 4αε2 → 0, ε → 0, (2.15)

uniformly for t ∈ [0, T ]. Also observe that w(·) is locally bounded and u0(ε) has a limit as
ε → 0, then from (P2),

ε2G(0; ε)F (0)w(t), ε2G(t; ε)F (0)u0(ε) −→ 0, ε → 0,

uniformly for t ∈ [0, T ], and

‖ε2
∫ t

0
G′(t − s; ε)F (0)

[
u(s; ε) − w(s)

]
ds‖

≤ αeω2T‖F (0)‖
∫ t

0
‖u(s; ε) − w(s)‖ds.
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Thus by (2.12), (2.14), (2.15), and property (P2), we obtain

‖
∫ t

0
G(t − s; ε)ε2F (0)u′(s; ε)ds − ε2G(0; ε)F (0)

[
u(t; ε) − w(t)

]
‖

≤ (type 1) + 0(ε, [0, T ]), (2.16)

where (type 1) is of the form

(constant)
∫ t

0
‖u(s; ε) − w(s)‖ds. (2.17)

Next we have
∫ t

0
G(t − s; ε)

[
f̂(s; ε) − f̂(s) + ε2F (0)u′(s; ε)

]
ds

=
∫ t

0
G(t − s; ε)

{[
f(s; ε) − f(s)

]
+

∫ s

0
F (s − h)

[
f(h; ε) − f(h)

]
dh

+F (s)
[
u0(ε) − w0

]
−

∫ s

0
F ′(s − h)

[
u(h; ε) − w(h)

]
dh + F (s)ε2u1(ε) + ε2F ′(s)u0(ε)

−
[
ε2F ′(0) + F (0)

][
u(s; ε) − w(s)

]
− ε2F ′(0)w(s) − ε2

∫ s

0
F ′′(s − h)

[
u(h; ε) − w(h)

]
dh

−ε2
∫ s

0
F ′′(s − h)w(h)dh

}
ds.

Note that from (P2),

‖
∫ t

0
G(t − s; ε)

∫ s

0
F (s − h)

[
f(h; ε) − f(h)

]
dhds‖

≤ αeω2T
[ ∫ T

0
‖F (s)‖ds

][ ∫ T

0
‖f(s; ε) − f(s)‖ds

]
,

‖
∫ t

0
G(t − s; ε)F (s)

[
u0(ε) − w0

]
ds‖

≤ αeω2T‖u0(ε) − w0‖
∫ T

0
‖F (s)‖ds,

‖
∫ t

0
G(t − s; ε)

∫ s

0
F ′(s − h)

[
u(h; ε) − w(h)

]
dhds‖

≤ αeω2T
[ ∫ T

0
‖F ′(s)‖ds

][ ∫ T

0
‖u(s; ε) − w(s)‖ds

]
.

Other terms can be treated similarly. So it is clear that with property (P2), hypotheses (H1)
– (H5), and the fact that w(·) is locally bounded, we obtain

‖
∫ t

0
G(t − s; ε)

[
f̂(s; ε) − f̂(s) + ε2F (0)u′(s; ε)

]
ds‖ ≤ (type 1) + 0(ε, [0, T ]). (2.18)
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Combine (2.8), (2.10), (2.11), (2.16), and (2.18), we get

‖(1 + ε2G(0; ε)F (0))
[
u(t; ε) − w(t)

]
‖ ≤ (type 1) + 0(ε, [0, T ]), (2.19)

Now assume ε > 0 is so small that 2‖ε2G(0; ε)F (0)‖ < 1, then

‖u(t; ε) − w(t)‖ ≤ 0(ε, [0, T ]) + (constant)
∫ t

0
‖u(s; ε) − w(s)‖ds, t ∈ [0, T ]. (2.20)

So that the Gronwall’s inequality ([9]) can be used to obtain

‖u(t; ε) − w(t)‖ ≤ 0(ε, [0, T ]), t ∈ [0, T ]. (2.21)

This proves the theorem. �

Finally, we briefly indicate its applications in viscoelasticity. Let us consider

ρutt(t; ρ) + αut(t; ρ) = ∆u(t; ρ) +
∫ t

0
K(t − s)∆u(s; ρ)ds + f(t; ρ), t ≥ 0,

u(0; ρ) = u0(ρ), ut(0; ρ) = u1(ρ), (2.22)

in L2(Ω), where u is the displacement, ρ is the density per unit area, and α is the coefficient of
viscosity of the medium. With appropriate boundary conditions the Laplacian operator ∆ in
Eq.(2.22) generates a strongly continuous cosine family and a strongly continuous semigroup.
So with some convergence conditions on initial data and f(t; ε) and smoothness conditions
on K(·), Theorems 2.1 can be used to show that when density ρ → 0, solutions of (2.22) will
converge to solutions of the “limiting” heat equation

αwt(t) = ∆w(t) +
∫ t

0
K(t − s)∆w(s)ds + f(t), t ≥ 0, w(0) = w0. (2.23)

Details are omitted here. This result also relates to a concept called “change the type”
(from hyperbolic to parabolic).
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