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Abstract

The Liapunov - Razumikhin technique is applied to obtain the uniform asymptotic stability for linear
integrodifferential equations in Hilbert spaces,

x′(t) = A
[
x(t) +

∫ t

#

F (t − s)x(s)ds
]
, t ≥ t0 ≥ 0, (# = 0 or −∞),

which occur in viscoelasticity and in heat conduction for materials with memory.

1 INTRODUCTION.

In order to introduce the equations that we will study, let us consider the following heat
equation for material with memory, see, e.g., [4],{

q(t, x) = −Eux(t, x) − ∫ t
# b(t − s)ux(s, x)ds, (# = 0 or −∞)

ut(t, x) = −∂q(t, x)/∂x + f(t, x).
(1.1)

The first equation gives the heat flux and the second is the balance equation. Eq.(1.1) can
be written as (assuming E = 1)

ut(t, x) =
∂2

∂x2

[
u(t, x) +

∫ t

#
b(t − s)u(s, x)ds

]
+ f(t, x). (1.2)

Thus we see that equations

x′(t) = A
[
x(t) +

∫ t

0
F (t − s)x(s)ds

]
, t ≥ t0 ≥ 0, x(s) = φ(s), 0 ≤ s ≤ t0, (1.3)
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and

x′(t) = A
[
x(t) +

∫ t

−∞
F (t − s)x(s)ds

]
, t ≥ t0 ≥ 0, x(s) = φ(s), s ≤ t0, (1.4)

can arise naturally in applications. See Grimmer and Liu [3] for other comments and another
example in viscoelasticity. Here, operator A generates a strongly continuous semigroup and
F (t) is a bounded operator for t ≥ 0 on a real Hilbert space (X, ‖ · ‖).

We also note that equations of this type, where operator A applies to the addition of x(t)
and an integral term, have received some attentions recently. For example, in Fabiano and
Ito [2], the equation of a linear viscoelastic beam is formulated as

x′′(t) + A
[
Ex(t) −

∫ t

−r
g(s)x(s + t)ds

]
= f(t), (1.5)

on a Hilbert space with A a positive definite selfadjoint unbounded operator. Well posedness
and convergence of approximation schemes are studied under certain assumptions on g.

We will study uniform asymptotic stability for Eqs.(1.3)–(1.4) in this paper. First, we
give definitions. (Note that x ≡ 0 satisfies Eq.(1.3) and Eq.(1.4).)

Definition 1.1. For any t0 ≥ 0 and any continuous function φ on [0, t0], a solution of
Eq.(1.3) is a function x : [0,∞) → X satisfying Eq.(1.3) for t ≥ t0 and x(s) = φ(s) for
s ∈ [0, t0]. Solution of Eq.(1.4) is defined accordingly.

Definition 1.2. The solution x ≡ 0 of Eq.(1.3) is stable if given ε > 0 and t0 ≥ 0, there
exists a δ = δ(ε, t0) > 0 such that [‖φ(s)‖ < δ on [0, t0] and x(t, t0, φ) being a solution of
Eq.(1.3)] imply ‖x(t, t0, φ)‖ < ε for t ≥ t0. It is uniformly stable if it is stable and the δ is
independent of t0. For Eq.(1.4), we define them accordingly.

Definition 1.3. The solution x ≡ 0 of Eq.(1.3) is uniformly asymptotically stable if it
is uniformly stable and there exists a constant r > 0 and for any ε > 0 there exists
T = T (ε) > 0 such that [‖φ(s)‖ < r on [0, t0] and x(t, t0, φ) being a solution of Eq.(1.3)]
imply ‖x(t, t0, φ)‖ < ε for t ≥ T + t0. For Eq.(1.4), we define them accordingly.

Remark: In these definitions, it is implied that x(t) +
∫ t
# F (t− s)x(s)ds ∈ D(A) for t ≥ t0,

where # = 0 or −∞ and D means domain.

Note that in many applications, the important case is the “initial value problem” when
t0 = 0. For example, in Seifert [6, 7], where the initial value problem was studied, the case
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for t0 = 0 was also defined as “stable” and “asymptotically stable”, (i.e., treat t0 = 0 in
Definitions 1.1 – 1.3).

In [3], where initial value problems were concerned, we used the definitions of Seifert [6, 7],
and studied the existence and uniqueness of solutions, as well as boundedness and stability
for Eqs.(1.3)–(1.4) (where t0 = 0).

However, as remarked in Burton [1, p.70], for φ given on [0, t0], one can translate the
problem into an initial value problem (begins at x(0) = φ(t0) or x(s) = φ(t0 + s), s ≤ 0). So
that results in [3] concerning existence and uniqueness are still valid if Definition 1.1 (here)
is used. Also, one can check that the conditions in [3] implies uniform stability if Definitions
1.1–1.2 (here) are used. Because, for example, in the proof of Theorem 1 of Seifert [6], which
is used in [3], we only need to change V (0, x0) on page 426 (line 6) to maxs≤t0 V (s, φ(s)),
then all other proofs can go through.

Therefore, we remark that the existence, uniqueness, and uniform stability for Eqs.(1.3)–
(1.4) (according to Definitions 1.1 – 1.2 here) are known. And we will continue to study
uniform asymptotic stability of Eqs.(1.3)–(1.4) in this paper.

Here, we also proceed as in [3] and let

w(t) = x(t) +
∫ t

0
F (t − s)x(s)ds, t ≥ t0, (1.6)

and rewrite Eq.(1.3) as[
x(t)
w(t)

]′
=

[
0 A

F (0) A

] [
x(t)
w(t)

]
+

∫ t

0

[
0 0

F ′(t − s) 0

] [
x(s)
w(s)

]
ds, t ≥ t0 ≥ 0,

(x(s), w(s)) = (φ(s), ψ(s)), 0 ≤ s ≤ t0. (1.7)

For Eq.(1.4), let

w(t) = x(t) +
∫ t

−∞
F (t − s)x(s)ds, t ≥ t0, (1.8)

and rewrite Eq.(1.4) as[
x(t)
w(t)

]′
=

[
0 A

F (0) A

] [
x(t)
w(t)

]
+

∫ t

−∞

[
0 0

F ′(t − s) 0

] [
x(s)
w(s)

]
ds, t ≥ t0 ≥ 0,

(x(s), w(s)) = (φ(s), ψ(s)), s ≤ t0. (1.9)
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Thus it is clear that in order to prove the uniform asymptotic stability for Eq.(1.3) or
(1.4), we only need to prove that property for Eq. (1.7) or (1.9).

Conditions for a “stable matrix” in finite dimensional space cases are generalized to op-
erators F (0) and A, so that the leading matrix in Eq.(1.7) or (1.9) plays a role of “stable
operator”. Base on that we can define a Liapunov function and show that it has certain
properties.

Due to the nature of Eq.(1.3) or (1.4), we have to make use of some results of Liapunov -
Razumikhin type which can handle the integral part in the derivative of the Liapunov func-
tion. The following theorem, modified after Theorem 2 of Grimmer and Seifert [5], is very
useful here. We omit the proof since it is the same as that in [5]. We let z(t) = (x(t), w(t))T

in Eq.(1.7) or (1.9), and let h be a continuous function such that h(t) > t for t > 0.

Theorem 1.4. Suppose that V : Z ≡ X × X → R+ ≡ [0,∞) satisfies

(i). a(‖z‖) ≤ V (z) ≤ b(‖z‖) for all z ∈ Z where a, b : R+ → R+ are continuous and increas-
ing with a(r) → ∞ as r → ∞. (Here ‖z‖ = ‖x‖ + ‖w‖.)
(ii). Given M > 0, there exist monotone sequences of positive reals {rj} and {uj} with
rj → ∞ and uj → 0 as j → ∞, and continuous functions wj(s) which are positive on the
set uj/2 ≤ s ≤ M so that given a solution z(s) = z(s, t0, ξ) of Eq.(1.7) (or of Eq.(1.9)) with
‖z(s)‖ ≤ M for all s, if for some t ≥ rj + t0 one has uj ≤ ‖z(t)‖ and V (z(s)) < h(V (z(t)))
for t − rj ≤ s ≤ t, then V ′(z(t)) ≤ −wj(‖z(t)‖).
Then every bounded solution of Eq.(1.7) (or of Eq.(1.9)) tends to zero as t → ∞. In partic-
ular, given ε > 0 and M > 0, there is T = T (ε,M) > 0 so that for a solution z(·) = z(·, t0, ξ)
of Eq.(1.7) (or of Eq.(1.9)) with ‖z(t)‖ ≤ M for all t, then ‖z(t)‖ < ε for t ≥ T + t0. �

In the next section we will apply this result to Eq.(1.7) and Eq.(1.9) and obtain the uni-
form asymptotic stability.

2 THE ASYMPTOTIC STABILITY.

In this section we will put some conditions on operators A and F (0) so as to define a Lia-
punov function and apply Theorem 1.4 to obtain the uniform asymptotic stability.
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First, we allow F (0) = 0. This case is somewhat delicate because the leading matrix in
Eq.(1.7) and Eq.(1.9) has zero as an eigenvalue. This problem is largely eliminated by the
form of Eq.(1.7) and Eq.(1.9), however.

Theorem 2.1. Suppose that Eq.(1.3) (and Eq.(1.4)) has a unique solution (when φ satisfies
certain conditions), and suppose that for some constant α > 0,

〈Ax, x〉 ≤ −α〈x, x〉, x ∈ D(A), (2.1)

and

〈F (0)x, x〉 ≥ 0, x ∈ X. (2.2)

Suppose also that
∫ ∞
0 ‖F (s)‖ds ≡ Γ < 1 and

∫ ∞
0 ‖F ′(s)‖ds ≡ ∆ < ∞. If

ρ ≡ α − (1 − Γ)−2(
3

2
‖F (0)‖ + 6

√
3δ∆) − 3

2
‖F (0)‖ − 31

√
3

4
δ∆ > 0, (2.3)

where δ > 1 is a constant, then z ≡ 0 of Eqs.(1.7) and (1.9), hence x ≡ 0 of Eqs.(1.3) and
(1.4), are uniformly asymptotically stable.

Proof. As remarked before, under the above conditions it is known ([3, Theorems 3.5 and
4.3]) that z ≡ 0 of Eqs.(1.7) and (1.9) are uniformly stable. So we only need to prove that
other conditions in Definition 1.3 are satisfied. For this end, we prove that conditions in
Theorem 1.4 are satisfied. For z = (x,w)T , define

V (z) = 〈x, x〉 − 2〈x,w〉 +
3

2
〈w,w〉. (2.4)

Same as in [3], we have

V (z) ≥ ‖x‖2 − 2‖x‖‖w‖ +
3

2
‖w‖2

= (‖x‖ − ‖w‖)2 +
1

2
‖w‖2

=
1

6
(3‖w‖ − 2‖x‖)2 +

1

3
‖x‖2. (2.5)

So we obtain

1

12
‖z‖2 ≤ V (z) ≤ 3‖z‖2. (2.6)
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Next, let z(t) = z(t, t0, ξ) be a solution of Eq.(1.7) (or Eq.(1.9)). Differentiating V (z(t))
with respect to t yields

V ′(z(t)) = 〈Aw(t), w(t)〉 − 2〈x(t), F (0)x(t)〉 − 2〈x(t), F ′ ∗ x(t)〉
+3〈F (0)x(t), w(t)〉 + 3〈F ′ ∗ x(t), w(t)〉

≤ −α‖w(t)‖2 + 3‖F (0)‖‖x(t)‖‖w(t)‖
+{2‖x(t)‖ + 3‖w(t)‖}‖F ′ ∗ x(t)‖, t ≥ t0, (2.7)

where

F ′ ∗ x(t) =
∫ t

#
F ′(t − s)x(s)ds. (# = 0 or −∞)

Define h(t) = δ2t, t ≥ 0, and define uj = 4/j. Note that from [3, Theorem 4.2], one can
also check that solutions of Eq.(1.7) and Eq.(1.9) are bounded. That is, for r ≡ 1, there is a
constant M > 1 such that for solutions z(t, t0, ξ) with ‖ξ(s)‖ ≤ 1, here s ∈ [0, t0] for Eq.(1.7)
and s ≤ t0 for Eq.(1.9), one has ‖z(t)‖ ≤ M, t ≥ t0.

Next, as ∆ =
∫ ∞
0 ‖F ′(s)‖ds < ∞, there is rj > j such that∫ ∞

rj

‖F ′(s)‖ds ≤ ρ(1 − Γ)2/6M 2j2.

Now, if V (z(s)) < δ2V (z(t)) for t0 ≤ t − rj ≤ s ≤ t, then from (2.5),

‖x(s)‖2 ≤ 3V (z(s)) ≤ 3δ2V (z(t)), t − rj ≤ s ≤ t, (2.8)

‖w(s)‖2 ≤ 2V (z(s)) ≤ 2δ2V (z(t)), t − rj ≤ s ≤ t. (2.9)

Thus

‖F ′ ∗ x(t)‖ ≤
∫ t

#
‖F ′(t − s)x(s)‖ds =

∫ t−rj

#
+

∫ t

t−rj

≡ I1 + I2,

with

I1 ≤ M
∫ ∞

rj

‖F ′(s)‖ds ≤ ρ(1 − Γ)2/6Mj2,

I2 ≤ δ
√

3V (z(t))
∫ ∞

0
‖F ′(s)‖ds = δ∆

√
3V (z(t)).

Therefore, if V (z(s)) < δ2V (z(t)) for t0 ≤ t − rj ≤ s ≤ t, then (2.7) becomes

V ′(z(t)) ≤ −α‖w(t)‖2 +
3

2
‖F (0)‖{‖x(t)‖2 + ‖w(t)‖2}

+{2‖x(t)‖ + 3‖w(t)‖}I1 + {2‖x(t)‖ + 3‖w(t)‖}I2

6



≤ −α‖w(t)‖2 +
3

2
‖F (0)‖{‖x(t)‖2 + ‖w(t)‖2}

+{2‖x(t)‖ + 3‖w(t)‖}δ∆
√

3V (z(t))

+{2‖x(t)‖ + 3‖w(t)‖}I1

≤ −α‖w(t)‖2 +
3

2
‖F (0)‖{‖x(t)‖2 + ‖w(t)‖2}

+
√

3δ∆{‖x(t)‖2 + V (z(t))} +
3
√

3

2
δ∆{‖w(t)‖2 + V (z(t))}

+{2‖x(t)‖ + 3‖w(t)‖}I1

= ‖x(t)‖2{3

2
‖F (0)‖ +

√
3δ∆} − ‖w(t)‖2{α − 3

2
‖F (0)‖ − 3

√
3

2
δ∆}

+
5

2

√
3δ∆V (z(t)) + {2‖x(t)‖ + 3‖w(t)‖}I1

≤ ‖x(t)‖2{3

2
‖F (0)‖ +

√
3δ∆} − ‖w(t)‖2{α − 3

2
‖F (0)‖ − 3

√
3

2
δ∆}

+
5

2

√
3δ∆{2‖x(t)‖2 +

5

2
‖w(t)‖2} + {2‖x(t)‖ + 3‖w(t)‖}I1

= ‖x(t)‖2{3

2
‖F (0)‖ + 6

√
3δ∆} − ‖w(t)‖2{α − 3

2
‖F (0)‖ − 31

√
3

4
δ∆}

+{2‖x(t)‖ + 3‖w(t)‖}I1

≤ ‖x(t)‖2{3

2
‖F (0)‖ + 6

√
3δ∆} − ‖w(t)‖2{α − 3

2
‖F (0)‖ − 31

√
3

4
δ∆}

+ρ(1 − Γ)2/2j2.

Next, it is proven in [3] that

‖x(t)‖ ≤ (1 − Γ)−1‖w(t)‖.
So we obtain

V ′(z(t)) ≤ −ρ‖w(t)‖2 + ρ(1 − Γ)2/2j2

= −ρ

2
‖w(t)‖2 − ρ

2
‖w(t)‖2 + ρ(1 − Γ)2/2j2

≤ −ρ

2
‖w(t)‖2 − ρ(1 − Γ)2

2
‖x(t)‖2 + ρ(1 − Γ)2/2j2

≤ −ρ(1 − Γ)2

2
{‖x(t)‖2 + ‖w(t)‖2} + ρ(1 − Γ)2/2j2
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≤ −ρ(1 − Γ)2

4
‖z(t)‖2 + ρ(1 − Γ)2/2j2

≡ −wj(‖z(t)‖).
Also note that for t ≥ rj + t0 and ‖z(t)‖ ≥ uj/2 = 2/j, we have

wj(‖z(t)‖) ≥ ρ(1 − Γ)2/j2 − ρ(1 − Γ)2/2j2

= ρ(1 − Γ)2/2j2 > 0

Therefore, conditions in Theorem 1.4 are satisfied. Hence, for r ≡ 1 and M > 1 from
the boundedness (M is fixed then), and any ε > 0 there exists T = T (ε,M) = T (ε) > 0
such that when ‖ξ(s)‖ < r = 1 (here s ∈ [0, t0] for Eq.(1.7) and s ≤ t0 for Eq.(1.9)), which
implies ‖z(t)‖ = ‖z(t, t0, ξ)‖ ≤ M for all t, one has ‖z(t)‖ < ε for t ≥ T + t0. Thus the
desired result follows. �

In case 〈F (0)x, x〉 ≥ β〈x, x〉, β > 0, we are able to obtain, using basically the same proof
as above ([3, Theorem 3.4]), a stronger result without assuming F ∈ L1(0,∞). We omit the
details here.

Theorem 2.2. Suppose that Eq.(1.3) (and Eq.(1.4)) has a unique solution (when φ satisfies
certain conditions), and suppose that for some constants α > 0 and β > 0,

〈Ax, x〉 ≤ −α〈x, x〉, x ∈ D(A), (2.10)

and

〈F (0)x, x〉 ≥ β〈x, x〉, x ∈ X. (2.11)

Suppose also that
∫ ∞
0 ‖F ′(s)‖ds ≡ ∆ < ∞. If

ρ ≡ min{α − 31
√

3

4
δ∆, 2β − 6

√
3δ∆} − 3

2
‖F (0)‖ > 0, (2.12)

where δ > 1 is a constant, then z ≡ 0 of Eqs.(1.7) and (1.9), hence x ≡ 0 of Eqs.(1.3) and
(1.4), are uniformly asymptotically stable.

Remark 2.3. It is known that A ≡ ∂2

∂x2 with domain H1
0 (0, 1) ∩ H2(0, 1) satisfy (2.1) on

X = L2(0, 1) with α = 1. Thus applications can be carried out. We omit them here for
simplicity.

Acknowledgement : The author would like to thank the referees for their valuable sug-
gestions and comments.

8



References

[1] T. Burton, Stability and periodic solutions of ordinary differential equations and func-
tional differential equations, Academic Press, 1985.

[2] R. Fabiano and K. Ito, Semigroup theory and numerical approximation for equations in
linear viscoelasticity, SIAM J. Math. Anal., 21(1990), 374-393.

[3] R. Grimmer and J. Liu, Liapunov - Razumikhin methods for integrodifferential equations
in Hilbert space, Delay and Differential Equations, A. Fink, R. Miller and W. Kliemann
(eds.), World Scientific, London, 1992, 9-24.

[4] G. Gripenberg, S-O. Londen and O. Staffans, Volterra integral and functional equations,
Cambridge University Press, Cambridge, 1990, 12-13.

[5] R. Grimmer and G. Seifert, Stability Properties of Volterra Integrodifferential Equations,
J. Diff. Eq., 19(1975), 142 - 166.

[6] G. Seifert, Liapunov - Razumikhin Conditions for Stability and boundedness of Func-
tional Differential Equations of Volterra Type, J. Diff. Eq., 14(1973), 424-430.

[7] G. Seifert, Liapunov - Razumikhin Conditions for Asymptotic Stability in Functional
Differential Equations of Volterra Type, J. Diff. Eq., 16(1974), 289 - 297.

9


