SINGULAR PERTURBATIONS IN A NON-LINEAR VISCOELASTICITY

James H. Liu*

Abstract

A non-linear equation in viscoelasticity of the form

$$
\begin{align*}
\rho u_{t t}^{\rho}(t, x) & =\phi\left(u_{x}^{\rho}(t, x)\right)_{x}+\int_{-\infty}^{t} F(t-s) \phi\left(u_{x}^{\rho}(s, x)\right)_{x} d s+\rho g(t, x)+f(x), t \geq 0, x \in[0,1], \\
u^{\rho}(t, 0) & =u^{\rho}(t, 1)=0, t \geq 0 \tag{0.2}\\
u^{\rho}(s, x) & =v^{\rho}(s, x), s \leq 0, x \in[0,1] \tag{0.3}
\end{align*}
$$

(where ϕ is non-linear) is studied when the density ρ of the material goes to zero. It will be shown that when $\rho \downarrow 0$, solutions u^{ρ} of the dynamical system (0.1)-(0.3) approach the unique solution w (which is independent of t) of the steady state obtained from (0.1)-(0.3) with $\rho=0$. Moreover, the rate of convergence in ρ is obtained to be $\left\|u^{\rho}-w\right\|_{L^{2}} \leq K \sqrt{\rho}$ and $\left\|u_{x}^{\rho}-w_{x}\right\|_{L^{2}} \leq K \sqrt{\rho}$ for some constant K independent of ρ.

1 INTRODUCTION.

Let us begin with the following quasi-static approximation studied in MacCamy [11],

$$
\begin{equation*}
u_{t t}(t)=-A(0) g(u(t))-\int_{0}^{t} A^{\prime}(t-s) g(u(s)) d s+F(t) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
0=-A(0) g(w(t))-\int_{0}^{t} A^{\prime}(t-s) g(w(s)) d s+F(t) \tag{1.2}
\end{equation*}
$$

Here $A(t)$ is a bounded and linear operator and g is a non-linear and unbounded operator in a Hilbert space. It is shown in [11] that if $F(t)$ approaches a constant vector $F(\infty)$ as

[^0]$t \rightarrow \infty$, then, under appropriate conditions, one has
\[

$$
\begin{array}{rrr}
g(u(t)) & \rightarrow A(\infty)^{-1} F(\infty) & \text { weakly in } H, \\
g(w(t)) & \rightarrow A(\infty)^{-1} F(\infty) & \text { in } H, \tag{1.4}
\end{array}
$$ as t \rightarrow \infty,
\]

where u and w are solutions of (1.1) and (1.2) respectively. This result motivates the procedure of using the quasi-static approximation in viscoelasticity, which drops the "acceleration" term $u_{t t}$ when t is large. That is, use w to approximate u.

Now, let us look at the following non-linear equation in viscoelasticity,

$$
\begin{align*}
\rho u_{t t}^{\rho}(t, x)= & \phi\left(u_{x}^{\rho}(t, x)\right)_{x}+\int_{-\infty}^{t} F(t-s) \phi\left(u_{x}^{\rho}(s, x)\right)_{x} d s \\
& +\rho g(t, x)+f(x), \quad t \geq 0, x \in[0,1] \tag{1.5}\\
u^{\rho}(t, 0)= & u^{\rho}(t, 1)=0, t \geq 0 ; \quad u^{\rho}(s, x)=v^{\rho}(s, x), \quad s \leq 0, x \in[0,1] \tag{1.6}
\end{align*}
$$

which can be found in e.g., Dafermos and Nohel [4] and MacCamy [13]. Here u is the displacement, ρg is the body force, f is the external force, and ρ is the density of the material. Same as in MacCamy [13], we assume that ϕ on \Re is non-linear, $\phi(0)=0$, and there is a constant $c_{0}>0$ such that $\phi^{\prime} \geq c_{0}$ on \Re.

For Eq.(1.5)-(1.6), we propose the singular perturbation problem in the following sense: show that when $\rho \downarrow 0$, the solutions of (1.5)-(1.6) approach the solutions of the equation obtained from (1.5)-(1.6) with $\rho=0$. It will be shown that the solution of (1.5)-(1.6) with $\rho=0$ exists uniquely and is independent of t, i.e., in static-state. Thus, this singular perturbation can also be regarded as a quasi-static approximation.

When ϕ is linear, (1.5)-(1.6) is studied in Grimmer and Liu [6], where linearity is used to subtract the solution w of (1.5)-(1.6) with $\rho=0$ from the solutions u^{ρ} of (1.5)-(1.6). Then an equation for $Q^{\rho} \equiv u^{\rho}-w$ is formulated and the method of energy estimate is employed to show that $\left(u^{\rho}-w=\right) Q^{\rho} \rightarrow 0$ as $\rho \rightarrow 0$.

When ϕ is non-linear but $f=0$, it is shown in [6] that the solution w of (1.5)-(1.6) with $\rho=0$ is $w=0$. Thus the equation for $Q^{\rho} \equiv u^{\rho}-w=u^{\rho}$ is the same as Eq.(1.5)-(1.6) (with $f=0$). Therefore, it is indicated in [6] that the energy estimate method can be modified to show that $\left(u^{\rho}-w=u^{\rho}=\right) Q^{\rho} \rightarrow 0$ as $\rho \rightarrow 0$.

Now, in this paper, we look at the case where ϕ is non-linear and $f \neq 0$. It will be seen that this case is complicated than the previous cases. For example, the equation for
$Q^{\rho} \equiv u^{\rho}-w$ also involves w. However, after some trials and errors, we found an appropriate energy function for Q^{ρ} so that the method of the energy estimate used in [6] can also be extended here to show that $\left(u^{\rho}-w=\right) Q^{\rho} \rightarrow 0$ as $\rho \rightarrow 0$. Moreover, the rate of convergence in ρ is obtained to be $\left\|u^{\rho}-w\right\|_{L^{2}} \leq K \sqrt{\rho}$ and $\left\|u_{x}^{\rho}-w_{x}\right\|_{L^{2}} \leq K \sqrt{\rho}$ for some constant K independent of ρ, as a by-product of our energy estimate in this paper. (The rate of convergence was not discovered in [6].)

Related studies of singular perturbations can be found in, for example, Chow and $\mathrm{Lu}[1]$, Fattorini [5], Hale and Raugel [8], Grimmer and Liu [6], and Liu [9, 10].

2 SINGULAR PERTURBATIONS.

Note that the existence and uniqueness of solutions of Eq.(1.5)-(1.6) (with $\rho>0$) were obtained in $[4,7,12,13]$, and we are only interested in singular perturbations in this paper, so we will assume that Eq.(1.5)-(1.6) (with $\rho>0$) has a unique solution u^{ρ} for every $\rho>0$. Also note that we first assume that the "history" v^{ρ} satisfies Eq.(1.5) on \Re^{-}. Then we will see that if v^{ρ} is only specified on \Re^{-}(may not satisfy Eq.(1.5)), then with essentially the same proof, we can obtain the similar results.

Now we can state and prove our main results with the following hypothesis:
(H). $1+\hat{F}(\lambda) \neq 0 \quad$ for $R e \lambda \geq 0 . \quad F$ and $F^{\prime} \in L^{1}\left(\Re^{+}\right) . \quad F=0$ on $\Re^{-} . f \in C[0,1]$. $\left\|v_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}$ and $\|g(-s)\|_{L^{2}}$ are bounded for $s \leq 0$.
Here \hat{F} is the Laplace transform of F, and $L^{2}=L^{2}[0, T]$.
Theorem 2.1. Assume that the hypothesis (H) is satisfied. Then there is a unique w, which is independent of t, such that

$$
\begin{array}{r}
0=\phi\left(w_{x}(x)\right)_{x}+\int_{-\infty}^{t} F(t-s) \phi\left(w_{x}(x)\right)_{x} d s+f(x), \\
t \in \Re, x \in[0,1] \tag{2.2}\\
w(0)=w(1)=0
\end{array}
$$

(This equation is obtained from (1.5)-(1.6) with $\rho=0$.)
Proof. Similar to [6], we let R be the function such that $R(s)=0, s \leq 0$ and

$$
\begin{equation*}
R(t)=-F(t)-\int_{0}^{t} R(t-s) F(s) d s, \quad t \geq 0 \tag{2.3}
\end{equation*}
$$

whose existence is studied in, e.g., $[2,3,7]$. Note that (2.3) can be written as

$$
\begin{equation*}
(\delta+R) *(\delta+F)=\delta \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
R * F(t)=\int_{-\infty}^{t} R(t-s) F(s) d s \text { and } \delta * H=H \tag{2.5}
\end{equation*}
$$

Now, write (1.5) with $\rho=0$ as

$$
\begin{equation*}
-f(x)=(\delta+F) * \phi\left(u_{x}(t, x)\right)_{x} \tag{2.6}
\end{equation*}
$$

This implies

$$
\begin{align*}
\phi\left(u_{x}(t, x)\right)_{x} & =-(\delta+R) * f(x)=-\left[1+\int_{0}^{\infty} R(s) d s\right] f(x) \\
& =-\left[1+\int_{0}^{\infty} F(s) d s\right]^{-1} f(x) \stackrel{\text { def }}{=} f_{0}(x) \tag{2.7}
\end{align*}
$$

Thus we have

$$
\begin{align*}
\phi\left(u_{x}(t, x)\right) & =\int_{0}^{x} f_{0}(r) d r+C \tag{2.8}\\
u_{x}(t, x) & =\phi^{-1}\left(\int_{0}^{x} f_{0}(r) d r+C\right) \tag{2.9}
\end{align*}
$$

Therefore, the solution takes the following form

$$
\begin{equation*}
w(x) \stackrel{\text { def }}{=} u(t, x)=\int_{0}^{x} \phi^{-1}\left(\int_{0}^{s} f_{0}(r) d r+C\right) d s+C_{1} \tag{2.10}
\end{equation*}
$$

Taking into account of the boundary condition (1.6), we see that $C_{1}=0$ and that we only need to verify that there is a unique constant C such that

$$
\begin{equation*}
\int_{0}^{1} \phi^{-1}\left(\int_{0}^{s} f_{0}(r) d r+C\right) d s=0 \tag{2.11}
\end{equation*}
$$

For this purpose, we first note that since $\phi^{\prime} \geq c_{0}>0$ on \Re, one has $\phi^{-1}(-\infty)=-\infty$ and $\phi^{-1}(\infty)=\infty$. Thus there exists at least one C such that (2.11) is true.

Next, taking a derivative in C of the function

$$
\begin{equation*}
G(C) \equiv \int_{0}^{1} \phi^{-1}\left(\int_{0}^{s} f_{0}(r) d r+C\right) d s \tag{2.12}
\end{equation*}
$$

one gets

$$
\begin{equation*}
\frac{1}{c_{0}} \geq G^{\prime}(C)=\int_{0}^{1} \frac{1}{\phi^{\prime}\left(\phi^{-1}\left(\int_{0}^{s} f_{0}(r) d r+C\right)\right)} d s>0 \tag{2.13}
\end{equation*}
$$

Therefore $G(C)$ is strictly increasing in C. Hence, there exists a unique C such that (2.11) is true.

Theorem 2.2. Assume that the hypothesis (H) is satisfied and that Eq.(1.5)-(1.6) has a unique solution u^{ρ} (on \Re) for $\rho>0$ (i.e., v^{ρ} satisfies Eq.(1.5)-(1.6) on \Re^{-}). Let w be the unique solution of (1.5)-(1.6) with $\rho=0$ (from Theorem 2.1). For $T>0$ fixed and $t \in[0, T], x \in[0,1]$, define $Q^{\rho}(t, x) \equiv u^{\rho}(t, x)-w(x)$ and

$$
\begin{equation*}
E(t ; \rho) \equiv \int_{0}^{1}\left[Q_{t}^{\rho}(t, x)\right]^{2} d x+\frac{2}{\rho} \int_{0}^{1} \int_{0}^{Q_{x}^{\rho}(t, x)}\left[\phi\left(r+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right] d r d x \tag{2.14}
\end{equation*}
$$

If there exists a constant K_{0} independent of ρ such that $E(0, \rho) \leq K_{0}, \rho>0$, then as $\rho \rightarrow 0$, we have $u^{\rho}(t, \cdot) \rightarrow w(\cdot)$ and $u_{x}^{\rho}(t, \cdot) \rightarrow w_{x}(\cdot)$ in $C\left([0, T], L^{2}[0, T]\right)$. Moreover, there exists a constant K independent of ρ such that

$$
\begin{equation*}
\left\|u^{\rho}(t, \cdot)-w(\cdot)\right\|_{L^{2}} \leq K \sqrt{\rho}, \quad\left\|u_{x}^{\rho}(t, \cdot)-w_{x}(\cdot)\right\|_{L^{2}} \leq K \sqrt{\rho}, \quad t \in[0, T], \rho>0 \tag{2.15}
\end{equation*}
$$

Remark 2.1. $E(0, \rho)$ is bounded when, for example, $v_{t}^{\rho}(0, x)$ is bounded and $Q_{x}^{\rho}(0, x)=0$ (i.e., $v_{x}^{\rho}(0, x)=w_{x}(x)$), independently of ρ.

Proof of Theorem 2.2. We first verify that

$$
\begin{equation*}
\int_{0}^{t}[\phi(r+s)-\phi(s)] d r \geq \frac{c_{0}}{2} t^{2}, \quad t, s \in \Re . \tag{2.16}
\end{equation*}
$$

For this purpose let us use the Mean Value Theorem and get

$$
\begin{equation*}
\int_{0}^{t}[\phi(r+s)-\phi(s)] d r=\int_{0}^{t} \phi^{\prime}(\xi) r d r \tag{2.17}
\end{equation*}
$$

If $t>0$, then $r \geq 0$ and

$$
\begin{equation*}
\int_{0}^{t} \phi^{\prime}(\xi) r d r \geq c_{0} \int_{0}^{t} r d r=\frac{c_{0}}{2} t^{2} . \tag{2.18}
\end{equation*}
$$

If $t<0$, then $r \leq 0$ and

$$
\begin{array}{r}
\int_{0}^{t} \phi^{\prime}(\xi) r d r=\int_{t}^{0} \phi^{\prime}(\xi)(-r) d r \\
\geq c_{0} \int_{t}^{0}(-r) d r=\frac{c_{0}}{2} t^{2} \tag{2.19}
\end{array}
$$

Next, we show that for the $E(t ; \rho)$ defined by (2.14) with $E(0 ; \rho) \leq K_{0}$, there exists a constant K_{1} independent of ρ such that $E(t ; \rho) \leq K_{1}, \rho>0, t \in[0, T]$.

For this end we first note that from (2.16), one has

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{Q_{x}^{\rho}(t, x)}\left[\phi\left(r+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right] d r d x \geq \frac{c_{0}}{2} \int_{0}^{1}\left[Q_{x}^{\rho}(t, x)\right]^{2} d x \geq 0 \tag{2.20}
\end{equation*}
$$

Then, observe that since we assumed that u^{ρ} satisfies Eq.(1.5) on \Re, the equation for $Q^{\rho}(t, x) \equiv u^{\rho}(t, x)-w(x)$ is

$$
\begin{align*}
\rho Q_{t t}^{\rho}(t, x)= & {\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} } \\
& +\int_{-\infty}^{t} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s+\rho g(t, x) \tag{2.21}
\end{align*}
$$

for $t \in \Re$. Using (2.5), this can be written as

$$
\begin{equation*}
\rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)\right)=(\delta+F) *\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x}, \quad t \in \Re \tag{2.22}
\end{equation*}
$$

Now, note that from $[6,14]$ one has $R(\infty)=0$. Hence,

$$
\begin{align*}
& {\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x}=\rho(\delta+R) *\left(Q_{t t}^{\rho}(t, x)-g(t, x)\right)} \\
& =\rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)+\int_{-\infty}^{t} R(t-s)\left[Q_{t t}^{\rho}(s, x)-g(s, x)\right] d s\right) \\
& =\rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)+R(0) Q_{t}^{\rho}(t, x)+\int_{-\infty}^{t} R^{\prime}(t-s) Q_{t}^{\rho}(s, x) d s\right. \\
& \left.\quad-\int_{-\infty}^{t} R(t-s) g(s, x) d s\right) . \tag{2.23}
\end{align*}
$$

Next, take a derivative of $E(t ; \rho)$ in t and use the boundary condition (1.6) to get

$$
\begin{aligned}
\frac{d}{d t} E(t ; \rho) & =2 \int_{0}^{1} Q_{t}^{\rho}(t, x) Q_{t t}^{\rho}(t, x) d x+\frac{2}{\rho} \int_{0}^{1}\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right] Q_{x t}^{\rho}(t, x) d x \\
& =2 \int_{0}^{1} Q_{t}^{\rho}(t, x) Q_{t t}^{\rho}(t, x) d x-\frac{2}{\rho} \int_{0}^{1}\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} Q_{t}^{\rho}(t, x) d x
\end{aligned}
$$

Then, replace (2.23) into it to obtain

$$
\frac{d}{d t} E(t ; \rho)=2 \int_{0}^{1} Q_{t}^{\rho}(t, x) Q_{t t}^{\rho}(t, x) d x-2 \int_{0}^{1}\left(Q_{t t}^{\rho}(t, x)-g(t, x)\right.
$$

$$
\begin{aligned}
& \left.+R(0) Q_{t}^{\rho}(t, x)+\int_{-\infty}^{t} R^{\prime}(t-s) Q_{t}^{\rho}(s, x) d s-\int_{-\infty}^{t} R(t-s) g(s, x) d s\right) Q_{t}^{\rho}(t, x) d x \\
= & 2 \int_{0}^{1}\left(g(t, x)-R(0) Q_{t}^{\rho}(t, x)-\int_{-\infty}^{t} R^{\prime}(t-s) Q_{t}^{\rho}(s, x) d s\right. \\
& \left.+\int_{-\infty}^{t} R(t-s) g(s, x) d s\right) Q_{t}^{\rho}(t, x) d x \\
\leq & \|g(t, \cdot)\|_{L^{2}}^{2}+(2+2|R(0)|)\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2} \\
& +\int_{-\infty}^{t}\left|R^{\prime}(t-s)\right|\left[\left\|Q_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}^{2}+\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2}\right] d s \\
& +\int_{0}^{1}\left[\int_{-\infty}^{t}|R(t-s) g(s, x)| d s\right]^{2} d x \\
\leq & \left(2+2|R(0)|+\int_{0}^{\infty}\left|R^{\prime}(s)\right| d s\right)\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2} \\
& +\int_{0}^{t}\left|R^{\prime}(t-s)\right|\left\|Q_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}^{2} d s \\
& +\|g(t, \cdot)\|_{L^{2}}^{2}+\int_{-\infty}^{0}\left|R^{\prime}(t-s)\right|\left\|Q_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}^{2} d s+\int_{0}^{1}\left[\int_{-\infty}^{t}|R(t-s) g(s, x)| d s\right]^{2} d x .
\end{aligned}
$$

Now, note that $\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2} \leq E(t ; \rho)$ by (2.20). Then from above one gets

$$
\begin{align*}
\frac{d}{d t} E(t ; \rho) \leq & \left(2+2|R(0)|+\int_{0}^{\infty}\left|R^{\prime}(s)\right| d s\right) E(t ; \rho) \\
& +\int_{0}^{t}\left|R^{\prime}(t-s)\right| E(s ; \rho) d s \\
& +\|g(t, \cdot)\|_{L^{2}}^{2}+\int_{-\infty}^{0}\left|R^{\prime}(t-s)\right|\left\|Q_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}^{2} d s+\int_{0}^{1}\left[\int_{-\infty}^{t}|R(t-s) g(s, x)| d s\right]^{2} d x \\
\leq & H E(t ; \rho)+\int_{0}^{t}\left|R^{\prime}(t-s)\right| E(s ; \rho) d s+P \tag{2.24}
\end{align*}
$$

where H and P are constants defined in a obvious way.
Similar to [6], we can use the standard arguments in differential inequality to obtain a constant K_{1} independent of ρ such that $E(t ; \rho) \leq K_{1}, t \in[0, T], \rho>0$. Therefore, (2.20) implies

$$
\begin{equation*}
\frac{c_{0}}{\rho} \int_{0}^{1}\left[Q_{x}^{\rho}(t, x)\right]^{2} d x \leq E(t ; \rho) \leq K_{1}, \quad t \in[0, T], \rho>0 \tag{2.25}
\end{equation*}
$$

Now, note that the boundary condition in (1.6) implies

$$
\begin{equation*}
\left\|Q^{\rho}(t, \cdot)\right\|_{L^{2}} \leq\left\|Q_{x}^{\rho}(t, \cdot)\right\|_{L^{2}} \tag{2.26}
\end{equation*}
$$

Thus we can let $K \equiv \sqrt{K_{1} / c_{0}}$ and obtain

$$
\begin{equation*}
\left\|Q^{\rho}(t, \cdot)\right\|_{L^{2}} \leq\left\|Q_{x}^{\rho}(t, \cdot)\right\|_{L^{2}} \leq K \sqrt{\rho}, \quad t \in[0, T], \rho>0 . \tag{2.27}
\end{equation*}
$$

This proves the Theorem.
Remark 2.2. Here, the proof of $Q^{\rho}(t, x) \rightarrow 0$ as $\rho \rightarrow 0$ is different from [6], and is short and direct, and can also provide the rate of convergence in ρ.

In the following, we will verify that if v^{ρ} is only specified on \Re^{-}and may not satisfy Eq.(1.5), then we can still get the similar results. Because now, (2.21) becomes

$$
\begin{align*}
\rho Q_{t t}^{\rho}(t, x)= & {\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} } \\
& +\int_{0}^{t} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s \\
& +\int_{-\infty}^{0} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s \\
& +\rho g(t, x), \quad t \geq 0 . \tag{2.28}
\end{align*}
$$

And hence, (2.22) becomes

$$
\begin{align*}
\rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)\right)= & (\delta+F) \hat{*}\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} \\
& +\int_{-\infty}^{0} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s \tag{2.29}
\end{align*}
$$

where the integration in $\hat{*}$ is from 0 to t. Therefore (2.23) becomes

$$
\begin{align*}
& {\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x}=(\delta+R) \hat{*}\left\{\rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)\right)\right.} \\
&\left.-\int_{-\infty}^{0} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s\right\} \\
&= \rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)+\int_{0}^{t} R(t-s)\left[Q_{t t}^{\rho}(s, x)-g(s, x)\right] d s\right) \\
&-(\delta+R) \hat{*} \int_{-\infty}^{0} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s \\
&= \rho\left(Q_{t t}^{\rho}(t, x)-g(t, x)+R(0) Q_{t}^{\rho}(t, x)-R(t) Q_{t}^{\rho}(0, x)\right. \\
&\left.+\int_{0}^{t} R^{\prime}(t-s) Q_{t}^{\rho}(s, x) d s-\int_{0}^{t} R(t-s) g(s, x) d s\right) \\
&-(\delta+R) \hat{*} \int_{-\infty}^{0} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s \tag{2.30}
\end{align*}
$$

Thus, (2.24) will be changed to

$$
\begin{align*}
\frac{d}{d t} E(t ; \rho)= & 2 \int_{0}^{1} Q_{t}^{\rho}(t, x) Q_{t t}^{\rho}(t, x) d x-\frac{2}{\rho} \int_{0}^{1}\left[\phi\left(Q_{x}^{\rho}(t, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} Q_{t}^{\rho}(t, x) d x \\
= & 2 \int_{0}^{1} Q_{t}^{\rho}(t, x) Q_{t t}^{\rho}(t, x) d x-2 \int_{0}^{1}\left(Q_{t t}^{\rho}(t, x)-g(t, x)+R(0) Q_{t}^{\rho}(t, x)\right. \\
& \left.-R(t) Q_{t}^{\rho}(0, x)+\int_{0}^{t} R^{\prime}(t-s) Q_{t}^{\rho}(s, x) d s-\int_{0}^{t} R(t-s) g(s, x) d s\right) Q_{t}^{\rho}(t, x) d x \\
& +\frac{2}{\rho} \int_{0}^{1}\left\{(\delta + R) \hat { * } \int _ { - \infty } ^ { 0 } F (t - s) \left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)\right.\right. \\
& \left.\left.-\phi\left(w_{x}(x)\right)\right]_{x} d s\right\} Q_{t}^{\rho}(t, x) d x \\
= & 2 \int_{0}^{1}\left(g(t, x)+R(t) Q_{t}^{\rho}(0, x)-R(0) Q_{t}^{\rho}(t, x)\right. \\
& \left.-\int_{0}^{t} R^{\prime}(t-s) Q_{t}^{\rho}(s, x) d s+\int_{0}^{t} R(t-s) g(s, x) d s\right) Q_{t}^{\rho}(t, x) d x \\
& +2 \int_{0}^{1}\left\{\frac { 1 } { \rho } (\delta + R) \hat { * } \int _ { - \infty } ^ { 0 } F (t - s) \left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)\right.\right. \\
& \left.\left.-\phi\left(w_{x}(x)\right)\right]_{x} d s\right\} Q_{t}^{\rho}(t, x) d x \\
\leq & \left\|g(t, \cdot)+R(t) Q_{t}^{\rho}(0, \cdot \cdot)\right\|_{L^{2}}^{2}+(3+2|R(0)|)\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2} \\
& +\int_{0}^{t}\left|R^{\prime}(t-s)\right|\left[\left\|Q_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}^{2}+\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2}\right] d s \\
& +\int_{0}^{1}\left[\int_{0}^{t}|R(t-s) g(s, x)| d s\right]^{2} d x \\
& +\int_{0}^{1}\left\{\frac{1}{\rho}(\delta+R) \hat{*} \int_{-\infty}^{0} F(t-s)\left[\phi\left(Q_{x}^{\rho}(s, x)+w_{x}(x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s\right\}^{2} d x \\
\leq & \left(3+2|R(0)|+\int_{0}^{\infty}\left|R^{\prime}(s)\right| d s\right)\left\|Q_{t}^{\rho}(t, \cdot)\right\|_{L^{2}}^{2} \\
& +\int_{0}^{t}\left|R^{\prime}(t-s)\right|\left\|Q_{t}^{\rho}(s, \cdot)\right\|_{L^{2}}^{2} d s \\
& +\left\|g(t, \cdot)+R(t) Q_{t}^{\rho}(0, \cdot)\right\|_{L^{2}}^{2}+\int_{0}^{1}\left[\int_{0}^{t}|R(t-s) g(s, x)| d s\right]^{2} d x \\
& +\int_{0}^{1}\left\{(\delta+R) \hat{*} \int_{-\infty}^{0} F(t-s) \frac{1}{\rho}\left[\phi\left(v_{x}^{\rho}(s, x)\right)-\phi\left(w_{x}(x)\right)\right]_{x} d s\right\}^{2} d x \\
\leq & \hat{H} E(t ; \rho)+\int_{0}^{t}\left|R^{\prime}(t-s)\right| E(s ; \rho) d s+\hat{P} . \tag{2.31}
\end{align*}
$$

Now, it is clear that we have the following result, which is similar to Theorem 2.2:
Theorem 2.3. Assume that the hypothesis (H) is satisfied and that Eq.(1.5)-(1.6) has a unique solution u^{ρ} (on \Re^{+}) for $\rho>0$ (i.e., v^{ρ} is only specified on \Re^{-}and may not satisfy Eq.(1.5)-(1.6) on \Re^{-}). Let w be the unique solution of (1.5)-(1.6) with $\rho=0$ (from Theorem 2.1). Assume further that for some constant C independent of ρ,

$$
\begin{equation*}
\frac{1}{\rho}\left|\left[\phi\left(v_{x}^{\rho}(s, x)\right)-\phi\left(w_{x}(x)\right)\right]_{x}\right| \leq C, \quad s \leq 0, x \in[0,1], \rho>0 . \tag{2.32}
\end{equation*}
$$

If there exists a constant K_{0} independent of ρ such that $E(0, \rho) \leq K_{0}, \rho>0$, then as $\rho \rightarrow 0$, we have $u^{\rho}(t, \cdot) \rightarrow w(\cdot)$ and $u_{x}^{\rho}(t, \cdot) \rightarrow w_{x}(\cdot)$ in $C\left([0, T], L^{2}[0, T]\right)$. Moreover, there exists a constant K independent of ρ such that

$$
\begin{equation*}
\left\|u^{\rho}(t, \cdot)-w(\cdot)\right\|_{L^{2}} \leq K \sqrt{\rho}, \quad\left\|u_{x}^{\rho}(t, \cdot)-w_{x}(\cdot)\right\|_{L^{2}} \leq K \sqrt{\rho}, \quad t \in[0, T], \rho>0 \tag{2.33}
\end{equation*}
$$

Remark 2.3. (2.32) is satisfied if, for example, $v_{x}^{\rho}(s, x)=w_{x}(x), s \leq 0, x \in[0,1], \rho>0$.

Acknowledgements: The author sincerely thanks the referee for the valuable comments.

References

[1] S. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Diff. Eq., 74(1988), 285-317.
[2] W. Desch, R. Grimmer, Propagation of singularities for integrodifferential equations, J. Diff. Eq., 65(1986), 411-426.
[3] W. Desch, R. Grimmer and W. Schappacher, Propagation of singularities by solutions of second order integrodifferential equations, Volterra Integrodifferential Equations in Banach Spaces and Applications, G. Da Prato and M. Iannelli (eds.), Pitman Research Notes in Mathematics, Series 190, 101-110.
[4] C. Dafermos and J. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, in Contributions to Analysis and Geometry, The Johns Hopkins University Press, 1981, 87-116.
[5] H. Fattorini, Second order linear differential equations in Banach spaces, North - Holland, 1985, 165-237.
[6] R. Grimmer and J. Liu, Singular perturbations in viscoelasticity, Rocky Mountain Journal of Mathematics, 24(1994), 61-75.
[7] G. Gripenberg, S-O. Londen and O. Staffans, Volterra integral and functional equations, Cambridge University Press, Cambridge, 1990.
[8] J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq., 73(1988), 197-214.
[9] J. Liu, Singular perturbations of integrodifferential equations in Banach space, Proc. Amer. Math. Soc., 122(1994), 791-799.
[10] J. Liu, A singular perturbation problem in integrodifferential equations, Electronic J. Diff. Eq., 2(1993), 1-10.
[11] R. MacCamy, Approximations for a class of functional differential equations, SIAM J. Appl. Math., 23(1972), 70-83.
[12] R. MacCamy, An integro-differential equation with application in heat flow, Q. Appl. Math., 35(1977), 1-19.
[13] R. MacCamy, A model for one-dimensional nonlinear viscoelasticity, Q. Appl. Math., 35(1977), 21-33.
[14] R. Miller, Nonlinear Volterra integral equations, W. A. Benjamin Inc., 1971, 189-233.

[^0]: * Department of Mathematics, James Madison University, Harrisonburg, VA 22807. Liu@math.jmu.edu

 AMS Subject Classification : 45K, 35B.
 Key Words : Singular perturbations, viscoelasticity, energy estimates.

