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Abstract

A non-linear equation in viscoelasticity of the form

ρuρ
tt(t, x) = φ(uρ

x(t, x))x +

∫ t

−∞
F (t − s)φ(uρ

x(s, x))xds + ρg(t, x) + f(x), t ≥ 0, x ∈ [0, 1], (0.1)

uρ(t, 0) = uρ(t, 1) = 0, t ≥ 0, (0.2)

uρ(s, x) = vρ(s, x), s ≤ 0, x ∈ [0, 1], (0.3)

(where φ is non-linear) is studied when the density ρ of the material goes to zero. It will be shown that
when ρ ↓ 0, solutions uρ of the dynamical system (0.1)-(0.3) approach the unique solution w (which
is independent of t) of the steady state obtained from (0.1)-(0.3) with ρ = 0. Moreover, the rate of
convergence in ρ is obtained to be ‖uρ − w‖L2 ≤ K

√
ρ and ‖uρ

x − wx‖L2 ≤ K
√

ρ for some constant K
independent of ρ.

1 INTRODUCTION.

Let us begin with the following quasi-static approximation studied in MacCamy [11],

utt(t) = −A(0)g(u(t)) −
∫ t

0
A′(t − s)g(u(s))ds + F (t), (1.1)

and

0 = −A(0)g(w(t)) −
∫ t

0
A′(t − s)g(w(s))ds + F (t). (1.2)

Here A(t) is a bounded and linear operator and g is a non-linear and unbounded operator
in a Hilbert space. It is shown in [11] that if F (t) approaches a constant vector F (∞) as
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t → ∞, then, under appropriate conditions, one has

g(u(t)) → A(∞)−1F (∞) weakly in H, as t → ∞, (1.3)

g(w(t)) → A(∞)−1F (∞) in H, as t → ∞, (1.4)

where u and w are solutions of (1.1) and (1.2) respectively. This result motivates the proce-
dure of using the quasi-static approximation in viscoelasticity, which drops the “acceleration”
term utt when t is large. That is, use w to approximate u.

Now, let us look at the following non-linear equation in viscoelasticity,

ρuρ
tt(t, x) = φ(uρ

x(t, x))x +
∫ t

−∞
F (t − s)φ(uρ

x(s, x))xds

+ρg(t, x) + f(x), t ≥ 0, x ∈ [0, 1], (1.5)

uρ(t, 0) = uρ(t, 1) = 0, t ≥ 0; uρ(s, x) = vρ(s, x), s ≤ 0, x ∈ [0, 1], (1.6)

which can be found in e.g., Dafermos and Nohel [4] and MacCamy [13]. Here u is the dis-
placement, ρg is the body force, f is the external force, and ρ is the density of the material.
Same as in MacCamy [13], we assume that φ on � is non-linear, φ(0) = 0, and there is a
constant c0 > 0 such that φ′ ≥ c0 on �.

For Eq.(1.5)-(1.6), we propose the singular perturbation problem in the following sense:
show that when ρ ↓ 0, the solutions of (1.5)-(1.6) approach the solutions of the equation
obtained from (1.5)-(1.6) with ρ = 0. It will be shown that the solution of (1.5)-(1.6) with
ρ = 0 exists uniquely and is independent of t, i.e., in static-state. Thus, this singular per-
turbation can also be regarded as a quasi-static approximation.

When φ is linear, (1.5)-(1.6) is studied in Grimmer and Liu [6], where linearity is used to
subtract the solution w of (1.5)-(1.6) with ρ = 0 from the solutions uρ of (1.5)-(1.6). Then
an equation for Qρ ≡ uρ − w is formulated and the method of energy estimate is employed
to show that (uρ − w =) Qρ → 0 as ρ → 0.

When φ is non-linear but f = 0, it is shown in [6] that the solution w of (1.5)-(1.6) with
ρ = 0 is w = 0. Thus the equation for Qρ ≡ uρ −w = uρ is the same as Eq.(1.5)-(1.6) (with
f = 0). Therefore, it is indicated in [6] that the energy estimate method can be modified to
show that (uρ − w = uρ =) Qρ → 0 as ρ → 0.

Now, in this paper, we look at the case where φ is non-linear and f 	= 0. It will be
seen that this case is complicated than the previous cases. For example, the equation for
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Qρ ≡ uρ −w also involves w. However, after some trials and errors, we found an appropriate
energy function for Qρ so that the method of the energy estimate used in [6] can also be
extended here to show that (uρ −w =) Qρ → 0 as ρ → 0. Moreover, the rate of convergence
in ρ is obtained to be ‖uρ − w‖L2 ≤ K

√
ρ and ‖uρ

x − wx‖L2 ≤ K
√

ρ for some constant K
independent of ρ, as a by-product of our energy estimate in this paper. (The rate of conver-
gence was not discovered in [6].)

Related studies of singular perturbations can be found in, for example, Chow and Lu [1],
Fattorini [5], Hale and Raugel [8], Grimmer and Liu [6], and Liu [9, 10].

2 SINGULAR PERTURBATIONS.

Note that the existence and uniqueness of solutions of Eq.(1.5)-(1.6) (with ρ > 0) were ob-
tained in [4, 7, 12, 13], and we are only interested in singular perturbations in this paper,
so we will assume that Eq.(1.5)-(1.6) (with ρ > 0) has a unique solution uρ for every ρ > 0.
Also note that we first assume that the “history” vρ satisfies Eq.(1.5) on �−. Then we will
see that if vρ is only specified on �− (may not satisfy Eq.(1.5)), then with essentially the
same proof, we can obtain the similar results.

Now we can state and prove our main results with the following hypothesis:

(H). 1 + F̂ (λ) 	= 0 for Reλ ≥ 0. F and F ′ ∈ L1(�+). F = 0 on �−. f ∈ C[0, 1].
‖vρ

t (s, ·)‖L2 and ‖g(−s)‖L2 are bounded for s ≤ 0.

Here F̂ is the Laplace transform of F , and L2 = L2[0, T ].

Theorem 2.1. Assume that the hypothesis (H) is satisfied. Then there is a unique w, which
is independent of t, such that

0 = φ(wx(x))x +
∫ t

−∞
F (t − s)φ(wx(x))xds + f(x), t ∈ �, x ∈ [0, 1], (2.1)

w(0) = w(1) = 0. (2.2)

(This equation is obtained from (1.5)-(1.6) with ρ = 0.)

Proof. Similar to [6], we let R be the function such that R(s) = 0, s ≤ 0 and

R(t) = −F (t) −
∫ t

0
R(t − s)F (s)ds, t ≥ 0, (2.3)
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whose existence is studied in, e.g., [2, 3, 7]. Note that (2.3) can be written as

(δ + R) ∗ (δ + F ) = δ, (2.4)

where

R ∗ F (t) =
∫ t

−∞
R(t − s)F (s)ds and δ ∗ H = H. (2.5)

Now, write (1.5) with ρ = 0 as

−f(x) = (δ + F ) ∗ φ(ux(t, x))x. (2.6)

This implies

φ(ux(t, x))x = −(δ + R) ∗ f(x) = −
[
1 +

∫ ∞

0
R(s)ds

]
f(x)

= −
[
1 +

∫ ∞

0
F (s)ds

]−1
f(x)

def
= f0(x). (2.7)

Thus we have

φ(ux(t, x)) =
∫ x

0
f0(r)dr + C, (2.8)

ux(t, x) = φ−1
( ∫ x

0
f0(r)dr + C

)
. (2.9)

Therefore, the solution takes the following form

w(x)
def
= u(t, x) =

∫ x

0
φ−1

( ∫ s

0
f0(r)dr + C

)
ds + C1. (2.10)

Taking into account of the boundary condition (1.6), we see that C1 = 0 and that we only
need to verify that there is a unique constant C such that

∫ 1

0
φ−1

( ∫ s

0
f0(r)dr + C

)
ds = 0. (2.11)

For this purpose, we first note that since φ′ ≥ c0 > 0 on �, one has φ−1(−∞) = −∞ and
φ−1(∞) = ∞. Thus there exists at least one C such that (2.11) is true.

Next, taking a derivative in C of the function

G(C) ≡
∫ 1

0
φ−1

( ∫ s

0
f0(r)dr + C

)
ds, (2.12)

4



one gets

1

c0

≥ G′(C) =
∫ 1

0

1

φ′
(
φ−1

( ∫ s
0 f0(r)dr + C

))ds > 0. (2.13)

Therefore G(C) is strictly increasing in C. Hence, there exists a unique C such that (2.11)
is true. �

Theorem 2.2. Assume that the hypothesis (H) is satisfied and that Eq.(1.5)-(1.6) has
a unique solution uρ (on �) for ρ > 0 (i.e., vρ satisfies Eq.(1.5)-(1.6) on �−). Let w be
the unique solution of (1.5)-(1.6) with ρ = 0 (from Theorem 2.1). For T > 0 fixed and
t ∈ [0, T ], x ∈ [0, 1], define Qρ(t, x) ≡ uρ(t, x) − w(x) and

E(t; ρ) ≡
∫ 1

0

[
Qρ

t (t, x)
]2

dx +
2

ρ

∫ 1

0

∫ Qρ
x(t,x)

0

[
φ(r + wx(x)) − φ(wx(x))

]
drdx. (2.14)

If there exists a constant K0 independent of ρ such that E(0, ρ) ≤ K0, ρ > 0, then as
ρ → 0, we have uρ(t, ·) → w(·) and uρ

x(t, ·) → wx(·) in C([0, T ], L2[0, T ]). Moreover, there
exists a constant K independent of ρ such that

‖uρ(t, ·) − w(·)‖L2 ≤ K
√

ρ, ‖uρ
x(t, ·) − wx(·)‖L2 ≤ K

√
ρ, t ∈ [0, T ], ρ > 0. (2.15)

Remark 2.1. E(0, ρ) is bounded when, for example, vρ
t (0, x) is bounded and Qρ

x(0, x) = 0
(i.e., vρ

x(0, x) = wx(x)), independently of ρ.

Proof of Theorem 2.2. We first verify that∫ t

0
[φ(r + s) − φ(s)]dr ≥ c0

2
t2, t, s ∈ �. (2.16)

For this purpose let us use the Mean Value Theorem and get∫ t

0
[φ(r + s) − φ(s)]dr =

∫ t

0
φ′(ξ)rdr. (2.17)

If t > 0, then r ≥ 0 and ∫ t

0
φ′(ξ)rdr ≥ c0

∫ t

0
rdr =

c0

2
t2. (2.18)

If t < 0, then r ≤ 0 and ∫ t

0
φ′(ξ)rdr =

∫ 0

t
φ′(ξ)(−r)dr

≥ c0

∫ 0

t
(−r)dr =

c0

2
t2. (2.19)
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Next, we show that for the E(t; ρ) defined by (2.14) with E(0; ρ) ≤ K0, there exists a
constant K1 independent of ρ such that E(t; ρ) ≤ K1, ρ > 0, t ∈ [0, T ].

For this end we first note that from (2.16), one has

∫ 1

0

∫ Qρ
x(t,x)

0
[φ(r + wx(x)) − φ(wx(x))]drdx ≥ c0

2

∫ 1

0

[
Qρ

x(t, x)
]2

dx ≥ 0. (2.20)

Then, observe that since we assumed that uρ satisfies Eq.(1.5) on �, the equation for
Qρ(t, x) ≡ uρ(t, x) − w(x) is

ρQρ
tt(t, x) =

[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x

+
∫ t

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds + ρg(t, x) (2.21)

for t ∈ �. Using (2.5), this can be written as

ρ
(
Qρ

tt(t, x) − g(t, x)
)

= (δ + F ) ∗
[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x
, t ∈ �. (2.22)

Now, note that from [6, 14] one has R(∞) = 0. Hence,
[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x

= ρ(δ + R) ∗
(
Qρ

tt(t, x) − g(t, x)
)

= ρ
(
Qρ

tt(t, x) − g(t, x) +
∫ t

−∞
R(t − s)

[
Qρ

tt(s, x) − g(s, x)
]
ds

)

= ρ
(
Qρ

tt(t, x) − g(t, x) + R(0)Qρ
t (t, x) +

∫ t

−∞
R′(t − s)Qρ

t (s, x)ds

−
∫ t

−∞
R(t − s)g(s, x)ds

)
. (2.23)

Next, take a derivative of E(t; ρ) in t and use the boundary condition (1.6) to get

d

dt
E(t; ρ) = 2

∫ 1

0
Qρ

t (t, x)Qρ
tt(t, x)dx +

2

ρ

∫ 1

0

[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
Qρ

xt(t, x)dx

= 2
∫ 1

0
Qρ

t (t, x)Qρ
tt(t, x)dx − 2

ρ

∫ 1

0

[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x
Qρ

t (t, x)dx.

Then, replace (2.23) into it to obtain

d

dt
E(t; ρ) = 2

∫ 1

0
Qρ

t (t, x)Qρ
tt(t, x)dx − 2

∫ 1

0

(
Qρ

tt(t, x) − g(t, x)
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+R(0)Qρ
t (t, x) +

∫ t

−∞
R′(t − s)Qρ

t (s, x)ds −
∫ t

−∞
R(t − s)g(s, x)ds

)
Qρ

t (t, x)dx

= 2
∫ 1

0

(
g(t, x) − R(0)Qρ

t (t, x) −
∫ t

−∞
R′(t − s)Qρ

t (s, x)ds

+
∫ t

−∞
R(t − s)g(s, x)ds

)
Qρ

t (t, x)dx

≤ ‖g(t, ·)‖2
L2 +

(
2 + 2|R(0)|

)
‖Qρ

t (t, ·)‖2
L2

+
∫ t

−∞
|R′(t − s)|

[
‖Qρ

t (s, ·)‖2
L2 + ‖Qρ

t (t, ·)‖2
L2

]
ds

+
∫ 1

0

[ ∫ t

−∞
|R(t − s)g(s, x)|ds

]2
dx

≤
(
2 + 2|R(0)| +

∫ ∞

0
|R′(s)|ds

)
‖Qρ

t (t, ·)‖2
L2

+
∫ t

0
|R′(t − s)|‖Qρ

t (s, ·)‖2
L2ds

+‖g(t, ·)‖2
L2 +

∫ 0

−∞
|R′(t − s)|‖Qρ

t (s, ·)‖2
L2ds +

∫ 1

0

[ ∫ t

−∞
|R(t − s)g(s, x)|ds

]2
dx.

Now, note that ‖Qρ
t (t, ·)‖2

L2 ≤ E(t; ρ) by (2.20). Then from above one gets

d

dt
E(t; ρ) ≤

(
2 + 2|R(0)| +

∫ ∞

0
|R′(s)|ds

)
E(t; ρ)

+
∫ t

0
|R′(t − s)|E(s; ρ)ds

+‖g(t, ·)‖2
L2 +

∫ 0

−∞
|R′(t − s)|‖Qρ

t (s, ·)‖2
L2ds +

∫ 1

0

[ ∫ t

−∞
|R(t − s)g(s, x)|ds

]2
dx

≤ HE(t; ρ) +
∫ t

0
|R′(t − s)|E(s; ρ)ds + P, (2.24)

where H and P are constants defined in a obvious way.

Similar to [6], we can use the standard arguments in differential inequality to obtain a
constant K1 independent of ρ such that E(t; ρ) ≤ K1, t ∈ [0, T ], ρ > 0. Therefore, (2.20)
implies

c0

ρ

∫ 1

0

[
Qρ

x(t, x)
]2

dx ≤ E(t; ρ) ≤ K1, t ∈ [0, T ], ρ > 0. (2.25)

Now, note that the boundary condition in (1.6) implies

‖Qρ(t, ·)‖L2 ≤ ‖Qρ
x(t, ·)‖L2 . (2.26)
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Thus we can let K ≡
√

K1/c0 and obtain

‖Qρ(t, ·)‖L2 ≤ ‖Qρ
x(t, ·)‖L2 ≤ K

√
ρ, t ∈ [0, T ], ρ > 0. (2.27)

This proves the Theorem. �

Remark 2.2. Here, the proof of Qρ(t, x) → 0 as ρ → 0 is different from [6], and is short
and direct, and can also provide the rate of convergence in ρ.

In the following, we will verify that if vρ is only specified on �− and may not satisfy
Eq.(1.5), then we can still get the similar results. Because now, (2.21) becomes

ρQρ
tt(t, x) =

[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x

+
∫ t

0
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds

+
∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds

+ρg(t, x), t ≥ 0. (2.28)

And hence, (2.22) becomes

ρ
(
Qρ

tt(t, x) − g(t, x)
)

= (δ + F )∗̂
[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x

+
∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds (2.29)

where the integration in ∗̂ is from 0 to t. Therefore (2.23) becomes[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x

= (δ + R)∗̂
{
ρ
(
Qρ

tt(t, x) − g(t, x)
)

−
∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds

}

= ρ
(
Qρ

tt(t, x) − g(t, x) +
∫ t

0
R(t − s)

[
Qρ

tt(s, x) − g(s, x)
]
ds

)

−(δ + R)∗̂
∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds

= ρ
(
Qρ

tt(t, x) − g(t, x) + R(0)Qρ
t (t, x) − R(t)Qρ

t (0, x)

+
∫ t

0
R′(t − s)Qρ

t (s, x)ds −
∫ t

0
R(t − s)g(s, x)ds

)

−(δ + R)∗̂
∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds. (2.30)
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Thus, (2.24) will be changed to

d

dt
E(t; ρ) = 2

∫ 1

0
Qρ

t (t, x)Qρ
tt(t, x)dx − 2

ρ

∫ 1

0

[
φ(Qρ

x(t, x) + wx(x)) − φ(wx(x))
]
x
Qρ

t (t, x)dx

= 2
∫ 1

0
Qρ

t (t, x)Qρ
tt(t, x)dx − 2

∫ 1

0

(
Qρ

tt(t, x) − g(t, x) + R(0)Qρ
t (t, x)

−R(t)Qρ
t (0, x) +

∫ t

0
R′(t − s)Qρ

t (s, x)ds −
∫ t

0
R(t − s)g(s, x)ds

)
Qρ

t (t, x)dx

+
2

ρ

∫ 1

0

{
(δ + R)∗̂

∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x))

−φ(wx(x))
]
x
ds

}
Qρ

t (t, x)dx

= 2
∫ 1

0

(
g(t, x) + R(t)Qρ

t (0, x) − R(0)Qρ
t (t, x)

−
∫ t

0
R′(t − s)Qρ

t (s, x)ds +
∫ t

0
R(t − s)g(s, x)ds

)
Qρ

t (t, x)dx

+2
∫ 1

0

{1

ρ
(δ + R)∗̂

∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x))

−φ(wx(x))
]
x
ds

}
Qρ

t (t, x)dx

≤ ‖g(t, ·) + R(t)Qρ
t (0, ·)‖2

L2 +
(
3 + 2|R(0)|

)
‖Qρ

t (t, ·)‖2
L2

+
∫ t

0
|R′(t − s)|

[
‖Qρ

t (s, ·)‖2
L2 + ‖Qρ

t (t, ·)‖2
L2

]
ds

+
∫ 1

0

[ ∫ t

0
|R(t − s)g(s, x)|ds

]2
dx

+
∫ 1

0

{1

ρ
(δ + R)∗̂

∫ 0

−∞
F (t − s)

[
φ(Qρ

x(s, x) + wx(x)) − φ(wx(x))
]
x
ds

}2
dx

≤
(
3 + 2|R(0)| +

∫ ∞

0
|R′(s)|ds

)
‖Qρ

t (t, ·)‖2
L2

+
∫ t

0
|R′(t − s)|‖Qρ

t (s, ·)‖2
L2ds

+‖g(t, ·) + R(t)Qρ
t (0, ·)‖2

L2 +
∫ 1

0

[ ∫ t

0
|R(t − s)g(s, x)|ds

]2
dx

+
∫ 1

0

{
(δ + R)∗̂

∫ 0

−∞
F (t − s)

1

ρ

[
φ(vρ

x(s, x)) − φ(wx(x))
]
x
ds

}2
dx

≤ ĤE(t; ρ) +
∫ t

0
|R′(t − s)|E(s; ρ)ds + P̂ . (2.31)
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Now, it is clear that we have the following result, which is similar to Theorem 2.2:

Theorem 2.3. Assume that the hypothesis (H) is satisfied and that Eq.(1.5)-(1.6) has a
unique solution uρ (on �+) for ρ > 0 (i.e., vρ is only specified on �− and may not satisfy
Eq.(1.5)-(1.6) on �−). Let w be the unique solution of (1.5)-(1.6) with ρ = 0 (from Theorem
2.1). Assume further that for some constant C independent of ρ,

1

ρ
|
[
φ(vρ

x(s, x)) − φ(wx(x))
]
x
| ≤ C, s ≤ 0, x ∈ [0, 1], ρ > 0. (2.32)

If there exists a constant K0 independent of ρ such that E(0, ρ) ≤ K0, ρ > 0, then as
ρ → 0, we have uρ(t, ·) → w(·) and uρ

x(t, ·) → wx(·) in C([0, T ], L2[0, T ]). Moreover, there
exists a constant K independent of ρ such that

‖uρ(t, ·) − w(·)‖L2 ≤ K
√

ρ, ‖uρ
x(t, ·) − wx(·)‖L2 ≤ K

√
ρ, t ∈ [0, T ], ρ > 0. (2.33)

Remark 2.3. (2.32) is satisfied if, for example, vρ
x(s, x) = wx(x), s ≤ 0, x ∈ [0, 1], ρ > 0.

Acknowledgements: The author sincerely thanks the referee for the valuable comments.
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