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Abstract

Reaction-diffusion problems that are characterized by the presence of iso-
lated sources along bounding surfaces of a liquid-filled container arise in
typical electrochemical applications utilizing arrays of microelectrodes, in
modelling corrosion of surfaces, and in models of catalysis. The mathemat-
ical treatment of the associated mass transport problem is difficult due to
the character of the resulting mixed boundary value problem, whereby reac-
tion occurs at isolated sites on boundaries with the remainder of the surface
treated as insulating. Here we examine the case of steady-state transport to
periodic arrays of circular disc-shaped microelectrodes mounted flush in an
infinite, insulating planar boundary. Numerical procedures based upon in-
tegral equation methods are developed with an appropriate periodic Green’s
function, whose slow convergence rate is improved by the method of Ewald.
Results are presented for surface flux as a function of bulk and surface
reaction rates and surface coverage.

1 Introduction

Mass transport coupling diffusion, surface and/or bulk chemical reactions,
and species migration in external fields occurs in a wide variety of physical
situations, including electrochemistry, catalysis, corrosion, colloidal suspen-
sions, protein binding, etc. The transport process is frequently controlled
by surface chemical reactions or by charge distributed along the bounding
surfaces. In general, such bounding surfaces are heterogeneous and so sur-
face properties (e.g. reactivity) vary spatially. For example, electrochemical
devices consisting of arrays of microelectrodes (Wightman & Wipf [8]) have



the geometric feature that surface chemical reactions occur on many dis-
tributed regions, or patches, on an otherwise unreactive substrate. Due to
the small size of the microelectrodes, steady state conditions are generally
reached quickly. Although mass transfer to an isolated surface patch has
been studied for a variety of surface geometries (e.g. strips, hemispheres,
discs, and rings) (Brett & Brett [4]), a surface with a periodic array of ac-
tive sites has received much less attention. Here, we study the steady state
reaction-diffusion problem for a stagnant fluid bounded by a plane which is
covered by a periodic array of circular reactive sites.

2 Formulation

Consider a periodic array of circular microelectrodes denoted SE distributed
over an otherwise insulating boundary SP at z = 0 as illustrated in Fig-
ure 1(a). An electrolytic solution fills the entire volume z > 0 above the
plane, and we are interested in calculating the steady state current to the
surface due to oxidation-reduction processes that occur on the surface of
the electrodes while allowing for chemical regeneration in the bulk. The
flux of a given oxidized (or reduced) chemical species to the electrode is
proportional to the measured electrode current, and so we seek a solution
for the concentration flux of the chemical species. We assume that there is
no fluid motion, and so following Phillips [6,7] and Bender & Stone [2], the
steady state reaction-diffusion equation for the problem can be written in
dimensionless form as

∇2φ = α2φ with
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φ → 0 as z → ∞,

(1)

where φ(x) is the dimensionless concentration in the fluid, α2 is a constant
representing the ratio of bulk species regeneration relative to diffusion, K
is a constant representing the ratio of surface reaction rate at the elec-
trode surface relative to diffusion in the bulk, and x denotes the position
vector. In this study we will assume K = ∞, the limit at which surface
reaction is instantaneous. We shall assume the periodic cell on the surface
is rectangular of size (2l1 × 2l2), with circular microelectrodes of radius one
centered within the periodic cells. Because of the periodicity, we only need
to determine the solution within a single cell. Rather than calculate the
concentration φ directly, we are more interested in the flux ∂φ/∂z at z = 0.
Once the flux distribution has been calculated, the total dimensionless flux
to a single electrode is determined by integrating ∂φ/∂z over the surface SE,
which is proportional to the measured current through the electrode. Since
we are only interested in finding the flux distribution over the electrode,
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Figure 1: (a) Geometry of the volume above a periodic cell on a surface
periodically covered with discs. (b) Value of α at which the Poisson and
Ewald summations take the same amount of CPU time versus l2 for the two
cases l1 = l2 and l1 = 1.05.

the volume of application of (1) is the infinite half-space, and (1) is linear,
an integral equation approach is ideal, as opposed to finite element or finite
difference techniques. The solution approach is standard, although some of
the details necessary to treat the periodic surface condition and numerically
calculate the flux accurately require some care.

2.1 Integral Equation Derivation
Due to the periodic nature of the problem, we have that φ(x) = φ(x + xp),
where xp = (2l1m1, 2l2m2, 0) with m1, m2 = 0,±1,±2, . . . is the periodic
vector. Rather than solving for φ throughout the entire volume, we may
treat instead the volume above a single periodic cell (see Figure 1(a)), with
volume Vc and boundary Sc = SE ∪ SP ∪ S∞ ∪ Ssides. The surface S∞ is
the ‘cap’ of the volume at z = ∞. A boundary integral formulation of (1)
with the given boundary and periodicity conditions gives us that the flux
satisfies the integral equation of the first kind

1 =
∫

SE

2G(x − y)φ′(x) dS(x), y ∈ SE, (2)

where we have written φ′ for ∂φ/∂z. The Green’s function G is the solution
of

∇2

x
G(x − y) = α2G(x − y) +

∞
∑

m1=−∞

∞
∑

m2=−∞

δ(x − y − xp)

with G → 0 as |x3 − y3| → ∞,

(3)



where the Laplacian operator is with respect to the variable x, and x3−y3 is
the z-component of x−y. The Green’s function can be found by solving (3)
using 2D Fourier transforms. Since from (2) both x and y ∈ SE, x3−y3 = 0
here, and so

G(x−y) = −
∑

m

exp {−2πihm.R}
8l1l2

√

4π2h2
m + α2

, with

{

R = x − y,
hm = (m1/2l1, m2/2l2) ,

(4)

and
∑

m denotes the doubly infinite summation over m1 and m2.

2.2 Accelerating Convergence of the Green’s Function
The form of the Green’s function given in (4) converges very slowly. Conver-
gence may be accelerated by applying Poisson’s summation formula (Barton
[1]), which gives

G(R) = −
∑

m

e−αk

4πk
, k =

√

(R1 − 2m1l1)2 + (R2 − 2m2l2)2. (5)

This can be recognized as a distribution of the free space Green’s function
used in Bender & Stone [2]. Unfortunately, for small α, (5) also converges
slowly. Another option is to utilize the method of Ewald (Nijboer & De
Wette [5]), which converts (4) to
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where

k =
√

(R1 − 2l1m1)2 + (R2 − 2l2m2)2, A = π2

{
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)2
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(
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l2

)2
}

+ α2.

(7)
The arbitrary parameter c is chosen to obtain the best convergence for G(R).

Since erfc(x) = O
(

e−x2
)

for x � 1, we can balance the convergence rates

of the complimentary error function terms in (6) to arrive at the estimate

c =

√

l1l2
π

. (8)

While additional terms of the Ewald sum in (6) are O
(

e−m2
)

, which

converge faster than the additional terms of the exponentials in (5), O (e−m),
the Ewald sum involves two complimentary error functions, which take much
longer to numerically evaluate than an exponential. To decide which of (5)
or (6) to use, we calculate the Green’s function for a specified α, l1, and l2



to eight digit accuracy at 105 representative points, and choose the fastest
of the two methods. Figure 1(b) shows curves of the critical value of α
for specific l1, l2 at which the two sums are identical, and so indicates
which summation should be used for other α values. Above the curves, the
exponential sum (5) is best; below, the Ewald sum (6) is superior. The
trigonometric form (4) is never used.

3 Solution Method

Due to the circular geometry of SE, we express the unknown ∂φ/∂z = φ′ in
polar coordinates. Symmetry implies we only need to determine φ′ in the
first quadrant. We divide the rectangle [0, 1]× [0, π/2] in polar coordinates
into M ×N elements and assume φ′ varies quadratically over each element
in r and θ. Collocation points are placed at node points of the quadratic el-
ements, which leads to a linear system of equations that is solved for φ′ as in
standard boundary element techniques (Brebbia et al. [3]). Several sophis-
ticated numerical techniques are used to calculate accurately and efficiently
the required 2D integrals.

For K = ∞, it can be shown by an asymptotic analysis of (1) that φ′

has an inverse square root singularity near r = 1, the outer edge of the disc.
This significantly degrades performance of numerical techniques to find φ′,
and so we replace φ′ in (4) by φ̂′/

√
1 − r, and solve for φ̂′, which is a smooth

function. The assumption of an inverse square root singularity in the flux
at the edge of the disc accelerates convergence of the numerical solution
significantly, and it was found that 5 × 5 quadratic elements are sufficient
to capture the variations of φ̂′ in both the r and θ directions such that
the total flux over the disc is accurate to at least three significant digits.
The system of equations to be solved has 96 unknowns, and takes at least
10 minutes on a Sun Sparc 10 workstation for cases with l1 = l2. This
performance indicates the relatively high cost of calculating the periodic
Green’s function.

4 Results

Figure 2(a) shows total flux per disc
∫

SE
φ′ dS versus l1 with l1 = l2 for

various values of α. The horizontal dashed lines represent the flux for a
single disc on the insulating surface. We see that as l1(= l2) increases, the
flux per disc approaches that for a single disc. As α increases, the approach
to the single disc result is more rapid, since for large α, bulk regeneration
of reactants within the fluids is large with respect to diffusion, and so most
reaction occurs close to the electrode, and in fact occurs within a boundary
layer O(α−1) above the disc. Furthermore, as α increases, the size of the
periodic cell such that individual electrodes have no effect on each other
decreases. For small α, diffusion dominates, and the restriction of each
electrode only having access to the reactants above its own periodic cell
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Figure 2: (a) Flux per disc, and (b) Flux per unit area, versus l1 = l2 for
various values of α and K = ∞. The dotted line in (b) represents the value
of l1 = l2 at which the flux per unit area is 90% of its value at l1 = l2 = 1.05.

becomes more important. We can observe that for low α, even for large
values of l1(= l2), the flux per disc is significantly below the single disc
result, showing the large influence of electrodes on their neighbours when
diffusion dominates.

Figure 2(b) shows the flux per unit area versus l1(= l2), where the flux
per unit area is defined as the flux for individual discs divided by the area
of the periodic cell. This measure provides a better idea of the overall
performance of the periodic array. For large l1 = l2, the slopes of the curves
are −2. Since for large l1 = l2 the flux per disc approaches a constant
(the single disc result), and as the area of the periodic cell increases as the
square of the cell lengths l1 = l2, the factor of −2 is as expected. We have
also included in Figure 2(b) a dotted line across the various α curves. The
dotted line is the value of l1 = l2 at which the flux per unit area is 90% of
its value at l1 = l2 = 1.05, and we can see that as α decreases, this value
increases. Curves such as this show how additional effort (placing electrodes
closer together) gives a much smaller additional return in flux for small α.

Figure 3(a) shows the variation of the local flux distribution φ′ at r = 0.9
as a function of the angle θ for several periodic cell sizes, α = 0.01. Curves
have been scaled by the minimum flux on the curve, at θ = 0, so comparisons
of variation can be made. We see that the variation in φ′ drops dramatically
as l1 = l2 increases, and is virtually zero for l1 = l2 ≥ 5. Since the flux per
disc is still well below the single disc result, we conclude that variation



0.0 0.5 1.0 1.5
-1.035

-1.030

-1.025

-1.020

-1.015

-1.010

-1.005

-1.000

θ

-F
lu

x/
M

in

l1=l2=1.5

l1=l2=2

l1=l2=3
(a)

π/2 0 5 10 15 20 25 30
0

1

2

3

4

5

6

l2

F
lu

x 
pe

r 
di

sc

(b)

α=0.005

α=0.01

α=0.05

α=0.1

α=0.5

α=1

Figure 3: (a) φ′ versus θ along r = 0.9 for α = 0.01, K = ∞, and l1 = l2 =
1.05, 2, 3, 4, 5, 6. The curves are scaled with respect to φ′ at θ = 0. (b) Flux
per disc versus l2 for l1 = 1.05, various α.

of φ′ in the θ direction is primarily due to interaction with the closest
electrodes. When the periodic cell size increases, the lowered flux is due
to reactants only being available from the volume above each periodic cell.
This observation explains the observable point of inflexion in the flux curves
of Figure 2(a) for small α, where the additional interaction of electrodes
becomes important for l1 = l2 < 5.

Figure 3(b) shows the flux per disc results rectangular periodic cells,
where now l1 has been fixed and l2 varies. The final flux values for large l2 are
smaller than for l1 = l2 since there is more interaction between electrodes,
and we also observe that the inflexions in the curves of Figure 2(a) are no
longer apparent; since l1 = 1.05 in Figure 3(b), discs always respond close
together, and angular variations in the flux will not be lost.

5 Conclusion

Bender & Stone [2] developed an integral equation solution for the single
disc steady state microelectrode problem, and produced accurate numerical
results. Here, we have extended that study to the problem of a periodic
array of microelectrodes, and investigated the effects of varying the periodic
cell sizes. Once the inverse square root singularity in the solution was
identified, quadratic boundary elements gave us very accurate numerical
results. However, a significant amount of analysis was required to form a
Green’s function that could be calculated efficiently.

A more comprehensive version of this paper is available from the authors



which gives more detail on the formulation of the problem, development of
Green’s functions, and other implementation details including the use of
sophisticated integration routines. This paper also addresses the case of fi-
nite K, where the reaction rate on the surface of the microelectrodes is not
instantaneous. Several other extensions to this problem are possible, includ-
ing investigation of other microelectrode shapes which may give higher flux
results for the same electrode to surface ratio, or random arrays of micro-
electrodes, which more realistically model this problem’s catalytic analog.
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