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Abstract

The evaluation of integrals of the form In =
∫

∞

0
f(x)Jn(x) dx is considered. In the past,

the method of dividing an oscillatory integral at its zeros, forming a sequence of partial
sums, and using extrapolation to accelerate convergence has been found to be the most
efficient technique available where the oscillation is due to a trigonometric function or a
Bessel function of order n = 0, 1. Here, we compare various extrapolation techniques as
well as choices of endpoints in dividing the integral, and establish the most efficient method
for evaluating infinite integrals involving Bessel functions of any order n, not just zero or
one. We also outline a simple but very effective technique for calculating Bessel function
zeros.

1 Introduction

Calculating integrals on [0,∞) with oscillatory integrands is a more difficult problem than that
for the case of an eventually monotonic integrand. Various techniques have been proposed for
calculating integrals of the form

I =

∫

∞

a
f(x)w(x) dx, (1)

where w(x) is an oscillatory function such as sinωx, cosωx, or J0(ωx), and f(x) is eventu-
ally monotonic. Blakemore et al. [1] reviewed several numerical methods, and came to the
conclusion that an “integration then summation” procedure was the most efficient method.
Assuming the zeros of w(x) are known, the integral (1) is divided at these zeros, and an
alternating sequence is summed to compute the integral. The sequence {I j}∞j=0 is formed,
where

Ij =
j

∑

i=0

ui =
j

∑

i=0

∫ xi+1

xi

f(x)w(x) dx, (2)

x0 = a and x1, x2, . . . are the zeros of w(x) greater than a. Although I j → I as j → ∞, the
sequence typically converges slowly, and so an extrapolation technique is used to accelerate
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convergence. This technique was originally introduced by Longman [9] using extrapolation
by the Euler transform, and Blakemore et al. [1] used the ε-algorithm of Wynn [22] as an
accelerator. Piessens and Branders [14] also survey various techniques for evaluating integrals
involving Bessel functions.

More recently, popular textbooks on numerical integration (Davis and Rabinowitz [3] and
Evans [4]) state that integration then summation with extrapolation, henceforth indicated as
ISE, is the most efficient method for evaluating integrals such as (1). Davis and Rabinowitz
[3] described various extrapolation techniques, including the Euler transform, the ε-algorithm,
and the W transform due to Sidi [16], but provide no indication of the relative effectiveness of
the different extrapolation procedures. Evans [4] also described the ISE method, and concluded
that the ε-algorithm is superior to the Euler transform, but described no direct comparison
with the W transform. Here, we shall compare the ε-algorithm to the modified W, or mW,
transform of Sidi [18]. It is interesting to note that as recently as 1985, Lyness [10] outlined
the ISE method using the Euler transform.

Integrals of the form (1) with w(x) = sinωx or cosωx are Fourier integrals, and standard
numerical packages such as IMSL [23] include routines for their evaluation. The IMSL inte-
gration routines are mainly the QUADPACK routines of Piessens et al. [13]. However, for the
case that the oscillation is due to a Bessel function, there is no standard routine for calculating
integrals of the form

In =

∫

∞

a
f(x)Jn(x) dx, (3)

where n is an integer greater than or equal to zero. The standard IMSL infinite integral
routine dqdagi( ) performs quite poorly on integrals such as (3). However, if the QUADPACK
routines are available, Piessens et al. [13] include a program which implements the ISE method
using the ε-algorithm, though it requires an additional subroutine to calculate the zeros of
Jn(x). This combination, ε-algorithm and zeros as integration endpoints, will be one of several
cases considered here.

As an alternative, (3) can be considered as a Hankel transform. Suter [19] reviewed various
techniques for evaluating Hankel transforms, and, in addition to the ISE method, included
asymptotic approximations, convolution algorithms, and projection methods. A projection
method involves transforming the integral (3) into a Fourier integral which can be evaluated
using FFT techniques or an ISE method. For example, Linz [8] derived the identity

∫

∞

0
f(x)J0(ρx) dx =

2

π

∫ ρ

0
(ρ2 − s2)−1/2

∫

∞

0
f(x) cos xs dx ds. (4)

Cree and Bones [2] compared various algorithms to numerically calculate (3), and concluded
projection methods were the best for evaluating Hankel transforms. However, they included
the restriction that f(x) is only known at sample points, and hence reject ISE methods. Our
investigation has shown that, assuming f is known as an analytic function, there is roughly
the same amount of effort involved in evaluating (1) regardless of whether w is a trigonometric
or Bessel function. Thus, a projection method based on (4) will be substantially slower than
an ISE method due to the additional level of integration, and will not be considered further.

The objective of this paper is to evaluate (3) using various ISE methods, where we compare
not only extrapolation methods (§2), but also choices for xi, the endpoints of the integrals in
(2) (§3). Further, we shall consider evaluating (3) for arbitrary n (§4). In all the literature of
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which we are aware, the only numerical examples given are for the Bessel functions J0 or J1

only. For larger orders, Bessel function behaviour is more complex, and we shall see that more
numerical care is required.

2 Extrapolation Methods

We consider here various extrapolation techniques, which we wish to compare when using ISE
methods to evaluate (3).

2.1 The Euler Transform

The Euler transform is the most commonly employed choice for improving the convergence of
a (slowly) converging sequence (Davis and Rabinowitz [3]). Given a sequence of terms {ui}∞i=0,
their infinite sum may be written as

∞
∑

i=0

ui =
1

2

(

u0 + Mu0 + M2u0 + . . .
)

, (5)

where M is the forward average operator, and Mu0 = (u0 + u1)/2, M2u0 = M(Mu0) =
(u0 + 2u1 + u2)/4 etc. It can be shown that the right hand series of (5) converges to the same
value as the left hand series, and often much more rapidly. Often it is desirable to start with
a later term, say um, so that

∞
∑

i=0

ui =
m−1
∑

i=0

ui +
1

2

[

um + Mum + M2um + . . .
]

. (6)

Unfortunately, there is no obvious way of choosing m to optimize the result obtained from (6).
Lyness [10] used the Euler transform with the forward average operator. The form quoted in
Davis and Rabinowitz [3], which uses the forward difference operator instead of the forward
average operator shown here, can only deal with purely oscillatory sequences of terms. A
purely oscillatory sequence can be written as {(−1)iui}∞i=0, where all the ui’s are of the same
sign.

2.2 The ε-algorithm

A well-known transform, originally due to Shanks [15], became known as the ε-algorithm after
Wynn [22] introduced an efficient computational algorithm to aid in its evaluation. The ε-
algorithm is a nonlinear transformation of a sequence of (slowly) converging numbers which
identifies oscillatory transients in the sequence and attempts to remove them. Given a sequence
of partial sums {An}∞n=0, we define

ε
(−1)
n = 0, ε

(0)
n = An,

ε
(p)
n = ε

(p−2)
n+1 +

[

ε
(p−1)
n+1 − ε

(p−1)
n

]

−1
.

(7)

Then ε
(2k)
n is identified as the kth Shanks’ transform of the sequence {An}.
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2.3 The mW transform

Sidi [16] introduced an extrapolation technique, known as the W transform, for a large class
of infinite oscillatory integrals. This technique requires asymptotic information about the
integrand as the integration variable tends to infinity. Later, Sidi [18] introduced the modified
W, or mW, transform, where the only asymptotic information required is the eventual distance

between the zeros of the integrand. The mW transform to evaluate

∫

∞

a
g(x) dx is described

in Sidi [18] as

F (xs) =

∫ xs

a
g(x) dx, ψ(xs) =

∫ xs+1

xs

g(x) dx,

M
(s)
−1 = F (xs)/ψ(xs), N

(s)
−1 = 1/ψ(xs),

M (s)
p =

(

M
(s)
p−1 −M

(s+1)
p−1

)/ (

x−1
s − x−1

s+p+1

)

,

N (s)
p =

(

N
(s)
p−1 −N

(s+1)
p−1

)/ (

x−1
s − x−1

s+p+1

)

,

W (s)
p = M (s)

p

/

N (s)
p ,

(8)

for s = 0, 1, . . . and p = 0, 1, . . .. Here, the xs’s are the zeros of g after a. At the pth level

of the transform, W
(0)
p gives the best approximation to the integral

∫

∞

a
g(x) dx, and involves

p+ 3 terms in the expansion of (2).

For the case of the oscillatory integral (3), where g(x) = f(x)Jn(x), Sidi [18] calculated
integrals with a = 0 and n = 0 or 1. For these cases, the integral endpoints were chosen as
xs = (s+ 1)π, s = 0, 1, . . ..

3 Choosing the Interval Endpoints

The ISE method typically involves integration between the zeros of the oscillatory function.
For the case that the oscillatory function is trigonometric, finding zeros is a trivial exercise.
However, finding the zeros of a Bessel function is more difficult. In this section, we first review
previously available methods for obtaining zeros of Bessel functions, and then outline a simple
but very efficient procedure, based upon Newton’s method, for evaluating the zeros of a Bessel
function of any order. We also describe a simple modification due to Lyness [10] which avoids
the need to evaluate exact zeros for the interval endpoints needed for integration.

3.1 Finding the Zeros of a Bessel Function of Arbitrary Order

Finding the zeros of a Bessel function Jn(x) is an interesting problem, for which no routine
is currently available in IMSL [23]. The use of tabulated results is possible (e.g. Olver [12]),
but this would involve a large amount of data entry, and would be useless if the particular
order n of interest is not tabulated, or if more zeros are required than are available. Several
asymptotic results for finding zeros are also given in [12], but these are of limited use for a
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general numerical procedure. Recently, Ikebe et al. [7] outlined a method for finding the
zeros of a Bessel function of any order using a formulation that involves forming a tridiagonal
symmetric matrix whose eigenvalues are the zeros. An error estimate for the results is also
reported. The disadvantage of the method of Ikebe et al. [7] is that an eigenvalue problem
has to be solved, and a matrix large enough to guarantee the required accuracy for a given
number of zeros must be formed. If more zeros are required than are calculated initially, then
a larger matrix has to be formed and its eigenvalues determined. Also, time may be wasted
finding zeros that are not necessary. A referee has made us aware of Temme [21], which we
will comment on further at the end of this section.

As an alternative to the above procedures, we outline here a method for calculating the
zeros of Jn(x) for arbitrary n, where further zeros are calculated only as required, with high
accuracy, and with minimal computational effort. The only assumption is the availability of a
routine to calculate accurately a Bessel function for a particular argument x, e.g. the IMSL
routine dbsjns( ). We shall use the standard notation that the ith zero of Jn(x) is denoted
by jn,i.

It is known (e.g. Sneddon [20]) that for large x,

Jn(x) ∼
√

2

πx
cos

(

x− nπ

2
− π

4

)

, (9)

which implies that for large x the zeros of Jn(x) are separated by approximately π. Thus, if
we know the zero jn,i−1, we can say that jn,i ∼ jn,i−1 + π. Newton’s method can be used to
improve this approximation to jn,i. Using the identity

J ′

n(x) =
n

x
Jn(x) − Jn+1(x), (10)

the Newton iteration is

xi+1 = xi −
Jn(xi)

n
xJn(xi) − Jn+1(xi)

. (11)

It is convenient when using (11) that the routine dbsjns( ) returns the values of all Bessel
functions up to a given order for a particular x. The zeros of Jn(x) can be seen in figure 1,
where plots of Jn(x) for n = 0, 10 and 50 are shown.

While adding π is acceptable for an approximation of the next zero for large x, the estimate
is unacceptable for initial zeros, especially for large n, as is clear from figure 1. For a particular
n, the distance between zeros is largest between initial zeros, and this separation converges to
π as x → ∞. This behavior suggests an efficient scheme for finding the next zero: given two
previous zeros jn,i−2 and jn,i−1, approximate jn,i by

jn,i ' jn,i−1 + (jn,i−1 − jn,i−2) for i ≥ 3, (12)

and use the Newton iteration (11) to improve the approximation. Since (12) cannot be used
for i = 1 or 2, we may instead utilize the asymptotic results of Olver [11], that

jn,1 ∼ n+ 1.8557571n1/3 + 1.033150n−1/3 − 0.00397n−1−
0.0908n−5/3 + 0.043n−7/3 + . . . , and

jn,2 ∼ n+ 3.2446076n1/3 + 3.158244n−1/3 − 0.08331n−1−
0.8437n−5/3 + 0.864n−7/3 + . . . , for n ≥ 1.

(13)
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Figure 1: Graphs of the Bessel functions J0(x), J10(x), and J50(x). For large orders, the
difference between initial zeros is much larger than π.

The results in (13) are asymptotic expansions for large n, but even for n = 1 the results
are acceptable as initial approximations for Newton’s method. For n = 0, the known zeros
j0,1 ' 2.404826 and j0,2 ' 5.520078 can be used.

We thus propose the following method for finding the zeros jn,i of Jn(x): for i = 1 and 2, use
(13) as an initial approximation, and use the Newton iteration (11) to improve the accuracy.
For i > 2, use (12) as an initial approximation for (11). We have found that typically 3-5
iterations of (11) yield machine accuracy for the zeros in double precision FORTRAN, and
the approach has the further advantages that zeros can be calculated as needed, and only as
many as are necessary are obtained. The method and implementation is fast and general. For
example, when demanding machine accuracy, which is about sixteen figures in double precision
FORTRAN on a Sun Sparc 10, calculating the first one hundred zeros of J0(x) took less than
0.1 seconds of CPU, the first one hundred zeros of J100(x) took approximately 0.1 seconds,
and the first one hundred zeros of J995(x) took approximately 0.5 seconds.

Temme [21] used a very similar procedure to that described here. A higher order version
of Newton’s method and a far more complicated method for approximating the zeros initially
are described. While Temme [21] reports typically 1-3 iterations are required (compared to
3-5 for our implementation), each iteration is computationally more expensive, as is initially
approximating the successive zeros. We feel that the simplicity of the method described here
is worth consideration.

3.2 Lyness’ Modification

Lyness [10] suggested a simple modification to the ISE method, based on the observation that
calculation of the zeros jn,i was more difficult and time consuming than the actual evaluation
of integrals and subsequent extrapolation: due to the asymptotic result (9), choose interval
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endpoints π apart. For the case a = 0 in (1), the two possibilities considered were

x0 = 0, xj = π

(

j + k +
3

4
+
n

2

)

, (14)

and

x0 = 0, xj = π

(

j + k +
1

4
+
n

2

)

, (15)

where (14) corresponds asymptotically to the zeros of Jn(x), and (15) to the extrema. k
is an integer chosen so that x1 is beyond the first zero or extrema, respectively, of Jn(x).
The use of (15) means each integral involves half the integrand positive and half negative, so
the magnitude of the integrals is likely to be smaller than the corresponding integrals with
integrands that are either always positive or negative, and hence the oscillation in the partial
sums will be smaller, and convergence should be improved. Thus, Lyness proposed using (14)
or (15) instead of the actual zeros as a way to improve the efficiency of the integration method.

The method recommended by Sidi [18] for the mW transform in fact uses this technique
of assuming all integration intervals are π apart, but uses multiples of π as endpoints as
opposed to the endpoint values determined by (14) or (15). It should be noted that Sidi [18]
independently arrived at this choice of endpoints as a particular case for Bessel functions – the
mW transform is applicable to a wide range of oscillatory infinite integrals.

4 Comparison of Methods

There are several different possible combinations of extrapolation and endpoint choices avail-
able for an ISE method to evaluate infinite integrals involving Bessel functions. We consider:

euler – using the Euler transform with the Bessel function zeros jn,i as endpoints,

mW – using the mW transform with multiples of π as endpoints, as used by Sidi [16, 18],

mW offset – using the mW transform with multiples of π as endpoints, but choosing the first
end point such that it is greater than the first zero of Jn(x),

mW zeros – using the mW transform with Bessel function zeros as endpoints,

mW extrema – using the mW transform, modified with the recommendation of Lyness [10]
to use approximate extrema as endpoints defined as

xi =
1

2
(jn,i + jn,i+1) , (16)

eps zeros – using the ε-algorithm with Bessel function zeros as endpoints,

eps extrema – using the ε-algorithm with endpoints as defined in (16),

eps app zeros – using the ε-algorithm with endpoints as defined in (14), where the first
endpoint is greater than the first zero of Jn(x).
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We evaluate all integrals on [xi, xi+1] using the routine dqag( ) from Piessens et al. [13], with
a requested relative error bound of 10−12. Due to the smooth nature of the integrands, most
integrals for our test problems require only one application of the fifteen point Gauss-Kronrod
rule, and numerical results are accurate to machine precision.

As a first test, we apply the euler, mW and eps zeros methods to the set of integrals

(a)

∫

∞

0
x2J0(x) dx = −1,

(b)

∫

∞

0

1

2
ln(1 + x2)J1(x) dx = K0(1) ' 0.42102 44382 40708 333,

(c)

∫

∞

0

x

1 + x2
J0(x) dx = K0(1), and

(d)

∫

∞

0

1 − e−x

x ln(1 +
√

2)
J0(x) = 1.

(17)

These integrals are based on examples from Hasegawa and Sidi [6], Sidi [18] and Piessens et al.

[13]. The reader may note that integral (17a) is formally divergent, but converges in the sense
of Abel summability (see Sidi [17]). The particular methods chosen to numerically evaluate
these integrals are the standard ones used by Blakemore et al. [1] and Sidi [18]. Figure 2
compares the relative error to the number of intervals that have to be integrated in equation
(2). As expected, the Euler transform is inferior to the ε-algorithm. We have observed this
result for a wide variety of sequences, not just those produced in infinite oscillatory integral
evaluations. The Euler transform will not be considered further. Also, in the cases (a), (c) and
(d), we observe the superior performance of the mW transform compared to the ε-algorithm.
The mW transform seems much more efficient than the ε-algorithm, which contradicts the
conclusion of Evans [4] for infinite oscillatory integrals where the claim is made that the mW
transform has a similar effectiveness to the ε-algorithm.

As mentioned earlier, to the best of our knowledge, all previous tests of numerical methods
for infinite integrals involving Bessel functions were only for J0 and J1. We now compare the
various methods for Bessel functions of higher order. As a test integral, we will evaluate

∫

∞

0

x

1 + x2
Jn(x) dx =











0.42102 44382 4071 for n = 0, (a),
9.89705 45308 402 × 10−2 for n = 10, (b),
9.99899 97000 302 × 10−3 for n = 100, (c).

(18)

The numerical results were obtained by successively using more terms in the sequences until
the returned results were the same to machine precision. The same results shown here were
obtained regardless of which of the converging extrapolation methods was used. Figures 3,
4 and 5 show respectively the relative error versus number of intervals versus for the three
cases in equation (18), where we compare both the extrapolation method and the manner of
choosing integration endpoints.

Figure 3 shows the results for the integral (18a), which is the same integral as (17c). Error
curves for the mW offset and eps app zeros methods are not included. The mW offset method
is identical to the mW method here because the first zero of J0(x) is less than π. The eps app

zeros method error curve is virtually identical to that for the eps zeros method since for small
n (9) is quite a good approximation, and the approximate zeros of (14) are very close to the
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Figure 2: Comparing relative error to number of intervals used to numerically approximate
the infinite integrals in (17). The ISE methods euler, mW and eps zeros are used.
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Figure 3: Comparing relative error to number of intervals for the integral in (18) for n = 0 by
various methods.

actual zeros. Thus, the sequences produced by the eps zeros and eps app zeros methods are
almost identical, and the error curves on applying extrapolation are indistinguishable. In fact,
if for n = 0 any method that uses zeros or extrema instead uses the approximations to these
values as given by (14) or (15), then the error curves are again the same as those found using
zeros or extrema. Figure 3 illustrates that using extrema as endpoints gives sequences with
less error, as predicted by Lyness [10]. The choice of endpoints π apart other than at zeros or
extrema gives an error curve in between those for zeros and extrema. This result explains why
the mW method gives an error curve between those for mW zeros and mW extrema. The mW

extrema method gives the best result for integral (18a), but there is little to choose between
any of the three methods that are based upon the mW transform.

Figure 4 shows the results for integral (18b), where we are now dealing with the J10(x), a
Bessel function of moderate order. The error curves for both the mW and mW offset methods
are poor. The number of intervals has to be extended beyond forty before these curves regain
a downward trend. The eps app zeros method, which is similar to the mW and mW offset

methods in that endpoints are chosen exactly π apart, does not perform worse than the eps

zeros or eps extrema methods. We do see, however, that the methods involving exact zeros or
extrema continue to perform as well as for (18a) with the mW extrema method again giving
the best error curve.
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Figure 4: Comparing relative error to number of intervals for the integral in (18) for n = 10
by various methods.

Figure 5 shows the results for integral (18c), where we now have the Bessel function of high
order J100(x). Since J100(x) < 10−20 for x < 50, the mW method is not shown because it does
not give meaningful results since it implies convergence to zero before the oscillatory nature
of J100(x) occurs. The mW offset method is not much better. Its error curve stays roughly
constant and high beyond fifty intervals. The eps app zeros method is converging, but it is
doing so much slower than the eps zeros method. As for the example in figure 4 for J10(x),
the methods involving exact zeros or extrema perform the best. In this case, the convergence
rate of the mW transform is no better than that for the ε-algorithm, but does have an offset
downwards. We again conclude that the mW extrema method is the best method for this
integral.

Another possible choice of interval endpoints, suggested by a referee, are the McMahon’s
expansions for Bessel function zeros or extrema. These approximations to the zeros jn,i, given
as β−(4n2−1)/8β where β = (i+n/2−1/4)π, are much better than those in (14). When used
in conjunction with the ε-algorithm, the McMahon zeros give error curves for the integrals in
(18) between those for eps zeros and eps app zeros. When used with the mW transform, we
find that the error curve for (18b) has the same slope as mW zeros but is shifted upwards,
while the result for (18c) is no better than that for mW offset. This shows that a more accurate
approximation of Bessel function zeros improves the eficiency of the extrapolation methods,
and in the case of the mW transform increases the order of the Bessel function where the mW
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Figure 5: Comparing relative error to number of intervals for the integral in (18) for n = 100
by various methods.

method fails. However, knowledge of the actual zeros still gives the best results.

Based on the examples shown in figures 3-5, our conclusion is that the mW extrema method
is the best method for evaluating infinite integrals involving Bessel functions of arbitrary order.
As the results of figures 4 and 5 illustrate, knowledge of the zeros of the Bessel function is more
important as n increases beyond zero or one. An improved understanding of this fact can be
gained by comparing the sequences of partial sums for the cases where approximate and exact
zeros are used as endpoints of the intervals for (18c) – see figure 6. The number of terms
shown are those required to give a relative error of at most 5 × 10−7 using the ε-algorithm –
the methods eps zeros and eps app zeros. We see that the sequence for exact zeros is purely
oscillatory, while that for approximate zeros is oscillatory, but not term by term, and the error
at successive terms is not necessarily decreasing, although the overall trend is convergent.

The results of figures 3–5 show that the mW transform is better able to accelerate conver-
gence for purely oscillatory sequences than the ε-algorithm, and the results of figures 4 and
5 show that the mW transform only seems to work well for purely oscillatory sequences, but
performs better than the ε-algorithm in these cases. The mW offset method could be adjusted
by choosing the first endpoint as a multiple of π large enough that the terms ψ(xs) in (8) are
purely oscillatory, but the initial integral would then be over a potentially large number of
oscillations and require substantial effort to evaluate, thus making the mW offset method still
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Figure 6: The sequences of partial sums in evaluating (18c) using an interval of π (Approximate
Zeros), and knowing the zeros of J100(x) (Exact Zeros). The terms shown are those required
for a relative error of at most 5× 10−7 using the ε-algorithm. The value of the integral, which
the sequences are converging to, is shown as the horizontal line.

much less efficient than the mW zeros or mW extrema methods. The mW transform works
perfectly well on J0(x) or J1(x) with endpoints as multiples of π because the distance between
zeros of these Bessel functions is already almost exactly π, and so a purely oscillatory sequence
is obtained. Therefore, in terms of an overall comparison, we can conclude that the ε-algorithm
is a more robust sequence accelerator than the mW transform for infinite oscillatory integral
problems, but if the endpoints can be chosen to guarantee a purely oscillatory sequence, then
the mW transform shows its superiority.

5 Automatic Implementation of ISE Methods

When implementing an ISE method such that a solution can be obtained with a requested error
bound, consideration has to be given to a stopping criterion for the extrapolation and an error
bound for the integration on each interval. Piessens et al. [13] provided a program to implement
the eps zeros method, although a routine to find the zeros of the Bessel function is required
by the reader. This program uses the same error bound for each interval integral as for the
final solution, and uses the routine dqags( ) to evaluate the integrals. The routine dqags( )
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uses a twenty-one point Gauss-Kronrod rule as its base rule, which is typically only applied
once on each interval. The routine dqext( ) implements the ε-algorithm as well as returning
an error estimate which is used as a stopping criterion. The error estimate is calculated as the
maximum difference between the current and last three extrapolated results, and so is often
pessimistic. Recently, Hasegawa and Sidi [6] have implemented an automatic routine using the
mW transform, and use the difference between the current and previous extrapolated results
as an error estimate. Unfortunately, this could cause problems when successive values obtained
from the transform are close together. As an example, this stopping criterion could fail for
integral (17c), where we can see from figure 2c that the ninth and tenth interval results are close
together, and could suggest a lower error estimate than the actual error. As a compromise, we
suggest the intermediate error estimate of the maximum difference between the current and
the previous two extrapolated results.

Our experience has shown that Gauss-Kronrod rules are very effective as integration rules
which also provide an error estimates. Gauss-Kronrod rules are 2N + 1 points rules, where
N+1 points are optimally added to an N point Gauss-Legendre rule, and the error estimate is
the difference between the 2N+1 point rule and the embeddedN point rule. The QUADPACK
package [13] uses Gauss-Kronrod rules extensively, and the smallest such rule available is a
fifteen point rule, which is used as part of an adaptive method in the routine dqag( ) to
provide an excellent general purpose integration tool. The integrals in an ISE method are
typically over a half cycle of an oscillation and have smooth integrands. Gauss style rules
converge quickly on smooth integrals as the order of the rule increases, and so the error estimate
from a Kronrod rule will typically be quite pessimistic here. Hasegawa and Torii [5] have
developed a rule based on Chebychev series expansion, where successive rules for comparison
have smaller increments than doubling, and sophisticated error estimates are provided that
ensure, for smooth integrands, an almost minimum number of function evaluations are required
for a particular error bound. They extend this method to oscillatory integrands involving
trigonometric functions, and provide results that have extremely low numbers of function
evaluations. The Hasegawa and Torii [5] technique, along with the mW transform, is used
by Hasegawa and Sidi [6], and applied to some infinite integrals involving Bessel functions of
the zeroth and first order. The number of function evaluations reported are typically a factor
of two to three lower than simply using dqag( ) over each interval with the mW transform,
mainly due to pessimistic error estimates from the Gauss-Kronrod rule. For low order Bessel
functions, the method of Hasegawa and Sidi [6] may indeed be the most efficient routine to
evaluate integrals such as (3).

When using an automatic version of an ISE method to evaluate infinite oscillatory integrals,
it is error versus number of function evaluation curves that give a guideline to efficiency. When
a comparison of the above methods is done with respect to number of function evaluations,
the same results already described are found. However, for the n = 10 and 100 cases, the
error curves for extrema methods are only just superior to those using zeros, sometimes even
crossing. For n = 0, the difference between extrema and zero methods is as marked as in figure
3. The reason for this is that the first interval for extrema methods is longer than that for
zero methods. More function evaluations are thus required for this first interval for extrema
methods than zero methods to satisfy the same error bound. This problem is exacerbated as
n increases due to the increasingly complicated form of Jn(x) as n increases. However, we still
find the mW extrema method to be superior by this criterion.
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6 Conclusion

We have considered here various extrapolation methods and ways of choosing interval endpoints
for the evaluation of infinite integrals involving Bessel functions of arbitrary order. We conclude
that the mW transform is the best accelerator available, with the proviso that the method
described by Sidi [18] is extended by choosing the interval endpoints as the average of successive
zeros of the Bessel function in the integrand – the mW extrema method described above.
In reaching this conclusion, we have outlined a simple but nevertheless efficient method for
calculating successive Bessel function zeros based on Newton’s method.

It should also be noted that the above derivation does not require that the Bessel function
is of integer order. By using the IMSL routine dbsjs( ), which evaluates Bessel functions of

real order, we have evaluated by the same methods

∫

∞

0
f(x)Jν(x) dx for ν real and greater

than or equal to zero.
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