
Evaluating infinite integrals involving products of Bessel

functions of arbitrary order

S.K. Lucas

Division of Applied Sciences

Harvard University

Cambridge MA 02138 U.S.A.

Submitted April 1994, Revised August 1994.

Abstract

The difficulties involved with evaluating infinite integrals involving products of Bessel
functions are considered, and a method for evaluating these integrals is outlined. The
method makes use of extrapolation on a sequence of partial sums, and requires rewriting
the product of Bessel functions as the sum of two more well-behaved functions. Numerical
results are presented to demonstrate the efficiency of this method, where it is shown to be
significantly superior to standard infinite integration routines.

1 Introduction

We are concerned here with the evaluation of integrals of the form

Ia,b,ρ,τ =

∫

∞

0
f(x)Ja(ρx)Jb(τx) dx, (1)

where a, b are non-negative integer constants, and ρ, τ are positive real constants. Integrals
such as (1) occur in problems involving particle motion in an unbounded rotating fluid (Tan-
zosh and Stone [10] and Davis [2]), in magnetohydrodynamic flow, crack problems in elasticity
(Tezer [11]), and distortions of nearly circular lipid domains (Stone and McConnell [9]). Stan-
dard integration techniques, such as the infinite integration routine in the IMSL package [13],
which is in fact a routine from the QUADPACK integration library of Piessens et al. [7],
perform extremely poorly on infinite integrals with an oscillatory integrand, and the form of
the oscillation of products of Bessel functions makes the IMSL routine even less useful. Linz
and Kropp [3] outlined a method for evaluating I0,0,ρ,τ which involves a double integral on
[0, ρ] × [0, τ] whose integrand is itself an infinite integral with a cosine kernel that was evalu-
ated using standard Fourier integral routines. While this method works for general ρ and τ , our
investigations have shown it to be very expensive in terms of number of function evaluations,
and not much better than simply using the IMSL routine.

1

Lucas and Stone [4] have considered the simpler problem of evaluating integrals of the form

∫

∞

0
f(x)Jn(x) dx, (2)

for arbitrary n. Such integrals are best evaluated using an integration, summation, then
extrapolation method, henceforth indicated as ISE. The range is typically subdivided at the
zeros of Jn(x), and a series of results of alternating sign are summed to compute the integral.
Since the sequence of partial sums usually converges slowly, an extrapolation technique is used
to accelerate convergence. Lucas and Stone [4] showed that the mW transform of Sidi [8] was
the most efficient extrapolation technique for the ISE method, where the range was divided
at the zeros of Jn(x) rather than at multiples of π as used in [8]. Marginally better results
were obtained when the midpoints of successive zeros of Jn(x) were used as endpoints. An
automatic integration routine based on these results is easily implemented as described in [4].

Unfortunately, an ISE method as presented in Lucas and Stone [4] cannot simply be ap-
plied to integrals such as (1). For example, figure 1 plots J10(x) as well as the product
J5(x)J10(3x/2). An ISE method is most efficient for evaluating integrals such as (2), since the
essentially sinusoidal oscillation due to a single Bessel function, e.g. J10(x), is straightforward
to integrate, and leads to a sequence of results of alternating sign. As shown in figure 1,
the oscillation caused by a product of Bessel functions such as J5(x)J10(3x/2) is more com-
plicated, resulting from the combination of two oscillating functions, one of higher frequency
superimposed upon one of lower frequency. When an infinite integral involving J5(x)J10(3x/2)
is approximated by an ISE method using the zeros of J5(x)J10(3x/2) as integral endpoints, the
series of results is not of alternating sign, and extrapolation gives results which are no better
– and often poorer – than the sum of results, which converge slowly to the integral value.

To circumvent the above difficulties, we describe a method whereby we rewrite the product
Ja(ρx)Jb(τx) as the sum of two oscillating functions, and an ISE method to evaluate integrals
such as (2) is applied twice to evaluate integrals with the form (1). Several complications
involved in the method are addressed also. The numerical tests reported here show that
extremely good results approaching machine precision can be obtained with under a thousand
function evaluations, which compares extremely well to the IMSL infinite integraion routine,
which typically returns at most a few digits of accuracy for up to fifteen thousand function
evaluations.

2 Simplifying the Integrand

Wong [12] observed that J 2
ν (t) can be written using Hankel functions H

(1)
ν (t) and H

(2)
ν (t) as

J2
ν (t) =

1

4

{

[H(1)
ν (t)]2 + [H(2)

ν (t)]2
}

+
1

2
H(1)

ν (t)H(2)
ν (t)

=
1

2

[

J2
ν (t) − Y 2

ν (t)
]

+
1

2

[

J2
ν (t) + Y 2

ν (t)
]

,

(3)

where Yν(t) is the Bessel function of the second kind. Using asymptotic results for Hankel
functions, Wong [12] showed that for large t the first term on the right hand side of (3) is
oscillatory, and the second term is monotonically decreasing.

2

0 10 20 30 40 50

-0.2

-0.1

0.0

0.1

0.2

0.3

x

J5(x)×J10(3x/2)

J10(x)

Figure 1: Graph of the functions J10(x) and J5(x)J10(3x/2).

As a generalization of the above result, we write

Ja(ρx)Jb(τx) = h1(x; a, b, ρ, τ) + h2(x; a, b, ρ, τ), (4)

where

h1(x; a, b, ρ, τ) =
1

2
{Ja(ρx)Jb(τx) − Ya(ρx)Yb(τx)} , and

h2(x; a, b, ρ, τ) =
1

2
{Ja(ρx)Jb(τx) + Ya(ρx)Yb(τx)} .

(5)

Using the asymptotic results, valid for large x,

Ja(ρx) ∼
√

2

πρx
cos

(

ρx − aπ

2
− π

4

)

, and

Ya(ρx) ∼
√

2

πρx
sin

(

ρx − aπ

2
− π

4

)

,

(6)

it can be shown that, provided x � 1,

h1(x; a, b, ρ, τ) ∼ 1

π
√

ρτx
cos

{

(ρ + τ)x − (a + b + 1)π

2

}

, and

h2(x; a, b, ρ, τ) ∼ 1

π
√

ρτx
cos

{

(ρ − τ)x +
(a − b)π

2

}

.

(7)

Thus, for ρ 6= τ , both h1 and h2 asymptotically approach cosine functions, in a similar manner
to the Bessel function Ja, and an ISE method will be as effective for integrating h1 or h2 on

3

an infinite interval as for integrating Ja. If ρ = τ , h1 still approaches a cosine function, but
h2 approaches a monotonically decreasing function, which can be integrated easily using the
IMSL routine for infinite integrals dqdagi(). The high frequency behaviour of Ja(ρx)Jb(τx)
is represented by h1, while the low order frequency behaviour is represented by h2. This
splitting of Ja(ρx)Jb(τx) into the functions h1 and h2 is analogous to the trigonometric identity
cos A cos B = {cos(A − B) + cos(A + B)}/2.

3 Implementing the ISE Method

Once Ja(ρx)Jb(τx) has been rewritten using (4) and (5), an ISE method can be applied to

both

∫

∞

0
f(x)h1(x; a, b, ρ, τ) dx and

∫

∞

0
f(x)h2(x; a, b, ρ, τ) dx, using the mW transform and

the zeros of h1 and h2 respectively. However, there are some complicating factors which must
be considered. The functions h1 and h2 are singular at zero due to the nature of Ya, and while
the zeros of h1 are easy to find (see §3.2) those of h2 can be difficult to find for all values of
the parameters a, b, ρ and τ .

3.1 The Singular Nature of h1 and h2 at x = 0

While Ja(x) is well behaved at x = 0, Ya(x) is singular at x = 0. The singularity is logarithmic
for a = 0, and of the form x−a for a > 0. For a, b > 0, definite integrals with left endpoint
x = 0 that involve the functions h1 or h2 do not exist. The easiest way around this problem is
to integrate h1 and h2 on intervals with left endpoints greater than zero. While the first zeros
of h1 and h2 are obvious choices for the left endpoints, our experience has shown that they are
not the best ones. If one of the Bessel functions of the second kind is of large magnitude while
the other oscillates, the initial oscillations of the product Ya(ρx)Yb(τx) have large magnitudes,
and dominate the results of integrals involving h1 or h2. Since the contributions to h1 and h2

from Bessel functions of the second kind are of opposite sign, these large magnitude results
will cancel when the integrals involving h1 and h2 are summed, and we thus have a case
of catastrophic cancellation, where a loss of accuracy occurs by taking the difference of two
almost identical numbers. This effect is magnified since there is inherent numerical error in
the calculation. A more accurate numerical approximation is obtained if the left endpoints
of the integrals involving h1 and h2 are zeros of h1 and h2 in the region where the term
Ya(ρx)Yb(τx) no longer dominates. We thus choose the left endpoint to be the largest of the
first zeros of Ya(ρx) and Yb(τx), which we label ymax. Up to ymax, we can simply evaluate
∫ ymax

0
f(x)Ja(ρx)Jb(τx) dx using an adaptive method such as IMSL’s dqdag() [13]. Since

this integrand is smooth, a result of high accuracy can be obtained easily. Even if a and b differ
significantly, Ja(ρx)Jb(τx) on [0, ymax] will only have a finite number of oscillations, usually
just a few, and an adaptive rule will still be adequate. Thus, to avoid the singular nature of
h1 and h2 at x = 0, we calculate the integral (1) as

∫

∞

0
f(x)Ja(ρx)Jb(τx) dx =

∫ ymax

0
f(x)Ja(ρx)Jb(τx) dx +

∫

∞

ymax
f(x) (h1(x; a, b, ρ, τ) + h2(x; a, b, ρ, τ)) dx.

(8)

4

3.2 Evaluating the Zeros of h1 and h2

To use the mW transform effectively, we need to locate the zeros of h1 and h2, where the ith
zero of hj (j = 1 or 2) is denoted as hj,i. For a, b = 0 or 1, using the zeros of the cosine
approximations to h1 and h2 in (7) is perfectly acceptable. For larger a or b, the simple but
highly efficient Newton method of finding zeros of Bessel functions is applicable [4]; given hj,i−2

and hj,i−1 for j = 1 or 2, we first approximate hj,i by hj,i−1 + (hj,i−1 − hj,i−2), and improve
the approximation of the zero to high precision using Newton’s method. For Jν(x) and Yν(x),
asymptotic expansions are available which can be used with Newton’s method to find the first
two zeros to initialize the method. Unfortunately, such expansions are not available for h1 or
h2.

However, we are not interested in the first zeros of h1 or h2, but are interested in the first
zeros after the largest of the first zeros of Ya(ρx) and Yb(τx). If we redefine hj,1 as the first zero
of hj after the Bessel functions of the second kind no longer dominate for j = 1 or 2, then they
can be found as follows: find an approximation to the first zeros of Ya(ρx) and Yb(τx) from
the appropriate asymptotic expansion. Olver [6] showed that the first zero of Ya(x), denoted
ya,1, is approximately

ya,1 ' a + 0.9315768a1/3 + 0.260351a−1/3 + 0.01198a−1−
0.0060a−5/3 − 0.001a−7/3 +

(9)

While this asymptotic approximation only achieves high accuracy for large a, it still gives
results of sufficient accuracy for our purposes for a ' 1. Starting from the largest of the two
initial zeros, increase x with sufficiently small increments until two successive values of the
function hj have different sign. Take the midpoint of these two successive values as the initial
approximation to hj,1, and use Newton’s method to obtain a more accurate result. To then
find hj,2, start with hj,1 and again take sufficiently small steps in x until there is a change in
sign, and use Newton’s method to get a more accurate result. Once hj,1 and hj,2 have been
found, later zeros can be found by the stepping method described above.

To complete the algorithm, we need a definition of ‘sufficiently small increments’ for x.
Using the asymptotic results (7), we know that for large x the zeros of h1 and h2 are separated
by π /(ρ + τ) and π /|ρ − τ | , respectively. For most values of the parameters a, b, ρ, and τ ,
these asymptotic values are approached quickly, and the initial separation between zeros is
reasonably close to the asymptotic value. Thus, a reasonable choice for sufficiently small steps
is π /[4(ρ + τ)] for h1 and π /[4 |ρ − τ |] for h2. However, if ρ/τ ' 1 and a and b are widely
separated, then there are further complications due to nonregular behaviour of h2, which we
shall discuss next.

3.3 Initial Poor Behaviour of h2

For cases where a and b are close together (e.g. |a − b| ≤ 5), h2 is well behaved. However, as
the orders of the Bessel functions are increasingly separated, h2 will not immediately approach
simple oscillatory behaviour for ρ ' τ . Figure 2 plots h2(x) when the orders are separated by
20 and 100, and ρ ' τ . The plots begin at the first zero of h2 after the Bessel functions of
the second kind no longer dominate. We see that there is an intermediate region before simple

5

oscillation begins, or oscillation begins immediately, but with increasingly small initial gap
between zeros as the difference between orders increases. The larger the difference between
orders of the Bessel functions, the larger the range of ρ/τ for which h2 exhibits this interme-
diate behaviour. For ρ/τ sufficiently different from one, h2 will settle into simple oscillation
immediately. It should be noted that h1 is perfectly well behaved whatever values of the pa-
rameters are used; it is only the low frequency behaviour of Ja(ρx)Jb(τx) which exhibits poor
behaviour.

Finding the zeros of h2 for examples such as those in figure 2 will not be successful by the
method described in section §3.2. Indeed, it is only where h2 settles down to simple oscillation
that we should apply extrapolation to improve convergence. Unfortunately, there is no simple
analytic method for deciding where simple oscillation will begin, based on knowing a, b, ρ and
τ . However, there is a way around this problem.

Lyness [5] observed that it is not really necessary to know the exact zeros of a Bessel function
to use extrapolation as a method for evaluating integrals such as (2). Lyness suggested using
the zeros of the asymptotic cosine approximation (6a) to the Bessel function as endpoints for
integration, and using extrapolation on these partial sums. In Lucas and Stone [4], it was
shown that this method, using the ε-algorithm for extrapolation, could be used even for large
order Bessel functions, although results were somewhat poorer than for the case where the
zeros of the Bessel function were used. This suggests that instead of using the exact zeros of
h2, which are difficult to find numerically when ρ ' τ and a and b are well separated, we can
use the zeros of h2’s asymptotic approximation (7b). While the initial terms in the sequence of
partial sums will not be converging until the oscillatory behaviour of h2 begins, the ε-algorithm
as implemented in QUADPACK’s routine dqext() is such that early poor results are ignored,
and when convergence begins, it is detected and appropriate extrapolated results returned.

Since there is no simple way of deciding whether the parameters for a particular integral
are such that h2 will not initially be well behaved beyond actually plotting h2 and observing
the form of the function, if there is any doubt then after the Bessel functions of the second
kind no longer dominate we recommend using the zeros of (7b) as the endpoints of integrals,
which leads to a sequence of partial sums for the integral involving h2. The ε-algorithm is used
for extrapolation in this case. Again, we emphasize that h1 is always well behaved, its exact
zeros can be found quickly and easily in all cases, and the mW transform will be the most
efficient extrapolation technique for the integral involving h1.

3.4 Algorithm For the Method

Now that the complications due to the singular nature of h1 and h2 at x = 0 and the possible
poor behaviour of h2 have been recognized, we outline an algorithm for the solution of infinite
integrals involving the product of Bessel functions (1). The routines dqdag() and dqdagi(

) are IMSL [13] routines for adaptive integration over finite and infinite integrals respectively,
dqext() is the QUADPACK [7] routine which implements the ε-algorithm, and mWtrans()

is a routine to implement the mW transform of Sidi [8]. The algorithm we propose here is
outlined in figure 3. For a given function f(x), parameters a, b, ρ and τ , and a requested
error bound, we return the integral value as well as an estimate of its error, and the number
of function evaluations required.

6

0 100 200 300

-0.010

-0.005

0.000

0.005

h2(0,20,1,1.1)

h2(0,20,1.1,1)

x

0 100 200 300 400 500
-0.005

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

h2(0,100,1,1.1)

h2(0,100,1.1,1)

x

Figure 2: Graphs of (a) h2(0, 20, 1, 1.1), h2(0, 20, 1.1, 1), and (b) h2(0, 100, 1, 1.1) and
h2(0, 100, 1.1, 1). Note the more complicated behaviour of h2 when ρ ' τ and a and b are
widely separated.

7

Input a, b, ρ, τ , and a requested error bound

If ρ = τ , Then

Calculate h1,1, and for the following integrals, let the required error bound be one

third the input requested error bound

Evaluate I1 =
∫ h1,1

0 f(x)Ja(ρx)Jb(τx) dx using dqdag()

Evaluate I2 =
∫

∞

h1,1
f(x)h2(x; a, b, ρ, τ) dx using dqdagi()

Evaluate I3 =
∫

∞

h1,1
f(x)h1(x; a, b, ρ, τ) dx using the ISE method based on mWtrans()

Return Ia,b,ρ,τ = I1 + I2 + I3, as well as the estimate of error and total number of

function evaluations

Else (ρ 6= τ)

Calculate h1,1, h2,1, and for the following integrals, let the required error bound be

one quarter the input requested error bound

Evaluate I2 =
∫

∞

h1,1
f(x)h1(x; a, b, ρ, τ) dx using the ISE method based on mWtrans()

Evaluate I3 =
∫

∞

h2,1
f(x)h2(x; a, b, ρ, τ) dx using the ISE method based on dqext()

If h1,1 < h2,1 Then

Evaluate I1 =
∫ h1,1

0 f(x)Ja(ρx)Jb(τx) dx using dqdag()

Evaluate I4 =
∫ h2,1

h1,1
f(x)h2(x; a, b, ρ, τ) dx using dqdag()

Else (h1,1 > h2,1)

Evaluate I1 =
∫ h2,1

0 f(x)Ja(ρx)Jb(τx) dx using dqdag()

Evaluate I4 =
∫ h1,1

h2,1
f(x)h1(x; a, b, ρ, τ) dx using dqdag()

Endif

Return Ia,b,ρ,τ = I1 + I2 + I3 + I4, as well as the estimate of error and total number

of function evaluations

Endif

Figure 3: The algorithm for a method of evaluating integrals such as (1).

8

4 Results

Based on the discussion in §3, we have implemented for comparison purposes the following
three versions of the method for evaluating integrals such as (1):

approx – use the zeros of the cosine approximations (7) as the integral endpoints hj,i and the
mW transform for both h1 and h2 infinite integrals,

exact – calculate and use the actual zeros of h1 and h2 as integral endpoints, and use the mW
transform for both h1 and h2 infinite integrals,

general – calculate the zeros of h1 as integral endpoints and use them with the mW transform
for the infinite integral involving h1, and for the infinite integral involving h2 use zeros
of the cosine approximation (7b) and the ε-algorithm.

The approx method is for use when a and b are zero or one only. The exact method is for a
and b any integers, as long as the ratio ρ/τ is far enough from unity for h2 to be well behaved.
How far is ‘far enough’ depends on the difference between a and b as well as their magnitudes,
and no easy way is known to calculate a bound upon which the exact method will work. The
general method is designed to be successful for any combination of a, b, ρ and τ .

In the results reported here, we shall compare the numerical error to the number of function
evaluations. The function evaluation count includes the number of times h1 or h2 are evaluated
in calculating their zeros. This count is included because evaluating h1 or h2 is typically the
most time consuming part of evaluating the integrands, and so is a better representation of the
computational effort required in evaluating integrals such as (1). The error curves are obtained
by running programs based on the algorithm in figure 3 with requested absolute errors of 10−n,
n = 0, 1, 2, . . ., and obtaining a set of results whereby we can compare the actual error to the
number of function evaluations. We consider the three test integrals:

∫

∞

0
J0(x)J1(3x/2) dx = 2/3,

∫

∞

0
x−4J0(x)J5(2x) dx = 27/4096, and

∫

∞

0

x

1 + x2
J0(x)J20(1.1x) dx ' −6.05074 79030 49 × 10−3.

(10)

Equations (10a) and (10b) are specific cases of the Abramowitz and Stegun [1] equations 11.4.41
and 11.4.42, respectively. The result for (10c) is calculated by application of the general method
with increasingly strict error bounds until convergence to machine precision is obtained.

Figure 4 shows the results for the three methods approx, exact, and general applied to
integral (10a), a case where a and b are 0 and 1. The curves for the approx and exact methods
have similar form, with the advantage to the approx method being almost entirely due to not
having to calculate the zeros of h1 or h2. The general method is the least efficient of the
three methods, which is expected due to the poorer convergence properties of the ε-algorithm
compared to those of the mW transform, as discussed in Lucas and Stone [4]. When this
integral was evaluated by the IMSL infinite integration routine dqdagi(), the best it could

9

do was an error of 2.6 × 10−2 with 14985 function evaluations, and a returned error code
indicating slow convergence.

Figure 5 shows the results for the integral (10b) using the exact and general methods. Both
the actual error and the estimated error returned from the routines are displayed. In this case
the general method performs nearly as well as the exact method. In fact, if the estimate of error
is used as the performance criterion, the two methods are nearly identical. This behaviour can
be explained when we consider the 2nd to 5th actual errors for the exact method. In this
region, the mW transform gives much better results than the ε-algorithm – so much better, in
fact, that the error is due to error in the actual integrals between zeros. It is only from the 6th
result for the exact method shown here that the integration error is small enough, and further
terms are added to the sequence for the mW transform. Due to the slower convergence of the
ε-algorithm, more terms are used, and so a better error estimate is produced. However, this
may be considered of minor importance, since both methods provide excellent results for an
otherwise intractable integral.

As a further guide to the performance of the algorithm in figure 3, figure 6 shows both
(a) the oscillatory part of the integrand in (10b), and (b) the four pieces it is divided into
according to the algorithm. The In correspond to which of the integrals from the algorithm in
figure 3 is being calculated. The curve I2 is h1(x; 0, 5, 1, 2), and the curve I3 is h2(x; 0, 5, 1, 2).
The much simpler oscillatory nature of these functions is why this technique is so efficient.

Finally, table 1 shows the results of evaluating the integral (10c) by the general method.
This is a case where h2 is badly behaved, and the exact method is not appropriate as there is no
simple way of finding the zeros of h2. The results again indicate that this method is well suited
to evaluating integrals such as (1). Successive rows where number of function evaluations
increase while the actual error stays the same is indicates that more integration points are
required for a stricter error bound on some interval, but the increased accuracy in the terms
of the sequence does not improve the extrapolated result on the sequence. Also included in
figure 7 is a plot of the product J0(x)J20(1.1x) as an indication of the difficulty such integrals
represent.

5 Conclusion

We have developed a method for efficiently and accurately evaluating integrals of the form
(1) by rewriting the product of Bessel functions as the sum of two functions whose oscillatory
behaviour is such that an established ISE method performs as well as for the infinite integrals
involving a single Bessel function. By using the adaptive IMSL routines dqdag() and dqdagi(

) for integration, the mW transform and ε-algorithm for extrapolation, and methods for finding
or approximating the zeros of h1 and h2, we have developed an automatic routine that can
successfully evaluate (1) for general required error bound and parameters a, b, ρ and τ . While
the methods of finding ymax (see §3.1) and approximating the zeros of h2 may not be ideal,
the techniques described here have been shown to be successful methods.

Several straightforward refinements can be applied to this method as required. There is
nothing in the theory behind this method that requires a and b to be integers. We have also

10

100 300 500 700

10-10

10-8

10-6

10-4

Function Evaluations

E
rr

or

approx

exact

general

10-12

10-14

10-16

Figure 4: Comparing error to number of function evaluations for the integral (10a) by various
methods.

300 500

10-14

10-12

10-10

10-8

10-6

10-4

Function Evaluations

E
rr

or

actual error exact

estimated error exact

actual error general

estimated error general

10-16

10-18

Figure 5: Comparing actual and estimated error to number of function evaluations for the
integral (10b) by two methods.

11

0 5 10 15 20 25 30
-0.15

-0.10

-0.05

0.00

0.05

0.10

x

(a)

J0(x)J5(3x/2)

0 5 10 15 20 25 30
-0.15

-0.10

-0.05

0.00

0.05

0.10

x

(b)

I1

I2

I3

I4

Figure 6: (a) The function J0(x)J5(3x/2), and (b) the four pieces it is split into when integrated
on [0,∞) by this method.

12

0 50 100 150 200 250 300
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Figure 7: A plot of J0(x)J20(1.1x).

formed a routine that can deal with Bessel functions of fractional order ν and ξ. Also, we are
not limited to integrands involving Jν(ρx)Jξ(τx). A product of any two Bessel functions of
the first or second kinds can be written as a sum of two functions whose oscillatory behaviour
is regular enough to be dealt with by an ISE method. In fact, since our technique is justified
by the trigonometric behaviour of Bessel functions for large x, we have also been able to use
this method to deal with products of sine or cosine functions and Bessel functions. Finally,
although slightly more complicated in derivation, the method can also be applied to infinite
integrals involving products of more than two Bessel functions of general order and/or sine or
cosine functions, if such an integral is ever required.

Acknowledgements

We gratefully acknowledge NSF-PYI Award CT5-8957043 (to H.A. Stone) and the MERCK Foun-
dation for funding for this study. Thanks also go to Dr. John Tanzosh for motivating this study.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, New York, 1972).

[2] A.M.J. Davis, Drag modifications for a sphere in a rotational motion at small non-zero Reynolds

13

req. err. est. err. N act. err.

100 5.90 × 10−4 239 6.54 × 10−7

10−3 1.61 × 10−4 258 3.77 × 10−7

10−4 2.11 × 10−5 318 3.77 × 10−7

10−5 1.28 × 10−6 367 2.32 × 10−9

10−6 2.30 × 10−7 415 6.07 × 10−9

10−7 1.18 × 10−8 478 6.85 × 10−11

10−8 7.07 × 10−10 541 5.14 × 10−13

10−9 4.30 × 10−10 601 5.14 × 10−13

10−10 1.86 × 10−11 664 3.00 × 10−13

10−11 1.32 × 10−12 712 1.23 × 10−13

10−12 3.74 × 10−13 805 5.34 × 10−15

10−13 2.05 × 10−15 871 4.55 × 10−15

Table 1: Results for integrating (10c) by the general method. Table headings are abbreviations
for requested error, estimated error, number of function evaluations, and actual error.

and Taylor numbers: wake interference and possible Coriolis effects, J. Fluid Mech. 237 (1992)
13-22.

[3] P. Linz and T.E. Kropp, A note on the computation of integrals involving products of trigonometric
and Bessel functions, Math. Comp. 27 (1973) 871-872.

[4] S.K. Lucas and H.A. Stone, Evaluating infinite integrals involving Bessel functions of arbitrary
order, submitted to J. Comput. Appl. Math. (1994).

[5] J.N. Lyness, Integrating some infinite oscillating tails, J. Comput. Appl. Math. 12&13 (1985)
109-117.

[6] F.W.J. Olver (ed.), Royal Society Mathematical Tables Vol. 7, Bessel Functions Part III, Zeros

and Associated Values (Cambridge University Press, 1960).

[7] R. Piessens, E. De Doncker-Kapenga, C.W. Uberhuber and D.K. Kahauer, QUADPACK, a sub-

routine package for automatic integration (Springer-Verlag, Berlin, 1983).

[8] A. Sidi, A user-friendly extrapolation method for oscillatory infinite integrals, Math. Comp. 51

(1988) 249-266.

[9] H.A. Stone and H.M. McConnell, Hydrodynamics of quantized shape transitions of lipid domains,
Proc. Roy. Soc. London (to appear) (1994).

[10] J. Tanzosh and H.A. Stone, Motion of a rigid particle in a rotating viscous flow: An integral
equation approach, J. Fluid. Mech. 275 (1994) 225-256.

[11] M. Tezer, On the numerical evaluation of an oscillating infinite series, J. Comput. Appl. Math. 28

(1989) 383-390.

[12] R. Wong, Asymptotic expansion of
∫ π/2

0
J2

ν (λ cos θ) dθ, Math. Comp. 50 (1988) 229-234.

[13] IMSL MATH/LIBRARY Special Functions Version 2.0 (FORTRAN subroutines for mathematical
applications) (IMSL, Houston, 1991).

14

