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ABSTRACT

Over the past years, the Boundary Integral Method has shown itself to be
an increasingly useful formulation for the numerical solution of varied prob-
lems in engineering and physics. Virtually all applications are made using
the Boundary Element Method, where the surface and boundary variables
are discretised into elements, typically of constant, linear, or sometimes
quadratic variation over each element. We outline here a new method,
where we separate the surface discretisation from the boundary variable
approximations, and use an expansion method to find the unknowns. An
outline of this collocation expansion method will be given, as well as some
numerical comparisons with the more traditional Boundary Element Meth-
ods, for 2D potential problems. We will also discuss the relative merits of
the methods.

INTRODUCTION

There has developed a considerable quantity of literature concerning the
Boundary Element Method in recent years. Not only are there numerous
entries in computational journals, but various publications have been made
purely on the Boundary Element Method, among them Brebbia et. al. [4],
Banerjee and Butler [1], the “Boundary Elements” series including Brebbia
et. al. [3], and the “Developments in Boundary Elements” series includ-
ing Banerjee and Watson [2]. Most of the work in these texts involves
development of the Boundary Element Method and applications of it to
various problems. However, virtually all of these applications make use of
the standard constant, linear, and sometimes quadratic or higher element
discretisations of the surface and the boundary values, both known and un-
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Figure 1: Number of unknowns vs. maximum error in solving equation (1)
using various methods

known. As justification for an alternative approach to solving the Boundary
Integral Equations, consider the solution of the Fredholm integral equation
of the 2nd kind

x(s) = es − e1+s − 1

1 + s
+
∫ 1

0

estx(t) dt, with solution x(s) = es. (1)

Figure 1 shows the results for constant, linear and quadratic discretisations
of the unknown x(s) of equation (1), as well as a solution using the Fast
Galerkin expansion method as described in Delves and Mohammed [6] and a
collocation expansion technique, collocating at the zeros of the appropriate
Chebychev polynomials. As we can see, and this is typical of most problems,
expansion methods can be very effective. The basis of this paper will
be the solution of the Boundary Integral Equations using a collocation
based expansion method. We use a collocation rather than a Galerkin
method to form our system of equations because the Galerkin method with
the boundary integral kernels in 2D lead to double integrals with a line
singularity along a diagonal. The additional computation required in this
case is prohibitive, and in any case, a collocation expansion method is often
as good, as in Figure 1.

THE COLLOCATION EXPANSION METHOD

For this work, we will restrict ourselves to 2D potential problems, which
have the boundary integral formulation for a region Ω with surface Γ

c(r0)φ(r0) +
∫

Γ

φ(r)
∂G

∂n
(r0, r) ds(r) =

∫

Γ

G(r0, r)
∂φ

∂n
(r) ds(r), (2)

where G(r0, r) = − ln(|r0, r|)/(2π) and c depends on whether r0 is in Ω, or
on Γ, and the smoothness of the curve at r0. Assume that the surface Γ is
split into N curves, such that each curve is smooth apart from possibly at
the endpoints, and let each curve be {Ci}N

i−1 such that on Ci: x = fi(t), y =
gi(t), t : 0 → si, where si is the arc length of the curve. We also assume
that on each Ci, one of either φ or ∂φ/∂n is known. Then, equation (2)
can be represented as

cφ(r0) +
N
∑

i=1

∫ si

0

φ(r)
∂G

∂n
(r0, r)

√

√

√

√

(

dfi

dt

)2

+

(

dgi

dt

)2

dt = (3)

N
∑

i=1

∫ si

0

G(r0, r)
∂φ

∂n
(r)

√

√

√

√

(

dfi

dt

)2

+

(

dgi

dt

)2

dt, where r = (fi(t), gi(t)).



Since discontinuities cause significant difficulties for expansion method
approximations, we assume N separate expansions, each of length mi, one
on each of the N curves, for the unknown on that curve. This gives

∫ si

0

χ(r)K(r0, r) dt =
mi
∑

j=1

αij

∫ 1

−1

Tj−1(s)K(r0(s), r(s))
si

2
ds, (4)

where χ(r) is the unknown, K(r0, r) is the appropriate kernel, s is the
transform of t from [0, si] onto [−1, 1], {αij}mi

j=1 are the expansion coeffi-
cients, and Tj−1(s) is the (j-1)st Chebychev polynomial. The equivalent
integral involving the known for the same i’th curve requires no further
transformation.

Equation (3), using the result of equation (4), can be solved for the M =
∑N

i=1 mi unknown expansion coefficients by taking collocation points on the
surface, placing mi on the i’th curve. This will lead to an M × M system,
which can be solved by Gauss elimination. The collocation points can be
chosen as the zeros of the appropriate Chebychev polynomial, transferred
onto [0, si]. With these collocation points, we immediately have c = 1/2,
since away from the endpoints the curves are smooth.

Before discussing the implementation of the method, the curve repre-
sentation and method of integration need to be outlined.

Arc length cubic splines
We make the functions (fi, gi) representing the curves arc length cubic
splines (see de Boor [5] for theory and Kucera [8] for an application). If
we are given a set of points {(xi, yi)}L

i=1 for a curve, and the gradients of
its endpoints, we can find the arc lengths of each point relative to the first,
and construct clamped cubic splines for both x and y based upon the arc
lengths {si}L

i=1. Then, given a value of s in the appropriate range, x and y
values on the curve can be found.

The arc lengths are found as follows: construct approximate si as
zero for the first point, and the distance between points for the rest. Using
these approximate si, calculate the splines, and from them calculate the arc
lengths of the points on this curve. Using the new si, calculate new splines,
and continue the process until the si converge. Typically, this process is
only required a few times before a high degree of convergence is obtained.

Methods of integration

For all integrals required, we use the routine DQAGS from the QUAD-
PACK numerical integration package of Piessens et. al. [9]. This routine
is an adaptive rule that uses non-linear extrapolation in such a way that it



can deal with integrable singularities when thay are placed at an endpoint
of the interval. Thus, integrals over curves including a singularity are split
into two integrals at that singularity. The routine uses a 21 point Kron-
rod rule as its base quadrature, which has a 10 point Gauss-Legendre rule
embedded in it, which is used for error estimation.

While the routine DQAGS gives reliable answers, it can tend to be
computationally expensive. Further work is required to develop more ef-
ficient integration procedures for this method. We have already tried an
adaptive rule using the IMT rule for sub-regions with the singularity at
an endpoint, and the Kronrod rule on non-singular sub-regions. The IMT
rule, as described in Iri et. al. [7], uses an exponential transform to remove
endpoint singularities. Unfortunately, this leads to quadrature points so
close to the singularity that double precision FORTRAN is not enough to
eliminate round-off errors before reasonably accurate solutions are reached.
For this problem, the IMT rule is not practical.



Implementation of the method
The input data required for this method is mainly points for the splines
representing the curves. We use the standard convention of increasing arc
length in an anti-clockwise direction giving an outward normal. For gen-
erality, known boundary values will be given at these points, and splines
produced for these boundary values. Thus, enough points are required for
accuracy in both the surface and boundary value splines. The number of
expansion coefficients for a particular problem lead to the position of the
collocation points, and the various integrals required are found as described
earlier. All calculations are done in double precision FORTRAN, and in-
tegrals are done with a requested relative error of 5 × 10−6. These results
can be immediately added to the right hand side of the system if using
known boundary values, or placed in the matrix of the left hand side if
using Chebychev polynomials. Once set up, the system is solved, and the
solution is split into the expansions on the various curves of the surface.
Potential at internal points can then be calculated in the usual manner.

RESULTS

From now on, we will describe the methods by the names BICEM for
the Boundary Integral Collocation Expansion Method, and BEM for the
various Boundary Element Methods. The constant, linear and quadratic
BEMs are as standard in the literature, with the exception that integrals are
performed adaptively with the requested relative error estimate of 5×10−6

as in the BICEM, as opposed to the standard of using a set quadrature rule.
Singular integrals of the constant and linear BEMs are done analytically,
and for the quadratic use the straight line approximation of the curve near
the singularity, described in [1].

The examples used for comparison here are solving for φ = ln(x2+y2)+x
on various regions by the constant, linear and quadratic BEMs, and the
BICEM. Figures 2-5 show the results on the rectangle between (1, 0) and
(5, 2), with φ given on vertical, and ∂φ/∂n on horizontal sides. The cubic
splines for the boundary values for the BICEM have 41 points per side. It
was found in this work that the convergence of the BICEM to the exact
solution was more heavily dependent on the boundary values’ accuracy than
was expected, and so a form of ‘overkill’ was used here. It should be noted
that this did not add more than a few percent to the overall time required
for the BICEM. Figures 6-9 show results on the circle, centre (3, 1), radius 2,
with φ known on the upper semicircle, ∂φ/∂n on the lower, using 128 points
for the splines. Figures 2 and 6 compare maximum error in φ and ∂φ/∂n
on the surface to number of unknowns, Figures 3 and 7 compare maximum
error to time taken (seconds on a 12 MHz 286 PC), Figures 4 and 8 compare
error at some internal points to number of unknowns, and Figures 5 and



9 compare error at some internal points to time taken. Figure 5 uses the
internal points (1.125, 1), (3, 1), and Figure 9 uses (3, 1), (3,−0.9).

We can immediately see from Figures 2 and 6 that the convergence rate
of the BICEM is superior to that of the traditional BEMs. We also see the
comparison of the various element methods, and conclude that higher order
elements are superior, for the same number of unknowns. In fact, we can
consider the BICEM to be increasing the polynomial approximation over
large, but because of the splines still accurately defined, elements. The
hiccup for the BICEM in Figure 6 is worrying, but at the moment we feel
this is a result of not enough accuracy in integrations, leading to ‘noise’
effects. Note that this case has only two expansions, to the four of the
rectangular case. Further investigation in this area is being undertaken. It
should also be noted that the maximum error in normal derivative in Figure
6 for the element methods was in fact at a position where normal derivative
was defined, showing the importance of more accurate discretisations for
the surface.

Figures 3 and 7 paint a slightly bleaker picture; when time taken as
opposed to number of unknowns is the criteria, we see the effect of the more
complicated BICEM integrals. However, after the confused middle region
of the graphs, the BICEM still is the most accurate method for lower error
requirements. However, we must realise that the routine DQAGS used by
the BICEM is reliable, but slow. Further work is being concentrated in
this area. The results of Figures 4, 8 and 5, 9 show a similar result for the
solution at internal points; the BICEM converges faster than the BEMs,
but suffers from the time required.

Relative merits of BICEM vs BEM
We have seen from above that the BICEM has a much better convergence
rate than the standard BEM. While the BICEM is less accurate for a small
number of unknowns, its convergence rate is such that the method is still
superior, even though the BICEM is slower for the same number of un-
knowns, compared to the various BEMs. Improving the integration rou-
tines for the BICEM should lead to an improvement in its speed, and has
a high priority. It can be shown that the better convergence of expansion
methods over element methods still holds even for approximating functions
with large variation (eg (1/(0.1 + x) on [0, 1]) or mild endpoint singulari-
ties (eg

√
x on [0, 1]). While expansion methods are generally much poorer

with discontinuities within the region of application, this possibility has
been eliminated by the choice of splitting the surface at corners or changes
of boundary conditions.

While convergence itself is a good enough resason for using the BICEM,
there are a number of other advantages to it. This is not a problem spe-
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Figure 2: Number of unknowns vs. maximum error in solutions for the
rectangular case
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Figure 3: Time taken vs. maximum error in solutions for the rectangular
case
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Figure 4: Number of unknowns vs. error in solutions at the internal points
(3, 1), (1.125, 1) for the rectangular case

fig5.prn381.26692pt80mm

Figure 5: Time taken vs. error in solutions at the internal points (3, 1),
(1.125, 1) for the rectangular case
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Figure 6: Number of unknowns vs. maximum error in solutions for the
circular case
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Figure 7: Time taken vs. maximum error in solutions for the circular case
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Figure 8: Number of unknowns vs. error in solutions at the internal points
(3, 1), (3,−0.9) for the circular case
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Figure 9: Time taken vs. error in solutions at the internal points (3, 1),
(3,−0.9) for the circular case



cific method, and so like the BEM can be used as a ‘black box’ to solve
general potential problems. However, with the BICEM the surface and
boundary value descriptions are separate from the unknowns. This gives
the advantage that changing the size of the problem means merely changing
the handful of numbers in the input file which are the number of unknowns
on each surface. Despite the care required in setting up enough boundary
points for the boundary values to be very accurate, compare this to the not
insignificant problem of, for example, doubling the number of unknowns in
a standard BEM formulation. We also avoid the problems corners bring
in linear and higher order BEMs, by never actually placing a collocation
point at a corner. Finally, as with all expansion methods, examination of
the solution produced by the BICEM can give a good idea of the accuracy
of the solution; the closer the last terms of an expansion are to zero (taking
into account the error in the integrations), the better the approximation is
to the solution. A discussion of this can be found in [6].

CONCLUSION

We have developed a method of solving the Boundary Integral Equations by
an expansion method. This has been shown to be superior to the standard
elements approach, without loss of generality. The various other advantages
of the BICEM over the BEM have been mentioned.

Apart from improving integration routines, further work on the BICEM
can be taken in various directions. Using the qualities of expansion meth-
ods, some sort of error estimation for general problems should be possi-
ble. Since changing the problem size is so simple, as compared to the
BEM, some form of extrapolation leading to more accurate solutions can
be investigated. This current work has been for potential problems, but
changing Green’s functions to allow for the solution of other problems, for
example elasticity problems, should be fairly straightforward. Finally, and
ultimately of most interest, we can move to 3D problems, using a double
expansion for the solution over surfaces.
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