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Abstract

Combinatorics and algebra have been used to find equations for
the smallest integer with a certain length in an integral base. How-
ever, improper fractional bases have not been explored in much depth
since their discovery in the 1930s. In this study, I discovered an orig-
inal formula for the smallest integer with a specific digit length in an
improper fractional base.

I wrote an original computer program to convert integers from base
10 to any improper fractional base. I used this program to find 100
combinations of length, improper fractional base, and the smallest
integer with that length in that fractional base. I used graphing,
combinatorics, and difference equations to attempt to find a method
to predict the smallest integer with a specific length in an improper
fractional base.

I then used number theory to evaluate the divisibility requirements
of the numbers, and discovered a recursive formula for the smallest
integer with a specific length in a given improper fractional base. I
used this formula to find an equation for the number of integers in an
improper fractional base with a certain length. The formula may also
be useful in encryption with improper fractional bases.
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1 INTRODUCTION

1 Introduction

Since the beginning of civilization, systems of numeration have been impor-
tant to mankind. People still use basic one-to-one correspondence with our
fingers to find base 10. As society increased in complexity, so did our systems
of numeration. Today we have a wide variety of counting methods which are
no longer directly dependent upon our physical features.

1.1 Common Bases

Integral (whole number) bases are the most common. Historically, bases 10,
20, 60, and 12 have been used most widely; other bases occasionally used are
2, 8, 16, and 3.

1.1.1 Historical Bases

1.1.1.1 Bases 10, 20, and 60
We usually have 10 fingers and 10 toes, therefore it is convenient to use

base 10. The Phoenicians and the Mayans used base 20, presumably counting
both fingers and toes.[4] The Sumerians used base 60 for numbers over 20,[15]
which is the origin of our minute and degree measures. 60 is a useful base
because it has a large number of factors. Of the fractions in the form 1

x

with 0 < x ≤ 60, in base 60, 12 have 1-digit decimal representations. This
makes it much easier to convert between hours and minutes. In base 60, 1
hour 5 minutes is equal to 1.05; hours instead of 1.3 hours in base 10 (Base
60 numbers are written with a comma or semicolon separating the base-60
digits).

1.1.1.2 Base 12

Some early civilizations used the 3 joints on their 4 fingers of one hand to
arrive at base 12.[9] Similar to 60, 12 has many factors. Of the first 12 natural
numbers’ reciprocals, only 6 do not have finite decimal representations. Base
12 has influenced us widely: for instance, 12 items is a dozen and 12 dozen
is a gross.
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1.2 Unusual Bases 1 INTRODUCTION

1.1.2 Computational Bases

A computer’s storage is similar to a great number of on-off switches. These
are also known as 2-state devices since they have 2 possible states, corre-
sponding to 1 and 0 in base 2. It is impossible to store more than a 1 or a
0 on a single 2-state device, therefore computers convert to base 2 to store
information.[5]

Base 8 is used when a user-defined number has a power of 8 (but not of
16) as an upper bound.[3] When base 8 is used for such an application, only
a third as many digits are needed to represent the number as there are in
base 2. As a result, base 8 numbers are easier to read compared to base 2.
Base 16 is used for applications when the upper bound is a power of 16; since
four base 2 digits can be represented in one base 16 digit, the number is more
compact compared to base 2 or 8, even further improving readability.[14]

1.2 Unusual Bases

1.2.1 Bases 3 and -2

Bases 3 and negative 2 were used in some early computers.[2] Base 3 is
regarded by Hayes as the most efficient integral base, since it has the theo-
retically smallest ratio of the average length of the numbers to the number
of symbols used as digits of integral bases.[8]

Base -2 was attempted in some computers. Simple multiplication and
division were more difficult than in base 2, so it was abandoned. At that
time, computers required an extra bit to represent the sign of a number.
Although base -2 had the advantage that no bit was needed to represent the
negative sign, the space savings were negligible and the problems with arith-
metic make it less efficient.[13] Present computers can represent the sign of
a number without using an extra bit, negating any space-saving advantage
of base -2.

3-state devices are not base 3 in the traditional sense of the word. 3-state
devices use what is called “balanced ternary”: instead of having values 0, 1,
or 2, a 3-state device can have value of either -1, 0, or 1. Thus computers
using base 3 take only 1 evaluation to determine whether a number is larger,
smaller, or equal to another number, yielding values -1, 0, or 1. Although
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1.2 Unusual Bases 1 INTRODUCTION

base 3 is more efficient in theory, it has been difficult and expensive to im-
plement [6]; 3-state devices have been too inefficient to compete with base
2.[10] Currently, base 2 is more practical since 2-state devices have been op-
timized since base 2 was first used for computing, and thus 2-state devices
are very reliable and cheap. However, recent advances in 3-state hard drives
have made base 3 computing much closer than before.[7]

1.2.2 Irrational Bases

An irrational number has an infinitely long, non-repeating decimal portion; it
cannot be represented as a ratio of two integers.[11, pp.102-104] For instance,
π (pi, the ratio of a circumference of a circle to its diameter) is an irrational
number since it cannot be represented as a ratio of two integers.[16] Bergman
investigated irrational bases in 1957; he discovered that numbers do not
necessarily have a unique representation in an irrational base.[1]His work
has been important in developing faster algorithms in computer science.[10]
Though not common, irrational bases are used occasionally; base φ (the

golden ratio, phi, 1+
√

5
2

) is the most common irrational base.[17]

1.2.3 Transcendental Bases

By definition, a transcendental number cannot be a solution of a polynomial
with integral coefficients.[18] All transcendentals are irrational numbers, but
not all irrational numbers are transcendental. π and e (the base of natural
logarithms) are transcendental, but φ is only irrational. [16] φ is a root of
x2 − x − 1 = 0 while π and e cannot be roots of a polynomial with integral
coefficients.[12, p.114]

Since transcendental bases are impractical, they are not often used. Every
integer greater than the transcendental base has infinitely many digits in its
representation and only multiples of the transcendental base have finite dec-
imal representations. However, it has been shown that base e is theoretically
the most efficient base out of every possible base.[19]

1.2.4 Improper Fractional Bases

An improper fractional base is rational, expressible as a ratio of two integers,
and greater than 1. Improper fractional bases, such as 3

2
, were discovered

3



1.3 Smallest Integer Patterns 1 INTRODUCTION

by A. J. Kempner in 1936.[9] Besides the method of conversion to and from
fractional bases, little thought had been given to these bases.

1.3 Smallest Integer Patterns

One of the main differences between integral bases and improper fractional
bases is in the smallest number with a specific length in a given base. In an
integral base, these numbers follow a exponential progression for digit lengths
greater than 1. In base 10, the smallest integer with each number of digits is
multiplied by a factor of 10 between n digits and n + 1 digits for n ≥ 2. The
smallest 1-digit positive integers is 1, 2-digit integer is 10, of 3, 100, and so on.

In an improper fractional base, the numbers are extremely variable even
from one base to another similar non-reducable base. For fractional base
integers there is no obvious pattern. In base 3

2
, the smallest 1-digit integer

is 0, the smallest 2-digit integer is 3, 3-digit integer, 6, 4-digit, 9, 5-digit, 15,
and the smallest 6-digit integer is 24.

Combinatoric techniques yield an equation which predicts the smallest
integer in the integral base b. In an integral base, any digit can be in any
position in a number, except 0 cannot be the first digit. Thus in base b, there
are b−1 1-digit numbers (not including 0), (b−1)b 2-digit numbers, (b−1)b2

3-digit numbers, etc. Let the number of integers with length k in base b be
g(l). Then the smallest integer with length l in base b is 1 + g(1) + g(2) +
g(3) + · · · + g(l − 1), since this smallest integer will come immediately after
all the integers with length less than l. This may be expressed as:

1 +
l−1∑
j=1

g(j)

Now there are b − 1 choices of digit for the first digit of a number in base b
and b choices of digit for each subsequent digit in the number, thus g(l) =
(b − 1)bl−1. Thus the smallest number with l digits in base b is equal to

l−1∑
j=1

b(b − 1)j−1 = (b − 1)
l−1∑
j=1

bj−1 = (b − 1)
bl−1 − 1

b − 1
= bl−1

Distressingly, this equation does not work for fractional bases.
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1.4 Question 1 INTRODUCTION

1.4 Question

Is there an equation for the smallest integer with a given number of digits
(length) in any fractional base? I sought to find such an equation which uses
the fractional base and the desired length.

5



2 USING AND CONVERTING BASES

2 Using and Converting Bases

A base, also known as a radix, usually indicates how many unique symbols
may be used to form a number. In base 10, a digit in a number could be 0,
1, 2, 3, 4, 5, 6, 7, 8, or 9, for a total of 10 unique symbols. In base 3, a digit
could be either 0, 1, or 2.[19]

Fractional bases, expressible in the form p
q
, are somewhat different. In-

stead of using digits up to p
q
−1, in which there would be a fractional number

of digits, we use p unique digits: 0, 1, 2, 3, · · · , p − 2, p − 1.[21] For instance,
in base 3

2
, we can use the digits 0, 1, and 2. We generally denote a base b

number n with nb, read “n base b”.

2.1 Conversion Using Powers of a Base

There are several methods of converting an integer n to and from base 10.
The most common involves powers of the new base. To convert from base 10
to base b using this method, find the largest power of b which is smaller than
n and let the exponent be i. The leftmost digit is the largest number which,
when multiplied by bi, is smaller than n. We then subtract this product from
n and make this the new n and subtract 1 from i and let this be the new i.[19]

Then, until i = 0, we repeatedly find the largest number whose product
with bi is smaller than n, and let this number be the next digit to the right
of those which we have found. Next, subtract the product of that number
and bi from n, and subtract 1 from i and make this i. When i = 0, we let
the remaining number be the last (rightmost) digit. In base 10, for instance,
the number 37 is equivalent to (3 · 101) + (7 · 100). (Generally x0 = 1, with
the exception of x = 0.)

To convert n back to base 10, we count how many digits n has. We sub-
tract 1 from this number of digits and let it be i. We then add the product
of the first digit and bi, the second digit and bi−1, the third and bi−2, and so
on. This number is the base 10 representation of nb. 11013 (1101, base 3) is
equal to (1 · 33) + (1 · 32) + (0 · 31) + (1 · 30), which is 37 in base 10.

The above method, while most common, only works for integral bases;
when we attempt to use this method for an improper fractional base, the
number ceases to be integral. For example, to convert 3 (base 10) to base 3

2
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2.2 Converting Fractional Bases 2 USING AND CONVERTING BASES

by the above method, we find that
(

3
2

)2
= 9

4
. The largest number by which

this can be multiplied to get a number smaller than 3 is 1, so the leftmost
digit is 1. The remainder is 3

4
, and the next smaller power is 3

2
, so the next

digit is 0. The next smaller power is 1, so the third digit is also 0. But now
to the right of the decimal point we must represent 3

4
: we cannot represent

this number without a decimal point using this conversion technique. It is
logical that an integer should be represented without any digits to the right
of the decimal point in any rational base, though, so this method cannot be
used for improper fractional bases.

2.2 Converting Fractional Bases

Another method for conversion, which fulfills the requirements to produce
integers in fractional bases, follows. Designate the desired base p

q
number

. . . d5d4d3d2d1d0 where dk represent the digits. We then let the original num-
ber in base 10 be d0. After this, while any of the dk are greater than or equal
to p, we subtract p from dk and add q to dk+1.[21]

For instance, to convert 19 from base 10 to base 3
2
, d0 = 19. Instead of

using dk, we must simply separate the digits in the base b number somehow.
We can use a line to separate the digits, as:

· · · d5 d4 d3 d2 d1 d0

Initially we have:

19

We subtract 6 3’s from 19 and add 6 · 2 to the digit immediately to its left:

12 1

Since 12 > 3 we again subtract 3’s until the digit is smaller than 3. We
subtract 4 3’s from 12 and add 8 to the digit immediately to the left:

8 0 1

7



2.2 Converting Fractional Bases 2 USING AND CONVERTING BASES

Again, we subtract 6 from 8 and add 4:

4 2 0 1

and again. 4 > 3, so we subtract a 3 and add a 2, for a final result of

2 1 2 0 1

or 21201 3
2

(base 3
2
).We generally denote a base b number n with nb, read “n

base b”.

We can use this process in reverse to convert to base 10: we separate the
digits, just as before. Then, starting at the left, we multiply each digit by the
base b and add this to the digit immediately right. For instance, to convert
21201 from base 3

2
to base 10 we separate the digits:

2 1 2 0 1

Multiply the first by 3
2

and add to the second:

4 2 0 1

Multiply the (new) first digit by 3
2

and add to the (new) second digit:

8 0 1

Multiply yet again:

12 1

Finally multiply the first digit by 3
2

and add to the second digit to get
21201 3

2
= 1910.

8



3 MATERIALS AND PROCEDURES

3 Materials and Procedures

3.1 Conversion Program

I created an original computer program and converted large numbers of base
10 integers to various fractional bases. I used tools from combinatorics, num-
ber theory, and polynomial analysis to find an equation appropriate to the
data.

I wrote this program in Python:

def DecimalToFractionalBaseConversion(DecimalNumber,
FractionalBaseNumerator,FractionalBaseDenominator):

ArrayOfDigits=[DecimalNumber]
while ArrayOfDigits[0]>=FractionalBaseNumerator:
ArrayOfDigits=[ArrayOfDigits[0]]+ArrayOfDigits
ArrayOfDigits[1]=ArrayOfDigits[1] % FractionalBaseNumerator
ArrayOfDigits[0]=ArrayOfDigits[0]-ArrayOfDigits[1]
ArrayOfDigits[0]=ArrayOfDigits[0]*FractionalBaseDenominator
ArrayOfDigits[0]=ArrayOfDigits[0]/FractionalBaseNumerator
return ArrayOfDigits

My program above takes as input the base 10 integer, the improper frac-
tional bases’ numerator, and the improper fractional bases’ denominator.
The program then creates ArrayOfDigits, which will be used as an array.
Initially, ArrayOfDigits contains one element. Instead of making its boxes
at the beginning of the conversion process, as we do when converting to an
improper fractional base, ArrayOfDigits adds extra boxes only when needed.
As in our method of conversion, initially the first box of ArrayOfDigits con-
tains the base 10 integer.

Then the program checks to see if the first member of ArrayOfDigits, the
leftmost box, is bigger than FractionalBaseNumerator, the numerator of the
fractional base. If it is, another member or “box” is added to the beginning
of ArrayOfDigits.

9



3.2 Bases Used 3 MATERIALS AND PROCEDURES

The program next copies the former first member of ArrayOfDigits to the
new first member of ArrayOfDigits. The second member of ArrayOfDigits
is taken modulus FractionalBaseNumerator, which is simply the remainder
when that member is divided by the numerator of the fractional base. This,
the second member, is subtracted from the first member, so now the first
member is divisible by FractionalBaseNumerator, and the first member is
multiplied by the inverse of the base. This is the same as subtracting the nu-
merator and adding the denominator to the next digit for those digits. The
program checks again to see if the first member is bigger than the numerator,
and repeats if this is true.

When all of the members are smaller than the numerator of the fractional
base, the program returns ArrayOfDigits - the contents of our boxes when
we are done converting.

3.2 Bases Used

I used this program to convert the first 5000 positive integers to bases 3
2
, 4

3
,

5
4
, 7

3
, 7

4
, 7

5
, and 8

6
. In each of these bases, I found the smallest integer in

that base with various lengths (1 digit, 2 digits, 3 digits, etc.). A fractional
base, a length, and the smallest integer in that base with exactly that length
formed 100 data sets.

• I chose base 3
2

since it has the smallest possible irreducible numerator
and denominator for an improper number, thus it is easiest to examine
of improper fractional bases.

• I chose bases 4
3

and 5
4

since the denominators are only 1 smaller than
the numerators. I could easily test an equation for base 3

2
with a similar

base to find the proper generalization for any base with the numerator
1 larger than the denominator.

• I chose bases 7
3
, 7

4
, and 7

5
since the denominators were more than 1

smaller than the numerator. It would be possible to generate a equa-
tion that would work for the bases with the numerator 1 greater than
the denominators, but it would be very hard to find an equation that

10



3.3 Methodology 3 MATERIALS AND PROCEDURES

works for both those 3 bases with numerator 7 and the 3 bases with
the numerator 1 greater than the denominator.

• Finally, I chose base 8
6

since it is a reducable improper fraction. I
wanted to test any possible equation on at least one reducable fractional
base. If a base were not in lowest terms, an equation dependent on
the base being in lowest terms would fail for a reducable improper
fractional base. I wanted to insure my equation was not dependent on
this condition.

3.3 Methodology

I initially used difference equations to search for the next member of the
sequence of smallest integers with various lengths and fractional bases. How-
ever, in all tests the value predicted by the difference equations differed from
the correct value by a significant amount. Given d + 1 values of any poly-
nomial with degree d, all other values of the polynomial may be predicted.
Since the difference equations failed with up to 10 values, evidently the equa-
tion is not a polynomial or has degree more than 9.

If the graphs of the smallest integers with n digits in the above bases were
similar, I would expect the equation to be a polynomial. Although all graphs
were somewhat exponentially curved, the similarities were inconsequential.
The negative results from both graphing and difference analysis indicate that
the desired equation is not a polynomial. The piecewise nature of the graphs
suggested floor or ceiling functions were at work.

Combinatoric techniques have been used in the past to find the equation
for the smallest integer with a specific length in an integral base. I hoped
similar methods could be used to find the desired formula. I tried to find the
formula by using base p and then, one digit at a time, converting to base p

q

in the hope that a pattern would emerge. Sadly, I found no pattern between
the conversions to p

q
.

Eventually, I employed number theory to discover the method of forming
the smallest number with n digits, by examination of divisibility require-
ments. I then tested this recursive formula with all data created by the

11



3.3 Methodology 3 MATERIALS AND PROCEDURES

program.

12



4 RESULTS

4 Results

I discovered some divisibility properties of improper fractional base integers.
With this knowledge, I discovered an original formula for the smallest inte-
ger with a specific length in an improper fractional base, which showed my
hypothesis to be true. I also discovered an original equation for the number
of integers with a specific length in an improper fractional base, and a new
method of encryption.

Theorem. For any improper fractional base p
q
, the smallest integer with n

digits in its representation in base p
q

is

p (fn−2(q))

q

where f(x) = q
⌈

p·x
q2

⌉
and dxe is the smallest integer larger than or equal to x.

(To find fa(b), substitute b into f(x). Substitute this result into f(x)
again, and substitute that result into f(x) yet again, until we have applied
f(x) a times to b.)

Lemma. Let an integer in base p
q

be represented as d0d1d2 · · · dj, where dk is

the (k− 1)th digit to the right of the rightmost digit. Then all of the integers
d0, d0d1, d0d1d2, · · · , d0d1d2 · · · dj−1 are divisible by q.

Proof. Each of the integers d0, d0d1, d0d1d2,· · · , d0d1d2 · · · dj−1 may be repre-
sented by d0 · · · dm, where m is a positive integer. According to our method of
conversion from base 10 to a fractional base, each of these numbers d0 · · · dm

is created by subtracting p from dm+1 and adding q to dm repeatedly. Thus
d0 · · · dm in base p

q
can be represented as qn, where n is the number of sub-

tractions of p from dm+1; since n is integral, q | qn, as desired.

Proof of Theorem. The smallest number with exactly n digits will have a
first digit of q, since d0 must be divisible by q. Every subsequent digit dm up
to but not including the last digit on the right dn will be the smallest such
that the number d0d1d2 · · · dm is divisible by q.

13



4 RESULTS

If we have already found the smallest possible number d0d1d2 · · · dm−1

and we wish to find the smallest possible integer d0d1d2 · · · dm, we append
a 0 on the end of this number and find the smallest possible dm so that
q | d0d1d2 · · · dm−10 + dm. This is the smallest possible digit dm such that
d0d1d2 · · · dm is divisible by q.

When we append a 0 on the end of the integer d0d1d2 · · · dm−1, we are
simply shifting the digits of the integer 1 place to the left, which is equivalent
to multiplying the number by our base p

q
. Thus dm is the smallest possible

integer such that
q | (d0d1d2 · · · dm−1)

p
q
+dm. This process is equivalent to dividing (d0d1d2 · · · dm−1)

p
q

by q, rounding up, and multiplying the result by q, giving the number
d0d1d2 · · · dm. Mathematically,

d0d1d2 · · · dm = q

⌈
(d0d1d2 · · · dm−1) p

q2

⌉

This can be expressed as a function which takes as input d0d1d2 · · · dm−1

and returns d0d1d2 · · · dm:

f(x) = q

⌈
xp

q2

⌉

If we take the starting digit d0 = q of the smallest number, when we
apply f(x) to q, we find the first 2 digits of the number; if we apply it to
this result we get the first 3 digits, and so forth. However, the whole number
d0d1d2 · · · dn does not have to be divisible by q, so we cannot apply f(x) to
d0d1d2 · · · dn−1 to find d0d1d2 · · · dn. Instead, the smallest number with n dig-
its ends in 0, so to find d0d1d2 · · · dn we multiply d0d1d2 · · · dn−1 by p

q
, our base.

The application of a function f to an input i z times is denoted by
f z(i). For instance, f(f(f(5))) = f 3(5). When we apply the function above
n − 2 times, we find the integer d0d1d2 · · · dn−1. To find the full number
d0d1d2 · · · dn, we multiply d0d1d2 · · · dn−1 by p

q
. Thus the smallest number

with n digits is:
p · fn−2(q)

q
where f(x) = q

⌈
xp

q2

⌉

14



4.1 Extension 4 RESULTS

This novel equation was tested with all 100 sets of data and will work for
any rational base and length.

4.1 Extension

This formula may also be used to find the number of integers with a specific
length. To find the number of integers with a specific length in an improper
fractional base, we can take the difference of the smallest integer with that
length and the smallest integer with one more digit. Thus the number of in-
tegers in an improper fractional base with n digits in the improper fractional
base p

q
is equal to

p (fn−1(q) − fn−2(q))

q

where f(x) = q

⌈
px

q2

⌉
.

15



5 ENCRYPTION APPLICATIONS

5 Encryption Applications

Fractional bases may encrypt data by converting the message to a number,
then to a fractional base, and then finally breaking it up and converting it
back to a string of letters. My equation is useful to fractional base encryption
when a long message must be split into several parts.

5.1 Fractional Base Encryption of Short Messages

Let us encrypt “Word Power”: A space may be represented as 00, ‘a’ can be
01, ‘b’, 02, etc. up to ‘z’ being 26, with lowercase and uppercase letters identi-
cal. The numerical representation of this message is thus “23151804001615230518”.

A fractional base with no more than 27 digits is necessary to encrypt
this message, since there are 27 possible characters; if we used a base whose
numerator is less than 27, the encrypted message would be longer and would
have fewer unique characters. If we used a base whose numerator was more
than 27, it is possible that a digit more than 26 would appear in the number
in that base; we only have 27 characters, so that digit could not be converted
to a character. The base 27

2
is fairly quick to evaluate, and we find that our

number is:

20 21 09 23 12 24 06 25 01 04 25 25 07 10 13 18

in base 27
2
. Now converting the digits into the corresponding letters, our

message ends up as ‘tuiwlxfyadyygjmr’.

To decrypt this encrypted message, convert the encrypted message ‘tui-
wlxfyadyygjmr’ back to the base 27

2
number

20 21 09 23 12 24 06 25 01 04 25 25 07 10 13 18

Then convert this number to base 10 and convert back to letters by our orig-
inal method.

5.2 Encryption of Long Messages

If a long message is to be encrypted, it must be divided into several sec-
tions to encrypt separately, then combined into one string. After splitting

16
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the message into sections, it is necessary to find a base such that all of the
encrypted sections have the same length. If the sections differ in length,
then the message is undecipherable after the sections are combined. When
the sections have equal length, the recipient deciphers the message using the
number of sections or their length and the base.

It is necessary to use a base such that all of the numerical representations
of the sections have the same length in that base. Few bases are capable of
fulfilling this requirement for a given set of sections. Trial and error can be
used to find a base such that all the encoded sections have the same length.
In my research, I discovered an original equation which predicts the smallest
integer in a fractional base. This equation may be used to determine if all
the encrypted sections in that base are of equal length.

For instance, we have the message “ISEF Participants in Indiana” to
encrypt using this method. We convert this message to the numerical repre-
sentation

09190506001601182009030916011420190009140009140409011401

Evidently this would take a prohibitive amount of time to encode, so we split
it into sections. We attempt the base 729

2
: 729 is 272, thus every digit in base

729 can be represented by a combination of 2 characters.

My original equation for the smallest integer with a given length in an
improper fractional base can be used to much advantage. We use it to find
that every base 729

2
integer with 6 digits is at least 12,885,896,162,367 in base

10, and every base 729
2

integer with 7 digits is at least 4,696,909,151,183,136
in base 10. Thus if we split the message into 16-digit sections, each of the
sections will be equally long when encrypted:

0919050600160118

2009030916011420

1900091400091404

0901140100000000

We may add some spaces - pairs of zeros - to the end of the message, to
make all the unencrypted sections the same length, so it is easier to decrypt.

17
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Leading zeros on the sections are dropped, so if the recipient knows all the
sections are the same length, the missing zeros can be replaced.

Now we convert each of these numbers to base 729
2

:

142; 305; 512; 704; 016; 200

312; 090; 075; 601; 080; 632

294; 479; 235; 068; 580; 645

140; 020; 275; 320; 194; 007

We then convert each of these digits to their 2-digit base-27 representation:

05, 07; 11, 08; 18, 26; 26, 02; 00, 16; 07, 11

11, 15; 03, 09; 02, 21; 22, 07; 02, 26; 23, 11

10, 24; 17, 20; 08, 19; 02, 14; 21, 13; 23, 24

05, 05; 00, 20; 10, 05; 11, 23; 07, 05; 00, 07

We finally convert each of these digits into the corresponding character and
join the message. As before, ‘00’ is equal to a space, ‘01’, ‘a’, etc.:

‘egkhrzzb pgkkocibuvgbzwkjxqthsbnumwxee tjekwge g’

To decrypt the message, the recipient must know that 729
2

was used as
the base and that the number was split into 4 sections to encrypt. Even if
someone knew the base was 729

2
, the message is 48 characters long. There

are 8 lengths possible to split up the message, but only one of these will give
the correct result.

5.3 Security Issues

Breaking a message encrypted in this manner requires testing possible bases
and section lengths until the correct combination is found. The denominator
must divide the first digit of the fractionally based integer evenly, thus if the
first digit is known, the possible denominators can be limited to divisors of
that digit. The numerator of the fractional base must be at least as large as

18
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the number of unique digits in the numerical representation of the encrypted
message, thus if the numerical representation of the encrypted message in
the improper fractional base is known, the numerator of the fractional base
is limited to a few values.

Using a base with a numerator greater than the number of characters
available and using combinations of characters to represent the digits can
make it much more difficult to crack the message. As groups of characters
represent one digit, the first digit is much more difficult to find, thus finding
the correct denominator is also more difficult. For the same reason, it is
harder to find the number of unique digits, thus making it also more difficult
to narrow the possible numerators.
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6 Conclusions

I created an original formula which predicted the smallest integer with a given
length in a fractional base from the base and length, in accordance with the
hypothesis. The formula was tested for 100 sets of data and is conjectured
to work for all fractional bases.

From this formula I created another original equation yielding the num-
ber of integers with a specific length in an improper fractional base.I also
discovered a new method of encryption using fractional bases, in which my
equation is useful.

Since fractional bases were discovered in 1936, little had been investigated
beyond the method of integer conversion. The uses of fractional bases are
open to exploration and will receive continued attention in coming years.
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