
Representing Numbers Using Fibonacci Variants

Stephen K. Lucas
Department of Mathematics & Statistics

James Madison University
Harrisonburg, VA 22807

September 2014

1 Introduction

The Fibonacci numbers and their variants are among the most popular sequences in
recreational mathematics, and even have a journal (The Fibonacci Quarterly) dedicated
to them. Many books have been written about them, including Dunlap [4] and Va-
jda [17]. Fibonacci numbers are defined by the recurrence relation fn = fn−1 + fn−2

with initial conditions f0 = 0 and f1 = 1, and have the closed form representation
fk =

(
φk − (1− φ)k

)/√
5, where φ = (1 +

√
5)/2 is the well known golden ratio, also

with its own book by Livio [13].
One property of Fibonacci numbers is that every natural number can be uniquely

represented by a sum of distinct non-consecutive Fibonacci numbers starting from f2 = 1,
since f1 = f2 = 1 is a repeat, and f0 = 0 won’t contribute to a sum. Consecutive Fibonacci
numbers can, of course, be replaced by the next largest. This was first discovered by
Eduourd Zeckendorf in 1939, but only published by him in 1972 [19]. The first publication
of the result was by Lekkerkerker [12] in 1952. As a result, representing a natural number
in this form is known as its Zeckendorf representation, and is easily found using a greedy
algorithm: given a number, subtract the largest Fibonacci number less than or equal to
it, and repeat until the entire number is used up. For example, consider 825. The largest
Fibonacci number less than 825 is f15 = 610, and 825− 610 = 215. Then f12 = 144 and
215− 144 = 71, f10 = 55 and 71− 55 = 16, f7 = 13 and 16− 13 = 3, and finally f4 = 3.
Therefore, 825 = f15 +f12 +f10 +f7 +f4, which can be represented as (10010100100100)Z ,
where the Z indicates Zeckendorf representation, and digits from right to left indicate
whether or not f2, f3 and so on are included in the sum for the number.

The lack of consecutive Fibonacci numbers in Zeckendorf representations of natural
numbers means a pair of ones can be used to separate numbers in a list. This means
different numbers in a list can be represented using a different number of digits, known
as a variable length encoding. Traditionally, a fixed number of digits (in a given base)
are used to represent every number in a list, which may waste space. The first part of
this paper compares the efficiency of representing numbers using Zeckendorf form versus

1

traditional binary with a fixed number of digits, and shows when Zeckendorf form is to
be preferred. We shall also see what happens when variants of Zeckendorf form are used.

Not only can we represent natural numbers as sums of Fibonacci numbers, we can
also do arithmetic with them directly in Zeckendorf form. We include a survey of past
approaches to Zeckendorf representation arithmetic, as well as some improvements.

2 Zeckendorf Proofs

Proving that the Zeckendorf representation exists and is unique for every natural number
is straightforward enough to include here. Existence is proven by induction, and begins
with 1 = f2, 2 = f3, and 3 = f4. If we assume every natural number up to n has a
Zeckendorf representation, consider n + 1. If it is a Fibonacci number, we are done.
Otherwise, there is some j such that fj < n + 1 < fj+1. Since n + 1 − fj < n, it has a
Zeckendorf representation, and additionally since n+1−fj < fj+1−fj = fj−1, it doesn’t
contain fj or fj−1. Thus the Zeckendorf representation of n+ 1 is that for n+ 1− fj with
fj included, and each Fibonacci number in the representation occurs at most once and
non-consecutively. By induction, we are done.

Before proving uniqueness, we need the result that any sum of distinct non-consecutive
Fibonacci numbers, whose largest is fn, is strictly less than fn+1. Again, we can use
induction, and since f2 = 1 < f3 = 2, f3 = 2 < f4 = 3 and f2 + f4 = 4 < f5 = 5, it is
initially true. Now assume that any sum of distinct non-consecutive Fibonacci numbers
whose largest is fn is strictly less than fn+1. Then a sum with largest number fn+1

can be split into fn+1 and a sum with largest Fibonacci number at most fn−1, which
is strictly less than fn by the assumption. The combination is thus strictly less than
fn + fn+1 = fn+2, and we are done.

And now to uniqueness. Assume that there are two different sets of non-consecutive
Fibonacci numbers that have the same sum, A and B. If there are any Fibonacci numbers
common to both collections, remove them from both by set difference, and let C and D
be the differences C = A − B and D = B − A. Since the same Fibonacci numbers are
being removed from both A and B, the Fibonacci numbers in the smaller sets C and D
still have the same sum, and have no common numbers. Let fc and fd be the largest
elements of C and D respectively, and since there are no common numbers, fc 6= fd. In
addition, without loss of generality, assume fc > fd. But by our previous result, the sum
of D is strictly less than fd+1 and so must also be strictly less than fc. But the sum of C
is at least fc. The only way this is possible is for C and D to in fact be empty sets that
sum to zero. But this means that the sets A and B must be the same, and we do have a
unique representation.

3 Efficiency of Number Representations

A number’s Zeckendorf representation, being a string of zeros and ones, looks a lot like
a base two representation, but shouldn’t be confused with it. For example, the base two
representation of 825, which equals 512 + 256 + 32 + 16 + 8 + 1, is (1100111001)2. This

2

requires fewer digits than its Zeckendorf representation, and so is more efficient in terms
of digits required. In fact, the base two representation of a natural number will always
be shorter than its Zeckendorf representation, because the larger the base, the smaller
the number of digits required. Zeckendorf form does not formally have a base, but since
φ ≈ 1.618 and 1 − φ ≈ −0.618, fk is the closest natural number to φk/

√
5, so the ratio

between Fibonacci numbers approaches φ. Thus Zeckendorf representation roughly has
the base φ ≈ 1.618 < 2, and so is less efficient than binary.

3.1 Lists of Natural Numbers

While Zeckendorf representation is less efficient (in terms of number of digits required)
than binary, its big advantage is that it cannot contain a pair of consecutive ones. So
instead of using a fixed number of digits to represent individual natural numbers in a list,
as many digits as are necessary can be used for each number, with a pair of ones separating
consecutive numbers. We can do even better if we reverse the order of the digits, with
least to most significant digits from left to right. Using the reverse of the standard
way we write numbers, the rightmost digit of a number’s Zeckendorf representation will
always be a one. So when a pair of ones is used to separate numbers, the first one is
part of the first number, and only the second one is the separator between numbers.
For example, the stream of digits “10010101110001011011” can be separated out into
“10010101,” “1000101,” and “01,” or f2 + f5 + f7 + f9, f2 + f6 + f8, and f3, or 53, 30,
and 2.

This reversed way of representing numbers in a list is sometimes known as “Fibonacci
coding,” and is particularly useful when there is no prior knowledge of the range of the
list of numbers. In this case, using a base two representation with a fixed number of
binary digits (bits) is problematic. We might overestimate how big the numbers will get
and waste space in base two, or underestimate and have numbers we can’t represent.

Even when we know exactly what range of numbers to expect in a list, there are oc-
casions when Fibonacci coding is superior to traditional base two. For example, consider
a list of numbers known to range from one to a million, with each number being equally
likely. A base two representation of numbers in this range will require at least twenty
bits per number. Using Fibonacci coding, the same distribution of numbers require on
average 27.8 bits per number, so more space and thus less efficient. But if the numbers
from one to ten are equally likely (with probability 9999/100,000) and one million occurs
with probability only one in ten thousand, then the base two list stays at twenty bits
per number, but the Fibonacci coding reduces to only 4.6 bits per number on average.
While this may be an extreme case, the saving is substantial, particularly when smaller
numbers are more likely. As another example, consider nonnegative integers chosen with
Poisson distribution (P (X = k) = λke−λ/k!) and λ = 4. Practically, output is integers
from one to thirty one, and Fibonacci coding requires 4.6 bits per number. Binary would
require five bits per number. In these last two cases, lists of numbers are more efficiently
written using Fibonacci coding.

3

3.2 Arbitrary Reals and Continued Fractions

There is one area where Fibonacci coding has not previously been applied and it is
particularly appropriate – the representation of arbitrary reals as continued fractions. A
continued fraction representation of a real is essentially a list of natural numbers. The
list has no a priori upper bound, and smaller natural numbers occur more often than
larger ones.

As a reminder, continued fractions are closely related to the algorithm for finding the
greatest common divisor of two natural numbers using integer division. For example,
given 236 and 24 we can successively find 236 = 9× 24 + 20, then 24 = 1× 20 + 4, and
20 = 5 × 4 + 0, which tells us that gcd(236, 24) = 4. But we can also use these steps to
write

236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20

= 9 +
1

1 + 1
20/4

= 9 +
1

1 + 1
5

.

Any fraction can be rewritten in this form of fractions within fractions (hence the name
continued fractions) for which all the fractions have one as their numerator. A com-
mon more compact notation rewrites this as 236/24 = [9; 1, 5], and in general, a simple
continued fraction for a (positive) fraction is

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

≡ [b0; b1, b2, . . . , bn],

where b0 is an integer, and the bi’s for i > 0 are natural numbers. The compact notation
on the right is much more convenient when the number of terms in the continued fraction
representation becomes large. The bi’s are traditionally called partial quotients. Let us
use the notation bxc, stated “the floor of x,” for the largest integer less than or equal
to x. Then the algorithm for finding partial quotients (adapted from integer division) is:
given some real number x, set x0 = x and b0 = bx0c, then

xi =
1

xi−1 − bi−1

and bi = bxic for i = 1, 2,

If x is rational, eventually some xi will be an integer and the continued fraction terminates.
If x is irrational, the sequence of partial quotients goes forever. For our example with
x = 236/24,

x0 =
236

24
, b0 =

⌊
236

24

⌋
= 9,

x1 =
1

236/24− 9
=

1

5/6
= 6/5, b1 =

⌊
6

5

⌋
= 1,

x2 =
1

6/5− 1
=

1

1/5
= 5, b3 = b5c = 5,

4

k Prob. k Prob.
1 0.415037 10 0.011973
2 0.169925 100 1.41434× 10−4

3 0.093109 1000 1.43981× 10−6

4 0.058894 10,000 1.44241× 10−8

5 0.040642
6 0.029747 > 10 1.25531× 10−1

7 0.022720 > 100 1.42139× 10−2

8 0.017922 > 1000 1.44053× 10−3

9 0.014500 > 10,000 1.44248× 10−4

Table 1: Probabilities of various partial quotients occurring in a random continued frac-
tion

and we are done.
Continued fractions have many elegant features, and a straightforward introduction

is Olds [15]. Many introductory texts on number theory, including the classic Hardy and
Wright [10], includes a chapter on continued fractions, but the feature of relevance here
is the Gauss-Kuzmin theorem, that tells us that for almost all irrationals between zero
and one, as n→∞ the probability that the nth partial quotient is k is

lim
n→∞

P (kn = k) = − log2

(
1− 1

(k + 1)2

)
.

Khinchin [11] gives as particularly clear derivation of this result. Its importance from
our perspective is that arbitrarily large partial quotients are possible, but increasingly
unlikely, in a continued fraction representation. Table 1 shows the probabilities of the
first few natural numbers occurring as any given partial quotient in the continued fraction
representation of an arbitrary irrational, as well as the probabilities that large partial
quotients can occur. Thus Fibonacci coding is an ideal choice for representing continued
fraction partial quotients for arbitrary irrationals.

For example, consider ln(2), whose first twenty thousand partial quotients are sum-
marized in table 2. Since there are only 20,000 partial quotients to work with, some of
the probabilities aren’t exactly equal to those in the theoretical distribution, but they are
remarkably close. The largest partial quotient happens to be 963,664. If we knew this
beforehand, we could encode this continued fraction using binary with twenty bits per
number. The Fibonacci coding of these partial quotients requires on average the shock-
ingly low 3.74 bits per number. Not only do we not need to know the largest number in
the sequence beforehand, but we have an extraordinarily compact way of representing the
sequence. For comparison purposes, a version of Lochs’ theorem [14, 18] states that if m
is the number of terms in a number’s continued fraction expansion and p is the number
of correct digits in the continued fraction when converted to binary representation, then
almost always

lim
n→∞

m

n
=

6(ln 2)2

π2
≈ 0.292.

Assuming a long enough continued fraction, this tells us that a number with m partial

5

k Prob. k Prob.
1 0.4152 10 0.01285
2 0.1668 100 2.5× 10−4

3 0.09405 1000 0
4 0.0577 10,000 0
5 0.0397
6 0.03065 > 10 1.284× 10−1

7 0.0222 > 100 1.45× 10−2

8 0.0179 > 1000 1.65× 10−3

9 0.0145 > 10,000 1.5× 10−4

Table 2: Probabilities of the first 20 000 partial quotients occurring in ln(2)

quotients will be accurate to about 3.42m bits in base two. Since 3.74 > 3.42, the binary
representation of ln(2) is slightly more efficient than the Fibonacci coding of its continued
fraction to about sixty-eight thousand binary digits, or about twenty thousand decimal
digits. But we lose all the additional information given by the continued fraction partial
quotients.

As another example, consider the first twenty thousand partial quotients of π. In this
case the largest partial quotient is 74,174, and the Fibonacci coding requires 3.71 bits
per number. Slightly better than in the ln(2) case, but still slightly worse than the pure
binary representation.

In conclusion, lists of natural numbers where smaller numbers occur more often than
larger ones are more compactly represented using Fibonacci coding instead of traditional
binary representations. This is particularly striking when representing lists of partial
quotients for arbitrary irrationals, where in addition to varying magnitude there is no
prescribed upper bound. Unfortunately, the binary representation is still slightly more
efficient than the Fibonacci coded continued fraction representation, if all you are inter-
ested in is a high precision representation.

4 Generalizing Fibonacci Coding

We have already seen how the effective base of Zeckendorf representation is φ ≈ 1.618 < 2,
so more digits are required than in traditional binary. But there is no reason why we
have to be limited to traditional Fibonacci numbers. The Fibonacci Quarterly is filled
with many variants on the Fibonacci sequence. The tribonacci sequence is defined by
tn = tn−1 + tn−2 + tn−3 with t−1 = t0 = 0 and t1 = 1, and continues 1, 2, 4, 7, 13, 24, 44,
The tetranacci sequence is defined by un = un−1 + un−2 + un−3 + un−4 with u−2 = u−1 =
u0 = 0 and u1 = 1, and continues 1, 2, 4, 8, 15, 29, 56, The earliest description of these
series dates to 1963 in Feinberg [5]. As with Fibonacci numbers, every number can be
uniquely represented as sums of tribonacci or tetranacci numbers. Three consecutive ones
cannot appear in a tribonacci representation, and four consecutive ones cannot appear
in a tetranacci representation. These are special cases of sequences of numbers that can
be used to represent arbitrary integers, as described in Frankel [7]. Our interest in these

6

k (a) (b) (c) (d) (e)
2 27.82 4.60 4.57 3.74 3.71
3 23.34 5.00 4.96 4.35 4.33
4 22.86 5.90 5.85 5.28 5.27
5 23.40 6.90 6.85 6.26 6.25

Table 3: Bits on average for k-bonacci representations for (a) equally spaced, one to a
million, (b) uneven distribution one to ten and one million, (c) Poisson with λ = 4, (d)
ln 2 partial quotients, and (e) π partial quotients.

representations is that the tribonacci numbers grow like xn where x is the largest root of
x3− x2− x− 1 = 0, or about 1.8393, and tetranacci numbers grow like xn where x is the
largest root of x4−x3−x2−x−1 = 0, or about 1.9276. These roots are closer to two than
the golden ratio, and so the number of digits required to represent natural numbers using
these sequences will get closer to how many are required using binary digits, keeping the
advantage that variable length coding is possible. The disadvantage is that the number
of repeated ones needed to separate numbers increases.

There is no reason why we should stop with tetranacci numbers, although the naming
conventions become cumbersome. Define a sequence of k-bonacci numbers by

un =
n∑
i=1

un−i, with u1 = 1 and ui = 0 for i < 0.

Then Fibonacci, tribonacci and tetranacci numbers are 2-bonacci, 3-bonacci and 4-
bonacci numbers, respectively. The 5-, 6- and 7-bonacci numbers grow like 1.9659n,
1.9836n and 1.9920n respectively, and the effective bases are approaching 2. Since k − 1
digits are used to separate different numbers in variable length coding, there will be some
optimum k-bonacci sequence to minimize the length of an encoding of a sequence of
numbers, depending on their distribution.

Let us return to the examples where we compared Fibonacci coding to binary. Table 3
lists how many bits on average are required with k-bonacci coding with various values of
k in the various examples. For uniformly distributed numbers, 4-bonacci numbers are the
best sequence, but are still inferior to binary when we happen to know the upper bound
of a million. In every other case, Fibonacci coding is superior. Alas, the gains made by
shortening the length of the sequence of digits required by increasing the effective base
has been lost to the additional digits required to separate individual numbers.

5 Arithmetic

Not only can natural numbers be represented as sums of Fibonacci numbers, but arith-
metic can easily be done on them in this form. Here we return to Zeckendorf form with
most significant digits on the left. After numbers are combined, the resulting sum of
Fibonacci numbers will usually not be in Zeckendorf form, because it will include pairs
of successive ones or numbers greater than one. Luckily, a sum of Fibonacci numbers can
be easily returned to Zeckendorf form by a combination of two rules:

7

• The pair rule: since fn = fn−1 + fn−2 or fn − fn−1 − fn−2 = 0, subtracting one
from successive digits adds one to the digit immediately to their left, which can be
represented by the transformation (. . . (+1)(−1)(−1) . . .)Z .

• The two rule: subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2 we get fn+1 +
fn−2 − 2fn = 0. Subtracting two from a digit adds one to the digit to its left
(like an ordinary base two carry), and additionally adds one to the digit two to
the right. This can be represented by the transformation (. . . (+1)(−2)(0)(+1) . . .),
where the (0) indicates no change to the digit. It is this nonstandard carry that
makes arithmetic with Zeckendorf representation more entertaining.

The nonstandard carry with the two rule means we need to be more careful near the right
edge of the number. Since 2f1 = f2 and 2f2 = f3 + f1, the special cases of the two rule
at the right edge are (. . . (+1)(−2))Z and (. . . (+1)(−2)(+1))Z .

5.1 Addition

To add numbers in Zeckendorf form, we simply add the digits, then apply the pair and
two rules as necessary to return to Zeckendorf form. For example, consider

(101001001)F + (100101001)F = (201102002)F .

To return to Zeckendorf form, it is easiest visualize using a checkerboard representation,
where boxes represent successive Fibonacci numbers, and counters in a box count how
many multiples of that Fibonacci number are needed. The pair and two rules govern how
counters can be moved. Figure 1 shows one way of returning (201102002)F to Zeckendorf
form. At the top we represent (201102002)F . Then each successive row of the figure
shows how applications of the pair rule (three times), the two rule (once) and the pair
rule one more time leads to a distribution of counters in Zeckendorf form. The sum is
thus (10000010101)Z .

In this example, we did not apply a systematic approach when returning to Zeckendorf
form. Early discussions of addition by Freitag and Phillips [8] in 1998 and Fenwick [6]
in 2003 did not suggest a systematic approach. In 2002, Tee [16] suggested a recursive
approach that had the rather pessimistic bound of O(n3), which states that the number of
applications of pair or two rules required in returning to Zeckendorf form is proportional
to the cube of the number of digits n. In 2013, Ahlbach et al. [1] showed how returning
a sum to Zeckendorf form could be achieved using exactly 3n applications of pair or two
rules. Their algorithm uses three passes through the digits, looking at groups of four
successive digits. Specifically, their first pass from left to right performs the replacements
(x is any digit) 020x→ 100(x+ 1), 030x→ 110(x+ 1), 021x→ 110x and 012x→ 101x,
which they show eliminates any two’s in the representation combined with a “clean-up”
operation at the end. Their second pass from right to left performs the replacement
011 → 100, which eliminates the pattern 1011 from the representation, and the third
pass from left to right repeats the second pass, and eliminates any remaining successive
ones without additional consecutive ones.

Here, we introduce an improvement on Ahlbach et. al [1] that reduces the process
to two passes. We start with the same first pass to remove twos. Then insert a leading

8

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

Figure 1: Using a checkerboard to visualize returning a number to Zeckendorf form.

zero, and the second pass from left to right does the replacement (01)k1→ 1(0)2k, where
the notation (01)k means k copies of the pair of digits zero and one. This deals with
any possible carries or long sequences of ones, and can be achieved by a single pass using
a pair of pointers, one at the first 01 pair, the second moving to the right. If a pair
of consecutive zeros are found, then the left pointer can be moved to match the right
pointer, and we continue through the number. We cannot improve the efficiency further,
due to the carry from the two rule going in both directions.

For example, let us reconsider (201102002)F . Applying the first left to right pass
(with an inserted leading zero) gives the sequence

(0201102002)F → (1002102002)F → (1011002002)F → (1011010012)F → (1011010101)F .

The second pass gives the sequence (01011010101)F → (10000010101)F as before.

5.2 Subtraction

As with addition, subtraction can be done in a variety of ways. The simplest is a form
of reallocation, as currently taught in most American elementary schools. Digit by digit,
0 − 0 = 0, 1 − 0 = 1 and 1 − 1 = 0. In the 0 − 1 case we go to the left in the digits of
the first number, and find the first 1. Applying the pair rule in reverse then replaces the
triple of digits 100 by 011. Repeat this with the right most of the new ones until there

9

is a one in the first number available for canceling. The rightmost digit is a special case,
where we replace (10)Z by (02)Z before subtraction if necessary.

After using this technique, the number may not be in Zeckendorf form, but it will
certainly not contain any two’s, so a single pass of the new approach described for ad-
dition will reduce it to Zeckendorf form. Thus, at worst, subtraction can be done in
essentially three passes. In the worst case the reallocation steps require moving up
and down the entire first number (two passes at worst), then one pass to eliminate
pairs of ones. For example, consider (101000010)Z − (010000101)Z . Matching digits
by reallocation requires three applications of the pair rule, replacing the problem by
(011101102)Z − (010000101)Z = (1101001)Z . Eliminating pairs gives (10001001)Z , the
final answer.

It is worth mentioning that Fenwick [6] initially recommended this reallocation ap-
proach, then went on to a much more complicated complement approach. Tee [16] also
had a slow O(n3) algorithm. Ahlbach et al. [1] just subtracted digits, and added an
additional pass to eliminate negative digits. They then used their addition algorithm, so
four passes in total. The approach here is the most efficient.

5.3 Multiplication

There are four distinct ways to be found in the literature to perform multiplication. In the
same way that traditional multiplication is performed digit by digit, Freitag and Phillips
[8] multiplied numbers by adding the products of Fibonacci numbers that appear in the
Zeckendorf representations of the numbers. They proves the odd and even rules

fmf2i =
i−1∑
j=0

fm+2i−2−4j and fmf2i+1 = fm−2i +
i−1∑
j=0

fm+2i−1−4j,

where m > 2i and 2i + 1 respectively. They recommend converting back to Zeckendorf
form after each addition to avoid arbitrarily large digits.

Tee [16] suggested using Russian Peasant multiplication, which can be algebraically
written as: if y is even, then xy = (2x)(y/2), else xy = x+x(y−1) = x+(2x)((y−1)/2).
Doubling a number in Zeckendorf form is easy, just replace every one by two, and return
to Zeckendorf form. This requires three passes using the new technique. Halving is just
as easy using the reversed pair rule, (· · · (−1)(+1)(+1) · · ·). From left to right, apply the
reversed pair rule to any one or three (threes can accumulate from multiple additions).
Twos are initially ignored, and after the pass all digits will be zero or two, apart from
possibly the last pair. To halve, replace twos by ones, and the last pair of digits identify if
the number was initially odd. Looking at the the special cases of halving and potentially
odd,

(00)→ (00)F, (01)→ (00)T, (10)→ (01)F, (11)→ (01)T, (12)→ (10)F,

(20)→ ((10)F, (21)→ (10)T, (22)→ (11)F, (31)→ (11)T.

One more pass will be required to eliminate pairs of ones. For example, with 45,
(10010100)F → (01110100)F → (00220100)F → (00220011)F . Halving and applying

10

f2f3f4f5f6f7f8f9f10f11f12

f3

f4

f2

f5

f6

f7

Figure 2: Multiplication using a checkerboard in Zeckendorf form, initial setup.

the (11) last pair rule, we get (110001)F , with true. One last pass replaces this by
(1000001)F = 22, which is half of 45, which is odd.

Fenwick [6] suggested a variant of Egyptian multiplication. This version doesn’t use
doubling, and instead adds the previous two numbers. Unfortunately, this technique is
less effective than Russian Peasant, because there are more additions than doubles.

A final technique for multiplication is motivated by John Napier’s technique of ad-
dition and multiplication in binary using a checkerboard, as described in Gardner [9].
To begin, label the rows and columns with the Fibonacci numbers used in Zeckendorf
form. Then, since each number is represented by a sum of Fibonacci numbers, by the
distributive rule their product can be laid out as counters where each column is associ-
ated with the first number, each row with the second. For example, consider 25 × 18,
or (1000101)Z × (101000)Z . Figure 2 shows how this would be initially laid out. I have
circled the relevant Fibonacci numbers used to represent the first and second numbers.

We now want to return the number to Zeckendorf form, where we can now work down
columns as well as across rows. One systematic approach is to use the pair rule in reverse
in the vertical direction to remove every counter in the top row, then use the addition
approach to return the rows that have changed back to Zeckendorf form. We repeat this
until a single row remains at the bottom. As with addition, some care needs to be taken
with the final step. Figure 3 shows the intermediate steps for 25 × 18. While it may
not look terribly obvious as a figure, physically moving counters around a checkerboard
and applying the pair and two rules is an easy process to follow. It is also very easy to
implement on a computer using a two dimensional array. There is a similarity here to
the Freitag and Phillips [8] approach, but it is not immediately obvious whether the two
dimensional array cuts down on the amount of work required to find the solution.

We note that Ahlbach et al. [1] avoid multiplication by converting to binary, multi-
plying in binary, then converting back to Zeckendorf form.

11

(i) Reverse pair rule applied
to top row of intial

(ii) Convert top two rows
to Zeckendorf form

(iii) Reverse pair rule applied
to top row of (ii)

(iv) Convert top two rows
to Zeckendorf form

(v) Reverse pair rule applied
to top row of (iv)

(vi) Convert top two rows
to Zeckendorf form

(vii) Reverse pair rule applied
to top row of (vi)

(viii) Convert top two rows
to Zeckendorf form

(ix) Reverse pair rule applied
to top row of (viii)

(x) Convert to Zeckendorf form

Figure 3: Multiplication using a checkerboard in Zeckendorf form, successive steps.

12

6 Conclusion

We have seen how Zeckendorf notation is an excellent way of representing a stream of
natural numbers, particularly when either the maximum of the stream is not known
beforehand, or smaller numbers are more likely than larger ones. The technique is par-
ticularly useful when representing the sequence of partial quotients that make up the
continued fraction representation of an arbitrary irrational. While it is possible to gen-
eralize to sequences where each is the sum of more than two previous numbers, it turns
out to be of limited utility.

We have also seen how addition and subtraction of numbers in Zeckendorf form is a
straightforward task, and have shown a new approach to returning a sequence to Zeck-
endorf form that is more efficient. We have also seen four different ways of multiplying,
and that using a checkerboard as a calculation tool has a certain elegance.

There are a number of future directions to consider. Which of these multiplication
algorithms is most efficient? Does this depend on the magnitude of the numbers? Some
of the authors already cited have suggested integer division (quotient and remainder)
algorithms. How do they compare, particularly with our new efficient addition algorithm?
In addition, Bunder [3] showed how all integers can be represented by Fibonacci numbers
with negative coefficient, and Anderson and Bicknell-Johnson [2] showed how vectors built
on k-bonacci numbers can be used to represent points in Zk−1. Can we do arithmetic on
these in the same way?

References

[1] C. Ahlbach, J. Usatine, C. Frougny and N. Pippenger, Efficient Algorithms for Zeck-
endorf Arithmetic, Fibonacci Quart. 51(3) (2013) 249-255.

[2] P.G. Anderson and M. Bicknell-Johnson, Multidimensional Zeckendorf representa-
tions, Fibonacci Quart. 49(1) (2011) 4-9.

[3] M.W. Bunder, Zeckendorf representations using negative Fibonacci numbers, Fi-
bonacci Quart. 30(2) (1992) 111-115.

[4] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing
Company, 1998.

[5] Mark Feinberg, Fibonacci-tribonacci, Fibonacci Quart. 1(3) (1963) 71-74.

[6] P. Fenwick, Zeckendorf integer arithmetic, Fibonacci Quart. 41(5) (2003) 405-413.

[7] A.S. Fraenkel, Systems of numeration, American Mathematical Monthly 92(2) (1985)
105-114.

[8] H.T. Freitag and G.M. Phillips, Elements of Zeckendorf arithmetic, Applications of Fi-
bonacci Numbers 7 129-132, G.E. Bergum, A.N. Philippou and A.F. Horadam (Eds.),
Kluwer, Dordrecht 1998.

[9] Martin Gardner, Knotted doughnuts and other mathematical entertainments, W. H.
Freeman and Company, 1986.

[10] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th edition,
Oxford University Press, London, 1979.

13

[11] A. Ya. Khinchin, Continued Fractions, Dover 1997 (originally University of Chicago
Press 1964).

[12] C.G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen
van Fibonacci, Simon Stevin 29 (1952) 190-195.

[13] Mario Livio, The Golden Ratio: The Story of φ, the World’s Most Astonishing
Number, Broadway, 2003.

[14] G. Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Ham-
burg Univ. Math. Sem. 27 (1964) 142-144.

[15] C.D. Olds, Continued Fractions, Random House, 1963.

[16] G.J. Tee, Russian peasant multiplication and Egyptian division in Zeckendorf arith-
metic, Austral. Math. Soc. Gaz., 30(5) (2003) 267-276.

[17] Steven Vadja, Fibonacci and Lucas Numbers, and the Golden Section: Theory and
Applications, Dover Publications, 2007.

[18] Eric W. Weisstein, Lochs’ Theorem, from MathWorld–A Wolfram Web Resource
http://mathworld.wolfram.com/LochsTheorem.html.

[19] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liége 41 (1972) 179-182.

14

