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A MATLAB toolbox, IIPBF, for calculating infinite integrals involving a product of two Bessel functions
Ja(ρx)Jb(τx), Ja(ρx)Yb(τx) and Ya(ρx)Yb(τx), for non-negative integers a, b, and a well behaved function
f(x), is described. Based on the Lucas algorithm previously developed for Ja(ρx)Jb(τx) only, IIPBF recasts
each product as the sum of two functions whose oscillatory behavior is exploited in the three step procedure
of adaptive integration, summation and extrapolation. The toolbox uses customised QUADPACK and IMSL func-
tions from a MATLAB conversion of the SLATEC library. In addition, MATLAB’s own quadgk function for adaptive
Gauss-Kronrod quadrature results in a significant speed up compared with the original algorithm. Usage of
IIPBF is described and thirteen test cases illustrate the robustness of the toolbox. The first five of these and
five additional cases are used to compare IIPBF with the BESSELINT code for rational and exponential forms
of f(x) with Ja(ρx)Jb(τx). An appendix shows a novel derivation of formulae for three cases.
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1. INTRODUCTION
Lucas [1995] developed an algorithm for computing infinite integrals of products of
Bessel functions of the first kind. Specifically, for given a well-behaved function f(x),
two non-negative integers a, b and two positive real constants ρ, τ , the algorithm com-
putes

∫∞
0

f(x)Ba,b,ρ,τ (x)dx where Ba,b,ρ,τ (x) = Ja(ρx)Jb(τx). Available as a stand alone
FORTRAN77 package containing functions from IMSL and QUADPACK libraries, the algo-
rithm has been used in elasticity, electrodynamics, fluid dynamics, biophysics and geo-

Authors’ addresses: J. T. Ratnanather, Center for Imaging Science and Institute for Computational Medicine,
Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Clark 301, 3400 N. Charles St,
Baltimore, MD 21218-2826; J. H. Kim, Dept. of Applied Mathematics and Statistics, The Johns Hopkins
University, Baltimore, MD 21218; S. Zhang, School of Mathematical and System Sciences, Beihang Univer-
sity, Beijing, 100191, China; A. M. J. Davis, Dept. of Mechanical and Aerospace Engineering, University of
California San Diego, La Jolla, CA 92093-0411; S. K. Lucas, Dept. of Mathematics and Statistics, James
Madison University, Harrisonburg, VA 22807.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0098-3500/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 J. T. Ratnanather et al.

physics to name but a few applications [Craster 1998; Davis and Stone 1998; Pan
et al. 2007; Petrov and Schwille 2008; Robinson 2002; Salo et al. 2006; Sherwood 2005;
Tartakovsky et al. 2000; Xu et al. 2003]. Briefly, the Lucas algorithm rewrites the
product, Ba,b,ρ,τ , as the sum of two functions i.e. h1 + h2 whose oscillatory behaviour
is exploited in a three step procedure of (i) Integration, (ii) Summation and (iii) Ex-
trapolation (ISE). ISE was first adopted for integrands involving Jn(x) whose zeros
form the subdivision of the range giving rise to a summation of integrals of alternat-
ing signs, convergence of which is accelerated via an extrapolation technique [Lucas
and Stone 1995]. The decomposition of the product as the sum of two functions results
in applying the ISE method twice. The algorithm used modifications of adaptive IMSL
routines dqdage and dqdagie for finite and infinite adaptive integration with Gaussian
quadrature respectively; further it used dqelg in QUADPACK [Piessens et al. 1983] as
the ε-algorithm and mWtrans as the mW transform [Sidi 1988] to deal with the oscil-
latory components and acceleration of the summation of the integrals, and methods
for finding or approximating the zeros of h1 and h2. Lucas [1995] obtained results
for Ja(x)Jb(x) approaching machine precision with less then 1000 function evaluations
compared with a few digits of accuracy for up to 15000 evaluations with the IMSL rou-
tines.

The increasing usage of MATLAB suggests that a version of the Lucas algorithm would
be a valuable computational science tool. This can be achieved by taking advantage of
the recent availability of MATLAB versions of IMSL and QUADPACK functions via a conver-
sion of the SLATEC library [Barrowes 2009]. Further, the algorithm has not previously
been adapted for combinations of Bessel functions of the first and second kind.

In what follows, first the development of a MATLAB toolbox, IIPBF, is described for
three types of Ba,b,ρ,τ i.e. Ja(ρx)Jb(τx), Ja(ρx)Yb(τx) or Ya(ρx)Yb(τx). Next a modifica-
tion of the general Lucas algorithm for dealing with zeros of h2 for the ε-algorithm
and the use of MATLAB’s own adaptive Gauss-Kronrod quadrature algorithm (quadqk)
[Shampine 2008] are described. Results for several test cases are presented. The dis-
cussion concludes the paper.

2. METHOD
This section describes the decomposition of Ba,b,ρ,τ as the sum of high and low fre-
quency components respectively given by h1 and h2. This is followed by a summary
of a modification of the Lucas algorithm in which the zeros of h1 are used as integral
endpoints with the mW transform for the infinite integral involving h1, and the zeros
for h2 estimated stepwise are used for the ε-algorithm.

2.1. Product decomposition
First Ja(ρx)Jb(τx) is expressed as h1(x; a, b, ρ, τ) + h2(x; a, b, ρ, τ) where

h1(x; a, b, ρ, τ) =
1
2
(Ja(ρx)Jb(τx)− Ya(ρx)Yb(τx)),

h2(x; a, b, ρ, τ) =
1
2
(Ja(ρx)Jb(τx) + Ya(ρx)Yb(τx))

with the asymptotic behaviour for large x [Lucas 1995]

h1(x; a, b, ρ, τ) ∼ 1
π
√

ρτx
cos
(

(ρ + τ)x− (a + b + 1)π
2

)
h2(x; a, b, ρ, τ) ∼ 1

π
√

ρτx
cos
(

(ρ− τ)x− (a− b)π
2

)
 . (1)
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Second Ja(ρx)Yb(τx) is expressed as h1(x; a, b, ρ, τ) + h2(x; a, b, ρ, τ) where

h1(x; a, b, ρ, τ) =
1
2
(Ja(ρx)Yb(τx) + Ya(ρx)Jb(τx))

h2(x; a, b, ρ, τ) =
1
2
(Ja(ρx)Yb(τx)− Ya(ρx)Jb(τx))

whose asymptotic behavior is

h1(x; a, b, ρ, τ) ∼ 1
π
√

ρτx
sin
(

(ρ + τ)x− (a + b + 1)π
2

)
h2(x; a, b, ρ, τ) ∼ − 1

π
√

ρτx
sin
(

(ρ− τ)x− (a− b)π
2

)
 . (2)

Third Ya(ρx)Yb(τx) is expressed as h1(x; a, b, ρ, τ) + h2(x; a, b, ρ, τ) where

h1(x; a, b, ρ, τ) = −1
2
(Ja(ρx)Jb(τx)− Ya(ρx)Yb(τx)),

h2(x; a, b, ρ, τ) =
1
2
(Ja(ρx)Jb(τx) + Ya(ρx)Yb(τx))

whose asymptotic behaviour is

h1(x; a, b, ρ, τ) ∼ − 1
π
√

ρτx
cos
(

(ρ + τ)x− (a + b + 1)π
2

)
h2(x; a, b, ρ, τ) ∼ 1

π
√

ρτx
cos
(

(ρ− τ)x− (a− b)π
2

)
 . (3)

2.2. Calculating zeros of h1 an h2

The ISE method is applied to f(x)h1(x) and f(x)h2(x). While the zeros of h1 are easy
to find, those of h2 can be difficult to compute. Let h1,1 and h2,1 denote the first zeros of
h1(x) and h2(x) respectively.

When ρ = τ , the integration domain is split with [0, ymax] for f(x)Ba,b,ρ,τ (x) and
[ymax,∞] for f(x)h1(x) + f(x)h2(x). From Eqs. 1-3, h2(x) is a non-oscillating monoton-
ically decreasing function, extrapolation is used for h1(x) and thus the zeros of h2(x)
are not needed. ymax is calculated as the first zero of h1(x) beyond which point Ya(x)
no longer dominates h1(x) [Olver 1960]. Subsequent zeros for the mW transform [Sidi
1988] are computed using the asymptotic approximations from Equations 1-3.

When ρ 6= τ , the estimate for the zeros of Ya(x) [Olver 1960] are used initially
to establish h1,1 and h2,1. The domain [0,∞] is split into [0, ymin], [ymin, ymax] and
[ymax,∞] with ymin = min(h1,1, h2,1) and ymax = max(h1,1, h2,1). Subsequent zeros of
h1(x) for the mW transform are computed using the asymptotic approximations from
Equations 1-3, while zeros of h2(x) after h2,1 for the ε-algorithm are obtained via step-
wise increments of π/|ρ− τ | [Lucas 1995].

2.3. The IIPBF Toolbox
By adding (a) to QUADPACK function names, IIPBF algorithm for 0 < a, b < 1000, ρ, τ ∈ R
and type = 1, 2, 3 for one of the three forms of Ba,b,ρ,τ is described in algorithm 1.

The functions dqagiea, dqagea and dqelga were adapted from the MATLAB version of
the SLATEC library [Barrowes 2009]. In particular, dqagea and dqagiea use the recently
developed adaptive Gauss-Kronrod quadrature algorithm (quadgk) [Shampine 2008]
now available in MATLAB instead of dqk15 and dqk15i respectively; dqelga is called via
a wrapper epsalg. The converted SLATEC routines [Barrowes 2009] together with the
original mWtrans algorithm were customised to pass a second function to deal with
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ALGORITHM 1: IIPBF Algorithm
Input: type, a, b, ρ, τ , abserr (absolute error tolerance), relerr (relative error tolerance)
Output: Ia,b,ρ,τ , neval (number of evaluations of h1 and h2), esterr (estimated relative error)
if ρ = τ then

Calculate h1,1 with abserr/3 and relerr/3;
I1 =

∫ h1,1

0
f(x)Ba,b,ρ,τ (x)dx using dqagea;

I2 =
∫∞

h1,1
f(x)h2(x; a, b, ρ, τ)dx using dqagiea;

I3 =
∫∞

h1,1
f(x)h1(x; a, b, ρ, τ)dx using mWtrans;

I4 = 0
else

Calculate h1,1 and h2,1 with abserr/4 and relerr/4;
I2 =

∫∞
h1,1

f(x)h1(x; a, b, ρ, τ)dx using mWtrans;

I3 =
∫∞

h2,1
f(x)h2(x; a, b, ρ, τ)dx using epsalg;

if h1,1 < h2,1 then
I1 =

∫ h1

0
f(x)Ba,b,ρ,τ (x)dx using dqagea;

I4 =
∫ h2,1

h1,1
f(x)h2(x; a, b, ρ, τ)dx using dqagea

else
I1 =

∫ h2,1

0
f(x)Ba,b,ρ,τ (x)dx using dqagea;

I4 =
∫ h1,1

h2,1
f(x)h1(x; a, b, ρ, τ)dx using dqagea

end
end
Ia,b,ρ,τ = I1 + I2 + I3 + I4

the decomposition of f(x)Ba,b,ρ,τ (x). Available at http://www.cis.jhu.edu/software/
iipbf, the toolbox is run as follows:

[result,est_error,nevals]=IIPBF(f,rho,tau,a,b,abserr,relerr,type);

with input parameters:
f = user-defined function: f(x)
rho = ρ
tau = τ
a,b = non-negative integers
abserr = absolute error tolerance
relerr = relative error tolerance
type = product type

and output:
result = computed integral
esterr = estimated relative error
neval = number of function evaluations for esterr to fall below tolerance

3. RESULTS
Table I lists the cases that were used to test IIPBF. The first three cases are from Lucas
[1995] and the remaining ones are simplified forms of those being calculated with the
toolbox in a separate study. While evidently faster algorithms exist for simpler inte-
grals, it is important to be able to demonstrate feasibility of IIPBF. Fig. 1 and 2 plots
actual error and estimated relative error with respect to the number of evaluations of
h1 and h2 for requested relative error tolerances from 10−4 to 10−14 in 10 decrements
of 0.1.
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Table I. Test cases for f(x)Ba,b,ρ,τ (x) with parameters u, ρ, τ ∈ Z+.

Case f(x)Ba,b,ρ,τ (x) Value
1 J0(x)J1(3x/2) 2/3
2 J0(x)J5(2x)/x4 27/4096
3 xJ0(x)J20(1.1x)/(1 + x2) ≈ −6.050747903049× 10−3

4 J0(x)J1(x)/x 2/π
5 J1(x)J1(x)/x2 4/3π

6 xK0(xu)J0(ρx)J0(τx) 1/

((
u2 + ρ2 + τ2

)2
− 4ρ2τ2

)1/2

7 x2K1(xu)J1(ρx)J1(τx) 4uρτ/

((
u2 + ρ2 + τ2

)2
− 4ρ2τ2

)3/2

8 e−2uxJ0(x)Y0(x) (1/π)

∫ π/2

0

(1 + u2 cos2 z)−1/2dz

9 xe−x2/uJ2(x)Y2(x)
4

sπ
−

2

π
−

uK2(u/2)

2πeu/2

10 x3e−x2/uJ2(x)Y2(x) −
4

π
+

u2(2 + u)K0(u/2)

4πeu/2
+

u(8 + 4u + u2)K1(u/2)

4πeu/2

11 e−uxY0(ρx)Y0(τx) −
2

π

∫ ∞
ρ

G(y)dy√
y2 − ρ2

where ρ > τ and

G(y) = −
2

π(α2
1 + α2

2)

[
α1 ln

√
(α1 + u)2 + (α2 + y)2

τ
+

α2 arctan

(
α2 + y

α1 + u

)]
α1,2 =

1
√

2

[√
(u2 + τ2 − y2)2 + 4u2y2 ± (u2 + τ2 − y2)

]1/2

12 J0(ρx)J0(τx) (2/πρ)K(τ/ρ) where τ < ρ
13 Y0(ρx)Y0(τx) (2/πρ)K(τ/ρ) where τ < ρ

Formulae 4-8 were obtained from Gradshteyn & Ryzhik [2007]; those for cases 9-10 were obtained from
Adamchik [1995]; for cases 11-13 see Appendix A for derivation of formulae involving the elliptic function
K that are simpler than those by Glasser [1974].

Table II. Additional test cases for comparison of BESSELINT and IIPBF.

Case f(x)Ba,b,ρ,τ (x) Value

14 e−2uxxJ0(x)J1(x)
K−E

2πρ
√

ρ2 + u2

15 e−2ux[J0(x)]2
K

π
√

ρ2 + u2

16 e−2ux[J1(x)]2
(2u2 + ρ2)K− 2(u2 + ρ2)E

πρ2
√

ρ2 + u2

17 e−2ux[xJ1(x)]2
3

4π

∫ π/2

0

cos2 zdz

[u2 + cos2 z]5/2

18
x

u2 + x2
Ja(ρx)Ja(τx)

1

2
πiJa(iρu)H

(1)
a (iτu) a > −1

MATLAB functions for K and E which are the complete elliptic integrals
of the first and second kind, respectively, of modulus ρ/

√
ρ2 + u2 where

u ∈ Z+ were used; formulae were taken from Gradshteyn & Ryzhik
[2007].
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Fig. 1. Comparing actual error to number of function evaluations of h1 and h2 with requested relative
error tolerances from 10−4 to 10−14 in 10 decrements of 0.1 for the test cases in table I. In cases 6 and
7, parameters {u, ρ, τ} = {1, 2, 1}. For cases 8, 9 and 10 u = 1.5, 0.2 and 2 respectively. For case 11,
{u, ρ, τ} = {0.1, 2, 1}. For cases 12 and 13, {ρ, τ} = {3, 1}.

An alternative to IIBPF is BESSELINT [Van Deun and Cools 2006a; 2008; 2006b] for
the integrand f(x)Πk

i=1Jai
(ρix) where f(x) = xse−ux/(t2 + x2). Briefly, the algorithm

uses asymptotic expansions for Jai
and the incomplete Gamma function [Van Deun

and Cools 2006c] to approximate the infinite part of the integral. Therefore it is appro-
priate to compare the performance and reliability of IIPBF with BESSELINT for cases 1-5
in table I and five additional cases in table II. The tests were run with MATLAB version
7.9.0.529 (R2009b) on Intel Core2 Duo CPU L6700 with 2.66GHz. Table III lists run-
time execution, absolute difference between computed values, and estimated relative
errors for a requested relative error tolerance of 50eps. Clearly while both BESSELINT
and IIPBF give similar values with similar relative errors, the former is faster by a
factor of 4-50. Further, MATLAB’s profiler tool was used to identify which parts of the
code consumed most of the CPU processing. Other than calling besselj [Van Deun
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Fig. 2. Comparing estimated error to number of function evaluations of h1 and h2 with requested relative
error tolerances from 10−4 to 10−14 in 10 decrements of 0.1 for the test cases in table I. In cases 6 and
7, parameters {u, ρ, τ} = {1, 2, 1}. For cases 8, 9 and 10 u = 1.5, 0.2 and 2 respectively. For case 11,
{u, ρ, τ} = {0.1, 2, 1}. For cases 12 and 13, {ρ, τ} = {3, 1}.

and Cools 2006b], the bottleneck in the respective codes were ira and mWtrans which
both deal with the infinite range approximation. However the latter consumed more
due to the nature of its implementation.

4. DISCUSSION
A MATLAB toolbox, IIPBF, for infinite integration of products of Bessel functions of the
first and second kind has been developed and tested.

A key component of IIPBF is the use of adaptive quadrature algorithms. Specifically
using quadgk in dqagea and dqagiea enabled error estimates to be derived robustly
with significantly less function evaluations than in the original Lucas algorithm by
nearly two orders of magnitude for cases 1-3; indeed, the number of function evalu-
ations in an early version of IIPBF were about the same as those by Lucas [1995].
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Table III. Comparison of BESSELINT and IIPBF

Case Time (secs) Estimated Error Absolute
BESSELINT IIPBF BESSELINT IIPBF Difference

1 0.1189 0.6542 1.67x10−16 2.36x10−15 1.11x10−16

2 0.0351 0.6454 3.95x10−16 8.38x10−16 1.73x10−18

3 0.1830 0.7743 8.87x10−15 1.51x10−15 5.47x10−17

4 0.0163 0.5725 1.74x10−16 2.95x10−15 0
5 0.0140 0.5838 1.31x10−16 1.80x10−15 0
14 0.0992 0.5347 5.56x10−15 7.51x10−16 6.94x10−18

15 0.0088 0.5283 1.29x10−14 2.06x10−15 2.78x10−16

16 0.0176 0.5407 1.33x10−14 8.32x10−16 2.17x10−17

17 0.0106 0.5447 5.56x10−15 1.59x10−16 8.67x10−19

18 0.0385 0.6564 4.13x10−13 2.40x10−15 1.54x10−16

The last column is the absolute difference between the computed values.

Generally, quadgk performs the adaptive subdivision locally and conservatively, is able
to process subintervals simultaneously, samples many points within the subintervals
and is therefore faster and more reliable than its predecessor [Shampine 2008; Gander
and Gautschi 2001; Gonnet 2009]. In addition, dqagiea exploits the ability of quadgk
to handle infinite integrals but if convergence is slow, the ε-algorithm is used instead.

Two codes for computing infinite integrals of products of Bessel functions of the first
kind have emerged in recent years. One is a FORTRAN code for products of Bessel func-
tions of order 0 or 1 and f(x) = 1 or x [Singh and Mogi 2005]. The other is BESSELINT
[Van Deun and Cools 2006a; 2006b] with modifications for rational and exponential
f(x) [Van Deun and Cools 2008]. When comparing BESSELINT and IIPBF, the latter can
be used for any well-behaved f(x) while the rational exponential form of f(x) in the
former is used to facilitate stable quadrature over a converging series in the asymp-
totic part. Quadrature in both cases are adaptive however BESSELINT uses hard-coded
Gauss-Legendre with 15 points followed 19 points over sub-intervals determined ap-
proximately by the zeros of the integrand. The singularity near x = 0 is dealt with in-
ternally in the quadgk function for weak logarithmic and algebraic forms via a simple
transform whereas extrapolation is used in BESSELINT. The breakpoint beyond which
asymptotic properties are used is determined by the first zero of h1 and h2 in IIPBF
whereas in BESSELINT it is automatically determined via the incomplete gamma func-
tion.

Since IIBPF is as accurate as BESSELINT, it will have wider applicability as it would
be more laborious to derive asymptotic forms of more general f(x). Eventually, it is
possible that IIPBF will be superseded by combining the best features of both codes
in which case Hankel functions may be useful [Huybrechs and Vandewalle 2006] in
developing the procedure for Yai(ρix).
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A. FORMULAE FOR CASES 11-13
This appendix describes the derivation of expressions for integrals in cases 11-13 in
table I that are found to be simplificatons of those obtained by Glasser [1974].

The elliptic integral K(k) is defined by

K(k) =
∫ 1

0

dx√
(1− x2)(1− k2x2)

=
∫ ∞

1

dX√
(X2 − 1)(X2 − k2)

(k2 < 1).

An alternative form, whose integrand has a strictly positive denominator, is

K(k) =
∫ ∞

0

dt√
2(1− k2) cosh t + 2(1 + k2)

.

Since ∫ ∞
0

Y0(τx) cos xy dx = −H(y − τ)√
y2 − τ2

= −
∫ ∞

0

J0(τx) sinxy dx,

where H(u) denotes the Heaviside unit function, we may use the Parseval equations
for cosine and sine transforms to show that∫ ∞

0

Y0(τx)Y0(ρx) dx =
∫ ∞

0

J0(τx)J0(ρx) dx =
2
πρ

K(τ/ρ) (ρ > τ),

which is demonstrated below to be a simpler form of Eq. (10) in Glasser [1974].
The above use of cosine transforms can be extended to show that∫ ∞

0

e−uxY0(τx)Y0(ρx) dx = − 2
π

∫ ∞
ρ

G(y)dy√
y2 − ρ2

(ρ > τ),

where

G(y) =
∫ ∞

0

e−uxY0(τx) cos xy dx. (u, τ, y > 0).

The formula, ∫ ∞
0

e−uxY0(τx) dx = − 2
π
√

u2 + τ2
ln

[√
u2 + τ2 + u

τ

]
,

enables G(y) to be evaluated by replacing u by u − iy and taking the real part of the
result. If

√
(u + iy)2 + τ2 = α1 + iα2, then u, y, τ > 0 implies α1, α2 > 0 where

α1, α2 =
1√
2

[√
(u2 + τ2 − y2)2 + 4u2y2 ± (u2 + τ2 − y2)

]1/2

.

After some algebra, it is found that

G(y) = − 2
π(α2

1 + α2
2)

[
α1 ln

√
(α1 + u)2 + (α2 + y)2

b
+ α2 arctan

(
α2 + y

α1 + u

)]
.

Hence G(y) = O(y−2 ln y) as y →∞. The known expressions for G when u = 0 or y = 0
are recovered.

Consistency with most of Glasser’s formulae is demonstrated as follows. Since∫ ∞
0

K0(ρx) cos xy dx =
π

2
√

ρ2 + y2
,
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the Parseval formula gives∫ ∞
0

Y0(τx)K0(ρx) dx = −
∫ ∞

τ

dy√
(y2 + ρ2)(y2 − τ2)

= − 1√
ρ2 + τ2

K

(
ρ√

ρ2 + τ2

)
,

after setting y2 = (ρ2 + τ2)X2 − ρ2. This agrees with the first of Glasser’s Eqs (8) and
confirms that his K denotes the elliptic integral K. Similarly, with ρ > τ ,∫ ∞

0

K0(τx)K0(ρx) dx =
π

2

∫ ∞
0

dy√
(y2 + ρ2)(y2 + τ2)

=
π

2ρ
K

(√
1− τ2

ρ2

)
,

after setting y2 = ρ2X2 − ρ2. This appears to contradict the second of Glasser’s Eq.(8)
but the hypergeometric function identity,

F (α, α− β + 1/2;β + 1/2, z2) = (1 + z)−2αF

[
α, β; 2β,

4z

(1 + z)2

]
,

yields, with α = β = 1/2 and k < 1,

K(k) =
π

2
F (1/2, 1/2; 1, k2) =

π

2(1 + k)
F

(
1/2, 1/2; 1,

4k

(1 + k)2

)
=

1
1 + k

K

(
2
√

k

1 + k

)
.

In particular,

K
(

ρ− τ

ρ + τ

)
=

ρ + τ

2ρ
K

(√
1− τ2

ρ2

)
(ρ > τ),

K(τ/ρ) =
ρ

ρ + τ
K
(

2
√

ρτ

ρ + τ

)
(ρ > τ),

which shows the equivalence of Glasser’s second Eq. (8) and Eq. (10) and the above
concise formulae. Since Glasser’s Eq. (9) is used only to obtain Eq. (10), there is no
need to be concerned with its derivation.
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