
ACC01-IEEE1682

Switching-Time Computation for Bang–Bang

Control Laws

Stephen K. Lucas & C. Yalçın Kaya

Centre for Industrial and Applicable Mathematics

School of Mathematics

Mawson Lakes, S.A. 5095 Australia

s.lucas@unisa.edu.au & y.kaya@unisa.edu.au

March 14, 2003

Abstract

In this paper we obtain improvements and give extensions to the Switching Time Compu-
tation (STC) method, which is used to compute the switching times for bang–bang control
laws. We first report a considerable computational improvement on the STC method as ap-
plied to a nonlinear system with one control input. The second contribution of this paper is
the extension and implementation of the STC method for two control inputs. In bang–bang
control calculations it is usual practice to consider all possible combinations of the switchings
and then carry out the computations with a large set of switching parameters. We introduce
a novel scheme for the switching times for two inputs which results in far fewer switching
parameters to calculate.

1 Introduction

In control systems, one of the most common types of input function is the piecewise-constant
function, where a sequence of constant inputs is used to control a given system, with appropriate
switchings. For instance, in the aerodynamic control of some rocket vehicles, the tail fins are
suitably deflected to several angular positions to achieve the necessary control action. This type
of input results in a concatenation of a sequence of constant-input trajectories, or arcs. In the
case when the input is bounded, a most frequently encountered type of piecewise-constant input
is bang–bang, which switches between the upper and lower bounds of the control input. It is a
well-known fact that the nonsingular time-optimal control solution of linear-analytic systems with
bounded control inputs is the bang–bang control. The bang–bang solution is also encountered in

other optimal control problems[1]. This situation arises especially when the hamiltonian is linear
in the control input and the solution is not singular.

As soon as the controls are assumed to be bang–bang, the problem of finding the required
controls becomes one of finding the switching times. This special case has long attracted the

attention of researchers in the area of optimal control[5],[7]. In references [11] and [16], the instants
of switchings are considered to be the parameters of the optimal control problem. Mohler, in
references [7] and [8], gives a bang–bang control algorithm called the Switching-Time-Variation-
Method (STVM). The STVM requires the number of switchings and the switching times as the

1

initial guess. It generates a sequence of switching functions and computes the gradient of the cost
with respect to the switching times. With this gradient, the switching times are corrected at each
iteration.

Consider the nonlinear dynamical control system

ẋ(t) = f(x(t),u(t), t) , (1)

where x(t) = (x1(t), . . . , xn(t)) ∈ IRn, u(t) = (u1(t), . . . , um(t)) ∈ IRm, and the vector field f is C1

almost everywhere on IRn × IRm × IR. The control input is restricted to the space of bang–bang
controls, namely u : IR+ ∪ {0} → U ⊂ IRm, where the input space U is the product of m copies of
the set {−1, 1}. In other words, the ith component of u, ui(t) ∈ {−1, 1}.

The problem is to find a feasible bang–bang control solution which takes the system from a
given initial point x(0) = x0 to a given terminal point x(tf) = xf , where the time tf is free.

It is assumed that solutions to differential equations of the form ẋ(t) = f(x(t),v, t) satisfying
the boundary conditions x(0) = x0 and x(tf) = xf exist for some tf > 0, for some v ∈ U , all
x0 ∈ IRn, all xf ∈ IRn and all t > 0.

A trajectory of the system (1) corresponding to a control u(·) is a continuous curve x(·) solving
(1) for almost all t. We also refer to x(t) ∈ IRn for some t as the state.

Wen and Desrochers [14] give an algorithm for obtaining bang-bang control laws for linear-
analytic systems, namely systems of the form ẋ(t) = f(x(t)) + G(x(t))u(t), with given initial and
terminal points. Here G(x(t)) is an n ×m matrix with nonlinear function entries of x(t). Kaya
and Noakes [3] give a similar algorithm, called the Switching Time Computation (STC) method,
for general nonlinear systems with single control input, and consider a more general terminal
condition. In both papers variational equations are derived for x with respect to the switching
times, or equivalently arc times, which are defined as the differences between the consecutive
switching times. These variational equations are then used to calculate the gradient of the final
state with respect to the switching times.

The STC method has been implemented as a computer code and used to find feasible bang–bang
solutions for some highly nonlinear control systems. The feasible solution was then used to find
time optimal bang–bang controls by the Time Optimal Switchings (TOS) algorithm by Kaya &
Noakes [4]. Feasible solutions obtained by the STC can also be used to find more general optimal
controls other than minimum-time ones. Work on an algorithm for more general optimal switchings
starting with an STC solution is in progress.

In this work we first report a considerable computational improvement in the STC method as
applied to a nonlinear system with one control input. The existing STC method and the associated
code involves the minimization of the norm of the distance between x(tf) and the terminal desired
point xf . In the new improved version the problem of minimization has been replaced by the
computationally more efficient scheme of solving a nonlinear system of equations, where x(tf) = xf

is solved for the arc times.

The second contribution of this paper is the extension and implementation of the STC method
for two control inputs. In bang–bang control calculations it is usual practice to consider all possible
combinations of the switchings and then carry out the computations with a large set of switching
parameters. See for example Lee et al. [6]. When the number of switchings increases, the number
of possible combinations grows exponentially. We introduce a novel scheme for the switching times
with two inputs which results in far fewer switching parameters to deal with during the calculations.
The resulting number of parameters to deal with is one less than the total number of arcs for both
control inputs, which grows only linearly with the growing number of arcs.

2

xyµ(0)

x

f
ξ

f

ξ

x

xξ

f

f

ξ

0

1

1

1(t)

x

N+1

3

3

2

2

N+1

(t)2

f

Figure 1: Concatenation of arcs from x0 to xf

2 STC Method

In this section, we briefly outline the Switching Time Control (STC) algorithm of Kaya & Noakes
[3] for bang–bang control. A rigorous formulation of the variational equations for the STC method
for one control input is given in [3]. In what follows, a review of this formulation is given with an
appropriate notation. This leads to a variant aimed at reducing the computational effort and an
extension to the case of two control inputs in the following sections.

Consider the system given in (1). Let the ith switching time be denoted by ti, i = 1, 2, . . . , r−1,
such that 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tr−1 ≤ tr = tf . The initial and final times are given by t0 = 0
and tr = tf . Given x0 and u0, the trajectory x(t) is determined by the switching times. The
segment of the trajectory x(t), where ti−1 ≤ t ≤ ti, i = 1, 2, . . . , r, is called the ith arc, or the ith
bang arc, and denoted by xi(t). Then the trajectory x(t), 0 ≤ t ≤ tf , is the concatenation of xi(t).
The time spent on the ith arc is called the ith arc time given by ξi = ti − ti−1. We also define the
arc times vector ξ = (ξ1, ξ2, . . . , ξr). Note that ti =

∑i

j=1 ξj , and tf =
∑r

j=1 ξj . We require that
each arc time ξi must be nonnegative for a physically realistic trajectory. So, while we have for
the switching times the conditions 0 ≤ t1 ≤ t2 ≤ · · · ≤ tr−1 ≤ tf , for the arc times we have ξi ≥ 0.

Let f = (f1, . . . , fn). Then we write fi = (fi1, . . . , fin) for the vector field in (1) on each arc, and
similarly xi = (xi1, . . . , xin). The ith arc xi(t) satisfies the equations ẋi(t) = fi(xi(t), t), where
fi(xi(t), t) = f(xi(t), ui, t), ti−1 ≤ t ≤ ti.

The number of arcs, r, is prescribed. We write xi(t) as depending not only on time but also
on the previous arc times, ξ1, . . . , ξi−1, namely xi = xi(t; ξ1, . . . , ξi−1). Then the problem can
be stated as one of solving the following two-point boundary-value problem for the parameters

ξ1, . . . , ξr satisfying the boundary conditions x1(0) = x0 and x1(tf) = xf :

PTPBV P :

∂xi

∂t
(t; ξ1, ξ2, . . . , ξi−1) = fi(xi(t; ξ1, ξ2, . . . , ξi−1), t) on [ti−1, ti];

x1(0) = x0, xi(ti−1; ξ1, ξ2, . . . , ξi−1) = xi−1(ti−1; ξ1, ξ2, . . . , ξi−2),
xr(tf ; ξ1, ξ2, . . . , ξr−1) = xf , i = 2, 3, . . . , r .

(2)

Since tf is the sum of ξi, the last line can be rewritten as

x(ξ) = xr(ξ) = xf . (3)

Problem (PTPBV P) can also be viewed as the problem of solving the algebraic equation (3) subject
to the ODEs that are sequentially given along each arc.

Kaya & Noakes [3] solved (3) using a minimisation technique—steepest descent followed by
Newton’s method for minimisation once the vector ξ gives a solution x(tf ; ξ) close enough to xf .

3

However, a more efficient technique is to directly apply Newton’s method to the system of equations
(3). This method will only require calculation of the Jacobian of the system, or the first partial
derivatives ∂x(tf)/∂ξ, rather than ∂x(tf)/∂ξ and ∂2

x(tf)/∂ξ2. However, the number of states n
will typically be less than the number of arcs r, and so the standard Newton’s method will not
work.

The partial derivatives ∂x(tf)/∂ξi, i = 1, . . . , r − 1, are calculated by solving the following
differential equations simultaneously with the system equations given in Problem (PTPBV P):

∂

∂t

∂xi

∂ξk
(t; ξ1, ξ2, . . . , ξi−1) =

∂fi
∂xi

(xi(t; ξ1, ξ2, . . . , ξi−1), t)
∂xi

∂ξk
(t; ξ1, ξ2, . . . , ξi−1) , (4)

with initial conditions

∂xi

∂ξk
(ti−1; ξ1, ξ2, . . . , ξi−1) = fi(xi(ti−1; ξ1, ξ2, . . . , ξi−1), ti−1) . (5)

The variation with respect to the final arc, namely ∂x(tf)/∂ξr, is calculated from

∂xr

∂ξr
(tr; ξ1, ξ2, . . . , ξr) = fr(xr(ti−1; ξ1, ξ2, . . . , ξi−1), tr) . (6)

On the first arc we just solve for the state x1(t), and form an initial condition for x
2. On the

second arc we solve for the state x2(t) and ∂x(tf)/∂ξ1, and form an initial condition for x
3 and

∂x(t)/∂ξ2. This continues through to the last arc, where the required variations of x(tf) with
respect to all of the arcs are obtained. Note that the above calculations work perfectly well with
arcs of zero length.

3 New Numerical Techniques for STC

3.1 Newton’s method for underdetermined systems

Consider finding a solution to the nonlinear system of equations F(x) = 0, where F = (f1, f2, . . . , fn)T ,
x = (x1, x2, . . . , xr)

T , and r > n. Since there are more equations than unknowns, we expect an
infinite number of solutions on some (r−n)-dimensional surface. If we are interested in finding just
one of these possibly infinitely many solutions, we can follow the same technique as for Newton’s
method, and define the n× r matrix J with elements Jij = ∂fi/ ∂xj . The iteration then becomes

x
(k+1) = x

(k) − J+(x(k))F(x(k)), (7)

where J+ is the r×n Moore-Penrose generalised inverse, based on the singular value decomposition
of J . If Jx = b, then the solution x = J+

b is the one where ||x||2 takes its minimal value. This
is particularly useful in this context, in that the update vector from the kth to (k + 1)st iteration
tries to find the point on F(x) = 0 “close” to x

(k). This will hopefully help with the convergence
difficulties of Newton’s method.

This method is particularly suited to our problem. Walker [12, 13] gives an outline of this
method, as well as some of its history. He also includes analysis of a Broyden style technique for
underdetermined systems, which we will not pursue further here.

3.2 Modifications to Newton’s method

Directly using (7) to solve (3) will not work unless the initial guess for ξ is sufficiently close to a
feasible solution. The modified Newton’s method for solving F(x) = 0 (Press et al. [9], Dennis

4

& Schnabel [2]) involves choosing the Newton direction, then moving in that direction a distance
such that ||F||2 is decreased. While there are occasions where this technique leads to excessive
numbers of iterations, it converges from almost anywhere, and is the technique we have currently
implemented. An algorithm worth investigating in the future is the nonmonotone inexact Newton
algorithm of Xiao & Chu [15], where ||F||2 is allowed to increase in a controlled fashion. Numerical
experiments in [15] indicate that the technique may be of use here.

A more important problem with using (7) to solve (3) is the constraints that ξi ≥ 0, i =
1, 2, . . . ,m. Newton’s method as described above is unconstrained, and there are situations where
an initial guess of arc times will converge to a solution with negative arc times. While this is
mathematically valid, it is not a physically realistic solution. Shacham [10] indicates that there
are two main techniqes for dealing with constrained systems of this form: continuation, where one
solves a series of problems from the starting guess through to a final solution that satisfies the
constraints, and using penalty functions, which we will discuss further here.

Shacham suggests that instead of solving the system of r equations F(x) = 0 with the constraint
xi ≥ 0, i = 1, 2, . . . , r, we form the penalty function P =

∑r

j=1 ln(xj), and solve the system of
equations Fp(x) = F(x)P = 0. This has the same solution in the constrained region, and as long
as the initial guess is in this region, Newton’s method can now be used. While this technique is
quite efficient, it has the disadvantage of adding superflous solutions when P = 0. We suggest a
better choice for the penalty function as P =

∑r

j=1 ln(xj)+ (1/xj), which is always positive in the
constrained region. Solving F(x) = 0 in this case changes the Jacobian of the system to

Ĵij =
∂(fiP)

∂xj

= P
∂fi

∂xj

+ fi

(

1

xj

−
1

x2
j

)

. (8)

We find that this technique is usually successful in solving (3) with all arc times nonnegative.
However, there are times when it is unsuccessful. The modified Newton’s method occasionally gets
“stuck” near the constraint boundary, where the requirement of reducing ||F||2 at each iteration
leads to vanishingly small steps and an increasingly singular Jacobian.

There are two possible methods around this problem. The nonmonotone algorithm [15] may
allow for escaping from near the boundary. Another possibility is to use the version of Newton’s
method described in Shacham [10], which does not require a reduction in ||F||2 at each step. This
version calculates the full Newton step, and if it is too large or the Jacobian is becoming singular it
recalculates the step using the Levenberg/Marquardt (LM) algorithm. The LM algorithm involves
a parameter allowing the step to vary between the Newton step and an infinitesimal step in the
steepest descent direction. Further tests are required to determine the best combination of these
ideas in an algorithm for solving (3).

3.3 Solving the ODEs

The ordinary differential equations in problem PTPBV P were solved in [3] using a simple Runge-
Kutta order 4 solver, where the step size was taken as 0.1, except for the step at the end of each
arc, which was chosen so that a result was found precisely at the ends of arcs. A slightly more
robust technique was followed here, where the same RKo4 solver was applied, but with 100 points
on each arc. This ensures that even tiny arcs have sufficient function evaluations on them to satisfy
reasoable accuracy. We emphasise here that the ODEs to be solved are inital value problems – far
easier to solve than boundary value problems as found in many control algorithms.

A more efficient scheme could be to use an adaptive ODE solver, specifying the required accuracy.
This does in many cases lead to a more efficient code with less function evaluations, particularly
when close to a feasible solution. Unfortunately, many initial guesses lead to steps far away from
the target point, where the ode’s may be badly behaved. In these cases, an enormous amount
of computer time is wasted in attempting to satisfy a required accuracy when the functions are

5

growing exponentially. While the modified Newton’s method will bring the step back to more
reasonable values, it still requires calculations out to these poorly behaved areas.

Our recommendation on solving general problems is to start with a simple 100 point RKo4 on
each step with a modest accuracy requirement on reaching the target point. Once a set of arc
lengths close to a feasible solution have been obtained, an adaptive ODE solver can be used with
a high accuracy, to find a solution to as many digits accuracy as required.

4 STC Method with Two Control Inputs

Let us now consider the control problem ẋ(t) = f(x(t), u1(t), u2(t), t), where u1 and u2 are two in-
dependent controls. Assuming that the controls are associated with the arc times ξ1

i , i = 1, 2, . . . , r1
and ξ2j , j = 1, 2, . . . , r2 (there is no requirement that r1 = r2). Then we can find the switching

times t1i =
∑i

k=1 ξ
1
k, i = 1, 2, . . . , r1 −1, and t2j =

∑j

k=1 ξ
2
j ,j = 1, 2, . . . , r2 −1. The initial and final

times are given as t10 = t20 = 0 and tf = t1r1
=
∑r1

k=1 ξ
1
k or tf = t2r2

=
∑r2

k=1 ξ
2
k . Note that we require

that t1r1
= t2r2

, so that both controls finish at the same time. For technical convenience, we refer
to the initial and final times as switching times as well. Then, the r1 + r2 + 1 switching times can
be merged together and relabeled t0(= 0), t1, . . . , tr1+r2−1 (the repeated initial and final switching
times are only required once here), and each time interval [ti − 1, ti], i = 1, 2, . . . , r1 + r2 − 1 can
be considered as an arc, where both u1 and u2 are constants. We define new arc times based on
these new switching times as η, where ηi = ti − ti−1. The control values on each arc and which
control changes from arc i to arc i + 1 can be easily determined, and we form the sequence ψi,
i = 1, 2, . . . , r1 + r2 − 1 such that ψi is exactly which ξ1j or ξ2j changes value from arc i to arc i+ 1.

Finally, we can also write the ξ’s in terms of the η’s: ξj
i =

∑αi+1,j−1
k=αij

ηk, where αij is the arc upon

which ξj
i starts in the original discretisation.

The system of odes we need to solve can now be written on the ith arc in a similar form as
before:

∂xi

∂t
(t; η1, η2, . . . , ηi−1) = fi(xi(t; η1, η2, . . . , ηi−1), t), i = 1, 2, . . . , r1 + r2 − 1,

with x1(0) = x0, and
xi(ti−1, η1, η2, . . . , ηi−1) = xi−1(ti−1, η1, η2, . . . , ηi−2), i = 2, 3, . . . , r1 + r2 − 1.

(9)

The system of equations we then need to solve, assuming the number of arcs r1 and r2 are pre-
scribed, is

x(tf ; η) − xf = 0 (10)

Equation (10) can be solved in exactly the same way as for (3) above, with the only changes
being replacing ξ’s by η’s. The procedure required is to set up an iteration of Newton’s method
for (10) as for (3) previously, calculate the new ξ ′s from the adjusted ηs, then form a new set of
merged switching times, new ηs, and continue.

As a simple example to explain the above procedure and show its geometrical elegance, consider
the situation in figure 2, with r1 = 2, ξ1 = (0.7, 1.4)t, r2 = 3, and ξ2 = (0.5, 0.8, 0.8)t. We see that
t = (0, 0.5, 0.7, 1.3, 2.1)t, η = (0.5, 0.2, 0.6, 0.8), and assuming the control values are one and zero,
the controls on each arc are (1,1), (0,1), (0,0), (0,1) respectively. Finally ξ1

1 = η1 +η2, ξ
1
2 = η3 +η4,

ξ21 = η1, ξ
2
2 = η2 + η3, and ξ23 = η4.

As a final comment before we leave this section, we note that the situation with more arcs, or
even more control variables, is no more complicated than as described here. We simply work out
the switching times for each control variable, merge these results into a current set of switching
times, and label which control changes between arcs. If it turns out that the order of switchings
are wrong, then at each step of Newton’s method we simply recalculate the switching times and

6

ξ1

1 ξ1

2

ξ2

1 ξ2

2

u1

u2

t

(a)

(b)

(c)

t0 t1 t2 t4

ξ3

2

t3

η1 η2 η3 η4

Figure 2: Merging two sets of control data (a, b) into a single set of arcs (c).

control changes as necessary. In multi-input bang–bang control calculations it is usual practice
to consider all possible combinations of the switchings and then carry out the computations with
a large set of switching parameters. See for example Lee et al. (1997). When the number of
switchings increases, the number of possible combinations grows exponentially. In our case of two
control inputs, the number of parameters to deal with is r1 + r2 − 1, which grows only linearly
with the growing number of arcs.

5 Example Applications

5.1 One control input

We consider the van der Pol system studied in Reference [3]:

ẋ1 = x2 , (11)

ẋ2 = −x1 − (x1
2 − 1)x2 + u , (12)

where the control input u(t) takes either the value 1 or −1. The initial and terminal points are
x0 = (−0.40,−0.60) and xf = (0.60, 0.40), respectively. The reference [3] uses the version of
the STC algorithm where the distance between x(tf) and xf is minimized. Figure 3 depicts the
resulting iterations of that previous version of the STC algorithm as the trajectories run through
the phase plane.

7

-0.8

-0.4

0

0.4

0.8

1.2

1.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

1

2
3

4

56,7

+

+

Figure 3: STC using minimization

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

1

2

3
4,5

Figure 4: STC solving nonlinear equations

Iterations ξ11 ξ12 ξ21 ξ22 ξ23 Distance
0 0.7 1.4 0.5 0.8 0.8 5.610373
1 0.464848 1.137783 0.312745 0.702649 0.587237 1.408439
2 0.329105 1.087859 0.216303 0.662390 0.538271 0.156110
3 0.312345 1.072819 0.202047 0.654472 0.528645 0.002418
4 0.312066 1.072706 0.201819 0.654441 0.528512 5.82× 10−7

5 0.312066 1.072707 0.201819 0.654442 0.528512 3.12× 10−14

Table 1: Arc lengths for the two control problem (to six dp)

An initial guess of ξ = (0.7000, 0.8000) results in a distance (between x(tf) and xf) of 0.9958.
The solution is obtained in the 8th step as ξ = (0.9766, 1.1637) with an accuracy of 10−6. Using the
same data, the STC algorithm using the modified Newton’s method, shown in Figure 4, achieved
this accuracy in five steps. This same speedup was seen for a wide range of initial guesses. We
remind the reader that each step of the modified STC method is also much less computationally
demanding.

5.2 Two control inputs

We will only consider here the simple problem

ẋ1 = x2 + u1,
ẋ2 = x1 + u2,

with initial and terminal points (0, 1) and (1, 2) respectively. The controls can take the values +1
or −1, and we assume both start with the value +1. With the initial guess ξ1 = (0.7, 1.4) and
ξ2 = (0.5, 0.8, 0.8), we get the results as shown in Table 1. Convergence is quadratic as expected
from Newton’s method. While this is a simple linear problem, we emphasise that the code we
developed here is also applicable to nonlinear problems.

While the formulation as described in this paper for the two input case was successful for many
initial guesses, it failed for some, where solutions with negative arcs were obtained. Techniques
as described in the section on the one input case would need to be investigated for the multiple
input case. This will be a more complicated problem, in that the constraints are no longer simply
ξi ≥ 0, but various combinations of ηi’s being ≥ 0. For the example in Figure 2, the constraints
would be ξ11 = η1 + η2 ≥ 0, ξ12 = η3 + η4 > 0, ξ21 = η1 ≥ 0, ξ22 = η2 + η3 ≥ 0, and ξ23 = η4 ≥ 0.

8

6 Conclusion

In this work we have discussed and implemented new computational tools for the Switching Time
Computation (STC) method for nonlinear systems with one control input. We have also extended
and implemented the STC method for two control inputs. In achieving this we introduced a novel
scheme for finding the switching times with two inputs which results in far fewer switching param-
eters to calculate, facilitating computational efficiency. While these contributions were illustrated
through simple examples, these techniques are applicable to general systems.

References

[1] Belghith, S., F. Lamnabhi-Lagarrigue, and M.-M. Rosset, ‘Bang–bang solutions for a class
of problems arising in thermal control’, in: Algebraic and Geometric Methods in Nonlinear

Control Theory (Fliess, M., & Harzewinkel, M., eds), Dordrecht, D. Reichel Pub. Co., pp
623-632, 1986.

[2] J.E. Dennis & R.B. Schnabel, Numerical methods for unconstrained optimization and nonlin-

ear equations, Englewood Cliffs, NJ: Prentice Hall (1983).

[3] C.Y. Kaya & J.L. Noakes, Computations and time-optimal controls, Optimal Control Appli-

cations and Methods, 17 171–185 (1996).

[4] C.Y. Kaya & J.L. Noakes, Computational method for time-optimal switching control Submit-

ted to Journal of Optimization Theory and Applications.

[5] Lastman, G. J., ‘A shooting method for solving two-point boundary-value problems arising
from nonsingular bang–bang optimal control processes’, International Journal of Control, 27,
513-524 (1978).

[6] Lee, H.W.J., Teo, K.L., Rehbock, V., and Jennings, L.S., Control Parameterization Enhancing
Technique for Time Optimal Control Problems, Dynamic Systems and Applications, 6243-262
(1997).

[7] Mohler, R. R., Bilinear Control Processes, Academic Press, New York, 1973, Chapter 3.

[8] Mohler, R .R., Nonlinear Systems: V.2 Applications to Bilinear Control, Prentice Hall: En-
glewood Cliffs, N.J., 1991, Chapter 7.

[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling, & B.P. Flannery, Numerical recipes in Fortran

77 2nd edition, Cambridge University Press, 1992.

[10] M. Shacham, Numerical solution of constrained nonlinear algebraic equations, Int. J. Numer.

Meth. Eng., 23 1455–1481 (1986).

[11] Teo, K. L., C. J. Goh, and K. H. Wong, A Unified Computational Approach to Optimal Control

Problems, Longman Scientific and Technical, Essex, 1991.

[12] H.F. Walker, Newton-like methods for underdetermined systems, in Computational solutions

of non-linear systems of equations, Lect. Appl. Math. 26 679–699 (1990).

[13] H.F. Walker & L.T. Watson, Least-change secant update methods for underdetermined sys-
tems, SIAM J. Numer. Anal. 27 1227–1262 (1990).

[14] Wen, J., & Desrochers, A.A., An algorithm for obtaining bang–bang control laws, Journal of

Dynamic Systems, Measurement, and Control, 109 171-175 (1987).

9

[15] Y. Xiao & E.K. Chu, A nonmonotone inexact Newton algorithm for nonlinear systems of
equations, J. Austral. Math. Soc. Ser. B, 36 460–492 (1995).

[16] Wong, K. H., D. J. Clements, and K. L. Teo, ‘Optimal control computation for nonlinear
time-lag systems’, Journal of Optimization Theory and Applications, 47, 91-107 (1985).

10

