
COMPUTATIONS FOR TIME-OPTIMAL
BANG–BANG CONTROL USING A LAGRANGIAN

FORMULATION 1
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1. INTRODUCTION

There have been a number of time-optimal bang–
bang control algorithms reported in the literature,
citations of which are given in (Kaya and Noakes,
1996) and (Scrivener and Thompson, 1994). The
Switching-Time-Variation-Method (Stvm) due to
Mohler (1973; 1991), the Switch Time Optimiza-
tion (Sto) algorithm by Meier and Bryson (1990),
an algorithm given by Teo et al. (1991) and Wong
et al. (1985), the Control Parametrization En-
hancing Technique (CPET) by Lee et al. (1997) by
means of a general optimal control software called
MISER, and Time-Optimal Switchings (TOS) due
to Kaya and Noakes (Submitted) are immediate
examples. In all of these algorithms the controls
are assumed to be bang–bang, and the switching
times can be calculated for a minimum terminal
time.

The Switching Time Computations (STC) algo-
rithm proposed by Kaya & Noakes (1996) finds
a suitable concatenation of bang-arcs (or bang–
bang trajectories) from an initial point to a target
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point for a given number of switchings. The solu-
tion found by STC is a feasible solution, which
is not necessarily optimal. Lucas & Kaya (2001)
presented a different numerical formulation and
scheme for STC, which eliminated the need for
the use of second-order variations. This formula-
tion considered the problem of reaching from the
initial to terminal state as the problem of solving
a nonlinear system of equations, as opposed to
a minimisation of the distance from the terminal
point.

In this paper time-optimal bang–bang control of
a nonlinear dynamical system from a given initial
state to a given terminal state is considered. The
problem is reduced to the problem of minimising
a Lagrangian subject to an equality constraint
defined by the terminal state. The Lagrangian
minimisation problem itself reduces to solving a
nonlinear system of equations, where the numeri-
cal scheme proposed in (Lucas and Kaya, 2001) is
incorporated.

The TOS algorithm presented in (Kaya and
Noakes, Submitted) needs a feasible bang–bang
solution as the initial guess, which can typically
be obtained using STC. Using the gradient calcu-



lations as in (Kaya and Noakes, 1996) and the idea
of sliding on the surface defined by the terminal
state in the optimisation space, TOS achieves a
time-optimal bang–bang solution. The algorithm
proposed in this paper achieves the same task
using second-order variations in addition to the
gradient, however it does not require a feasible
solution as the initial guess. In fact the initial
guess can be very far from a feasible solution. In
such situations the proposed algorithm is observed
to handle the bad guess reasonably well.

After the description of the new algorithm, some
example applications are given. Of these exam-
ples, the most notable one, namely the time-
optimal control of F-8 aircraft, is shown to have
a remarkably lower minimum than those reported
in the literature.

Consider a general nonlinear system

dx
dt

= f(x, u), (1)

where the state x(t) ∈ C([0, T ];Rn), the control
u(t) is a scalar piecewise constant function such
that

u(t) = uk, if t ∈ [tk, tk+1).

Furthermore, f(x, u) : Rn × R1 → Rn is smooth
in x for each value of u. The points tk (k =
1, 2, . . .) where u(t) is discontinuous are called
the switching times. Let N be the number of
switchings taking place in the interval (t0, tf ), so

t0 < t1 ≤ · · · ≤ tN < tf .

The control u is called admissible (Pontryagin et
al., 1962) for the pre-specified initial and terminal
points x0 and xT if (1) results in a solution
satisfying

x(t0) = x0 and x(tf ) = xT .

One can construct an admissible control u with
uk, k = 1, . . . , N + 1, by appropriately choosing
the switching times t1, . . . , tN and the final time
tf . We will the use the conventional abbreviation
STC (e.g. (Kaya and Noakes, 1996)) to refer to
such switching time computation problems.

A segment of the trajectory x(t) corresponding
to the time interval from tk−1 to tk represents a
smooth arc. The dynamical system (1) can also
be written as a sequence of initial value problems

dx
dt

= fk(x), t ∈ (tk−1, tk−1 + ξk),

x(tk−1) =

{
x0, if k = 1,
x(tk−1 − 0), if k > 1,

(2)

where ξk is the time-duration of the k-th arc, or
simply the k-th arc-time, given by

ξk =

{
tk − tk−1, if k = 1, 2, . . .N,

tf − tN , if k = N + 1.

ẋ
=

f 1
(x
)

ξ 1

ẋ
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Fig. 1. An admissible trajectory from x0 to xT .

A sketch of a trajectory for an admissible control
is shown in Figure 1. We will call such a trajectory
an admissible trajectory.

The STC problem is usually formulated in terms
of arc-times as in (Kaya and Noakes, 1996). The
segment of a trajectory x(t) corresponding to the
interval [tk−1, tk] can be parametrised as x(tk−1+
τ), where τ ∈ [0, ξk] (k = 1, . . . , N + 1). We will
use the notation

x(τ ; ξk−1 , . . . , ξ1) ≡ x(tk−1 + τ) , (3)

which explicitly shows that the behaviour of x in
the k-th arc also depends on the previous arc-
times. Note that for the first arc this notation
simply becomes x(τ) as there are no previous arcs.

Now the STC problem can be formulated as
follows:

PSTC :




given x0 and xT determine
non-negative {ξi} such that

x(ξN+1; ξN , . . . , ξ1) = xT .
(4)

We assume that in general N + 1 ≥ n, otherwise
the system (4) is overdetermined. If N + 1 = n,
then the number of equations in (4) is the same
as the number of variables and we could expect
a locally unique solution. One of the techniques
for numerical solution of nonlinear systems of
equations can be employed for the solution of
(4). A solution to Problem (PSTC) is reported
in (Lucas and Kaya, 2001).

In this paper in taking N + 1 ≥ n, the extra arcs
will be used particularly for finding time-optimal
solutions of (4), i.e. the solutions for which the
total time

tf = ξ1 + ξ2 + · · ·+ ξN+1

is minimised. The technique we present is appli-
cable to more general cost functionals given in the
form

W =
N+1∑
i=1

∫ ξi

0

gi(x(τ ; ξi−1, . . . , ξ1))dτ. (5)

In particular, if gi = 1, i = 1, . . . , N + 1, we
have the time-optimal problem. If gi(x) = |fi(x)|,
the objective function is the total length of the
trajectory. We will focus our attention on the
time-optimal bang–bang control problem, even
though we will pose the technique for the general
form in (5).



In Section 2 we give the description of an optimi-
sation procedure that first performs a reduction to
a minimisation problem with equality constraints,
which is then treated further using the Lagrange
multipliers technique.

2. REDUCTION TO A MINIMISATION WITH
EQUALITY CONSTRAINTS

It will be assumed throughout that the following
are specified:

• N , the number of switchings;
• {uk} (k = 1, . . . , N + 1), values of u(t) in
respective arcs;

• x0 and xT , initial and target points.

Each possible control u(t) is defined by a combi-
nation of positive {ξk} (k = 1, . . . , N + 1), hence
the cost functional (5) acting on such controls is a
function of (ξ1, . . . , ξN+1). Our aim is to develop a
procedure for minimisingW (ξ1, . . . , ξN+1) subject
to the constraints:

x(ξN+1; ξN , . . . , ξ1) = xT ,

ξi ≥ 0, i = 1, . . . , N + 1.

First we introduce new variables {αi} such that
ξi = α2

i , (i = 1, . . . , N + 1) .

The minimisation problem formulated using αi

will not involve inequality constraints as the re-
sulting ξi will be always nonnegative.

We will use the notation:

α ≡(α1, . . . , αN+1)T ;

x(α) ≡ x(ξN+1; ξN , . . . , ξ1)
∣∣∣∣
ξi=α2

i
;i=1,...,N+1

;

w(α) ≡ W (ξ1, . . . , ξN+1)
∣∣∣∣
ξi=α2

i
;i=1,...,N+1

.

The general optimal switching time computation
problem can now be formulated as follows:

POSC :
{

minimise w(α)
subject to x(α) = xT .

(6)

The form of w(α) in Problem (POSC) can be
easily derived from (5). In particular, for the time-
optimal problem we have w(α) = αT α.

Problem (6) is a standard optimisation problem
with equality constraints, its Lagrangian has the
form

L(α;λ) = w(α) + (x(α)− xT )T λ ,

where λ = (λ1, . . . , λn)T .

The Lagrange conditions are{
∇αw + JT λ = 0,
x(α)− xT = 0,

(7)

where

J =



x1α1 · · · x1αN+1

...
...

...
xnα1 · · · xnαN+1


 , xiαj

≡ ∂xi

∂αj
. (8)

The system in (7) consists of N +1+n equations
in N + 1 + n unknown components of α and λ.

A numerical solution of the Lagrange equations
(7) can be obtained using one or another modifi-
cation of Newton’s method.

If equations (7) are satisfied at a point α0, then
α0 is a possible minimiser. Further investigation
of the behaviour of the Lagrange function at this
point involves examination of the quadratic form

N+1∑
i=1

N+1∑
j=1

Lαiαj (α0)dαidαj , (9)

where Lαiαj =
∂2

∂αi∂αj
L.

In (9) only N+1−n differentials are independent
as dα must satisfy

J(α0)dα = 0, (10)

where J is given by (8). System (10) is a direct
consequence of the equality constraints x(α) =
xT . Using (10) and expressing n dependent dif-
ferentials in terms of the independent differentials
and substituting the result into (9) we obtain a
quadratic form in restricted variables. If it turns
out that this form is positive definite then α0 is a
local minimiser for Problem (POSC) in (6).

Let us describe a computationally straightforward
post-processing procedure that allows us to deter-
mine the sign of the quadratic form (9) under the
constraints (10). Introduce the notation:

H =[Lαiαj (α0)];

β =(β1, β2, . . . , βN+1)T

=(dα1, dα2, . . . , dαN+1)T .

Rewrite equations (9) and (10) in this notation
and consider

βTHβ subject to J(α0)β = 0. (11)

We assume that conditions x(α) = xT are in-
dependent and therefore the rank of J(α0) is n.
Let B be an n × n matrix formed by n linearly
independent columns of J(α0) and β̂ be a vector
made of the corresponding βi. Similarly, let G be
an n×ν matrix formed by the remaining ν = N+
1 − n columns of J(α0) and β̃ be a vector made
of the components of β with the corresponding
subscripts. Use the equivalence

J(α0)β = 0 ⇔ Bβ̂ = −Gβ̃

to express β̂ in terms of β̃: β̂ = Aβ̃, where
A = −B−1G. Taking the permutation matrix P
such that



β = P

[
β̂

β̃

]
,

and substituting into the form in (11) we obtain

βTHβ =
[
β̂

T
β̃

T
]
PTHP

[
β̂

β̃

]

=β̃
T [

AT
∣∣Iν×ν

]
PTHP

[
A

Iν×ν

]
β̃

=β̃
T
Qβ̃,

our quadratic form in restricted variables. Posi-
tive-definiteness of this form is a sufficient condi-
tion for α0 to be a local minimiser of w(α0).

3. NUMERICAL DETAILS

We first combine the left-hand sides of the system
in (7) into a single vector Φ(α,λ) and rewrite the
Lagrange conditions in the form

Φ(α,λ) = 0. (12)

When applying the standard Newton’s method
to solving (12), the next iterate after (α,λ) is
(α + δα,λ + δλ) where (δα, δλ) are found from
the linear system

JΦ(α,λ)
(
δα
δλ

)
= −Φ(α,λ),

in which JΦ is the Jacobian matrix of the form

JΦ ≡
(
[Lαiαj ] JT

J 0n×n

)
. (13)

Note that more robust convergence from arbitrary
initial guesses is obtained using a modified New-
ton’s method, where one may only use a fraction
of the update vector. In (13) [Lαiαj ] is the hessian
of the Lagrange function with respect to α and J
is given by (8). Note that

J = 2Jξ diag(α1, . . . , αN+1), (14)

where Jξ is the Jacobian of x(ξN+1; ξN , . . . , ξ1).
Matrix Jξ can be evaluated through numerical
solution of the systems of ordinary differential
equations derived from (2) by differentiating in
respective variables (as in e.g. (Kaya and Noakes,
1996)).

The hessian of the Lagrange function used in (9)
and in (13) can be written as

[Lαiαj ] =
(

∂φ

∂α1
, . . . ,

∂φ

∂αN+1

)
, (15)

where φ(α,λ) ≡ ∇αw+JT λ. It turns out that for
the iterative procedure that uses (13) it is quite ac-
ceptable to evaluate (15) using central difference
quotients. Care must be taken however if the hes-
sian is needed to verify sufficient conditions for a
minimum. In particular, the described method of
evaluation of the hessian does not guarantee that

the result is a symmetric matrix. Furthermore, the
technique of computation of the Jacobian using
(14) and the system derived from (2) by differen-
tiating in ξi may turn out to be unsatisfactory at
points where the hessian has large values. In such
cases, once a moderate proximity to a possible
solution has been reached, we could switch to a
slower method of Jacobian evaluation using finite
differences. This kind of difficulty is not present
in the methods which do not use the Jacobian in
the target equations (Kaya and Noakes, Submit-
ted; Lucas and Kaya, 2001).

In (Kaya and Noakes, 1996), second-order vari-
ations of the terminal state with respect to arc-
times are incorporated in the basic optimization
routines, Newton’s method and steepest descent.
However in (Lucas and Kaya, 2001) through a
different formulation and numerical scheme this
need for second-order variations is eliminated.
One should note that both of these papers (Kaya
and Noakes, 1996; Lucas and Kaya, 2001) present
methods for finding feasible, but not necessarily
optimal, solutions. In (Kaya and Noakes, Submit-
ted) no second-order variations are being used,
and furthermore the method presented solves the
time-optimal control problem.

4. NUMERICAL EXAMPLES

4.1 The F-8 aircraft examples

We will discuss now the results of application of
our technique to the study of the dynamical model

ẋ1 =− 0.877x1 + x3 − 0.088x1x3 + 0.47x2
1

− 0.019x2
2 − x2

1x3 + 3.846x3
1 − 0.215u

+ 0.28x2
1u+ 0.47x1u

2 + 0.63u3,

ẋ2 =x3,

ẋ3 =− 4.208x1 − 0.396x3 − 0.47x2
1

− 3.564x3
1 − 20.967u+ 6.265x2

1u

+ 46x1u
2 + 61.4u3,

(16)

which governs behaviour of the F-8 aircraft
(Garrard and Jordan, 1977). System (16) has
become a traditional testing ground for various
optimal control strategies, so, for convenience of
comparison, we will use the standard settings
(Kaya and Noakes, Submitted; Lee et al., 1997)

x0 =
π

180
(26.7, 0, 0)T , xT = (0, 0, 0)T ,

u = ±0.05236 .
Since the Lagrange equations are the conditions
for a local minimiser, computation results depend
on the initial guess, which requires specification
of both the arc-times and the Lagrange coeffi-
cients. We organise various initial guesses and
corresponding results in separate examples. The



quadratic form tests applied to these examples
indicated that the resulting points were minima.

Example F-8-1. First we consider the following
result for a 4-arc configuration with u(0) =
0.05236:

Seed Result
ξ1 1 1.132765
ξ2 0.8 0.347492
ξ3 1 1.608881
ξ4 1 0.692379

Seed Result
λ1 0 2.322838
λ2 0 −1.396123
λ3 0 −0.942077

Total time: 3.781517.

The obtained total time of 3.781517 is signifi-
cantly smaller than the 6-arc solution of 5.742177
given in (Kaya and Noakes, Submitted) and the
4-arc solution of 6.035 in et al. (Lee et al., 1997).
The program required 34 iterations to obtain the
above arc-times and Lagrange coefficients, which
satisfy equations (7) with an accuracy of order
10−6 (in nearness to the target (0, 0, 0)T ). As one
would expect, accuracies of order less than 10−6

can be achieved with a fewer extra iterations.

Example F-8-2. The same minimiser can be ob-
tained from the below-listed five arcs (u(0) =
0.05236) being used as an initial guess:

Seed Result
ξ1 1 1.132765
ξ2 0.3 0.347492
ξ3 1.5 1.608881
ξ4 1 0.692379
ξ5 1 0

Seed Result
λ1 0 2.322838
λ2 0 −1.396123
λ3 0 −0.942077

Total time: 3.781517

The same tolerance of 10−6 has been used for this
example. The final arc configuration is reached for
33 iterations. The first 4 arcs in this result are the
same as those obtained in the example F-8-1, the
last arc has been eliminated.

Thus, in this case, the total arc-time as a function
of ξi (i = 1, . . . , 5) has the same constrained
minimum as its restriction to the hyperplane of
the first four arc-time variables.

Example F-8-3. Here is the result for 6 arcs
(u(0) = 0.05236):

Seed Result
ξ1 1 1.1327648
ξ2 1 0.3474915
ξ3 1 1.6088814
ξ4 1 0.2223491
ξ5 1 0
ξ6 1 0.4700298

Seed Result
λ1 0 2.322838
λ2 0 −1.396123
λ3 0 −0.942077

Total time: 3.781517.

The combination of the last three arcs in this
result are equivalent to one arc, as its middle arc
has been eliminated. The sum of the remaining
two arc-times has the same value as the value of
the fourth arc-time in examples F-8-1 and F-8-2.
Though the same tolerance of 10−6 has been used

for this example we provide more digits in final
values of arc-times to offset the effect of rounding
errors. The final arc configuration is reached in 29
iterations.

A different choice of initial arc-times and La-
grange coefficients can yield a different minimum
time as illustrated in the following example.

Example F-8-4. Consider the following result for
6 arcs (u(0) = 0.05236):

Seed Result
ξ1 0.5 0.102917
ξ2 1 1.927923
ξ3 0.5 0.166868
ξ4 1 2.743384
ξ5 0.5 0.329923
ξ6 0.5 0.471162

Seed Result
λ1 0 10.951790
λ2 0 −7.673815
λ3 0 −1.030559

Total time: 5.742177.

This result required 9 iterations. The arc times
(and so the total time) are the same as those
reported in Kaya & Noakes (Submitted) for a
similar configuration.

Remark 1. It is interesting to note that the time-
optimal bang–bang solutions for the F-8 aircraft
presented in (Kaya and Noakes, Submitted), (Lee
et al., 1997) and this work give three different local
optima. These local solutions are summarised
below for comparison.

• Reference (Lee et al., 1997):

Result
ξ1 2.188
ξ2 0.164
ξ3 2.881
ξ4 0.330
ξ5 0.472

u(0) = −0.05236
tf = 6.035

• Reference (Kaya and Noakes, Submitted):

Result
ξ1 0.10292
ξ2 1.92793
ξ3 0.16687
ξ4 2.74338
ξ5 0.32992
ξ6 0.47116

u(0) = 0.05236

tf = 5.74217

• This paper (see example F-8-1):

u(0) = 0.05236, tf = 3.781517

It is conceivable to think that these are only a few
of the many local minima for the terminal time. It
would be worthwhile to try and find other possible
local minima.

4.2 Examples for the van der Pol equation and a
third order nonlinear system

The van der Pol equation can be reduced to the
system



ẋ1 = x2,

ẋ2 =− x1 − (x2
1 − 1)x2 + u(t), u = ±1. (17)

Example vdP-1. Consider the initial and terminal
points (Kaya and Noakes, 1996)

x0 = (−0.4,−0.6)T , xT = (0.6, 0.4)T .

Results for seven arcs (u(0)=1):

Seed Result
ξ1 0.3 0.9751925
ξ2 0.3 0
ξ3 0.3 0.0006058
ξ4 0.3 0
ξ5 0.3 0.0008364
ξ6 0.3 1.1637249
ξ7 0.3 0

Seed Result
λ1 0 −0.437765
λ2 0 0.613760

Total time: 2.140360

Required number of iterations is 35. Furthermore

tf = ξ1 + ξ3 + ξ5 = 0.976635,

which is in agreement with (Kaya and Noakes,
1996).

Example vdP-2. Consider the initial and terminal
points (Kaya and Noakes, Submitted)

x0 = (1, 1)T , xT = (0, 0)T .

Results for six arcs (u(0) = −1):
Seed Result

ξ1 0.5 0.6908253
ξ2 0.5 0
ξ3 0.5 0.0321784
ξ4 0.5 1.1752145
ξ5 0.5 0
ξ6 0.5 1.1969841

Seed Result
λ1 0 0.196691
λ2 0 −1

Total time: 3.095202

Required number of iterations is 22. Furthermore

ξ1 + ξ3 = 0.723004,
ξ4 + ξ6 = 2.372199,

which is in agreement with (Kaya and Noakes,
Submitted).

However, the current implementation cannot han-
dle some difficult initial guesses from (Kaya and
Noakes, Submitted).

Now consider the following third-order nonlinear
system:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = sin(x1) + u(t), u(t) = ±1.
(18)

Example ns-3-1. Consider the initial and terminal
points (Kaya and Noakes, Submitted)

x0 = (1, 1, 1)T , xT = (0, 0, 0)T .

Results for five arcs (u(0) = −1):

Seed Result
ξ1 3.4276 3.538356
ξ2 3.5911 3.598507
ξ3 2.0896 1.1152856
ξ4 0.7055 0
ξ5 1.0927 0.8370915

Seed Result
λ1 0 −0.908375
λ2 0 −0.141088
λ3 0 1

Total time: 9.089241

The process converges in 16 iterations. Since

ξ3 + ξ5 = 1.952377,

this result is in agreement with the arc times
reported in (Kaya and Noakes, Submitted):

ξ = (3.53835, 3.59851, 0, 0, 1.95238)T .
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