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Abstract-m this paper, the peristaltic flow of rheologically complex physiological fluids when 
modelled by a non-Newtonian C&son fluid in a two-dimensional channel is considered. A perturbation 
series method of solution of the stream function for zeroth and first order in amplitude ratio is sought. 
Of interest is the difference between peristaltic transport of Newtonian and non-Newtonian fluids. It 
is found that Newtonian fluid is an important subclass of non-Newtonian fluids that may adequately 

represent some physiological phenomena. Analytical and numerical solutions are found for the zeroth 
and first order in stream function and compared to well-documented research in the literature. It is 
shown that for a Carson fluid, when certain approximations are made in the most generalized form 
of constitutive equation, the fluid may be adequately represented as an improvement of a Newtonian 
fluid. @ 2002 Elsevier Science Ltd. All rights. reserved. 
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1. INTRODUCTION 

As mentioned in an earlier paper in this sequel [l], peristalsis is the phenomenon in which a 
circumferential progressive wave of contraction or expansion (or both) propagates along a tube. 
If the tube is long enough, one might see several identical waves moving along the tube simulta- 
neously. Peristalsis appears in many organisms and a variety of organs. 

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid 
transport in many biological systems. In particular, peristaltic mechanisms may be involved 
in urine transport from the kidney to the bladder through the ureter, the movement of thyme 
in the gastrointestinal tract, the transport of spermatozoa in the ductus efferentes of the male 
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reproductive tract and in the cervical canal, the movement of ova in the Fallopian tubes, the 
transport of lymph in the lymphatic vessels, and in the vascomotion in small blood vessels. 

These flows also provide efficient means for sanitary fluid transport and are thus exploited 
in industrial peristaltic pumping and medical devices, for example, industrial applications of 
mechanical roller pumps using viscous fluids in the printing industry and the peristaltic transport 
of noxious fluid in the nuclear industry. In addition, peristaltic pumping occurs in many practical 
applications involving biomedical systems. Many modern medical devices have been designed on 
the principle of peristaltic pumping to transport fluids without internal moving parts, for example, 
the blood in the heart-lung machine. 

The main motivation for any mathematical analysis of physiological fluid flows is to ultimately 
have a better understanding of the particular flow being modelled. If there is similarity between 
the results obtained from the analysis and experimental and clinical data, then the mechanism 
of flow can at least be explained. Because peristalsis is evident in many physiological flows, an 
accurate mathematical study can help explain the major contributing factors to many flows in the 
human body. When comparing results between the mathematical model and the experimental 
and clinical data, it is desirable that the data obtained from experimental research be as close as 
possible to the actual physiological parameter being analysed. That is to say, it may be necessary 
to take into account the effect the measuring instrument or device or procedure has on the data 
obtained. 

The study of the mechanisms of peristalsis, in both mechanical and physiological situations, 
has become the subject of scientific research for quite some time. Since the first investigation 
of Latham [2], several theoretical and experimental attempts have been made to understand 
peristaltic action in different situations. Interest in peristaltic pumping has been quite recently 
stimulated by its relevance to ureteral function. As reliable and accurate urometric measurements 
became available through the work of Kiil [3] and Boyarski [4], several hydrodynamic models of 
ureteral function invoking peristalsis were attempted. The earliest models by Shapiro [5], Fung [6], 
and Shapiro et al. [7] were idealized and represented the peristalsis by an infinite train of sinusoidal 
waves in a two-dimensional channel; thus, they could pretend to only a qualitative relationship 
with the ureter. These models concerned themselves, in part, with offering an explanation of the 
biologically and medically important phenomenon of ‘reflux’. One manifestation of this reflux 
is that bacteria sometimes travel from the bladder to the kidney against the mean urine flow. 
A similar phenomenon has been observed in the small bowel. These observations are puzzling 
because the travel times are too small to be explained by diffusion and also because retrograde 
peristaltic waves have not usually been observed. Later, Lykoudis [8] and Weinberg et al. [9] 
proposed models that represent ureteral waves more realistically. Fung [lo] investigated the 
coupling between the forces of fluid-mechanical origin and the dynamics of the ureteral muscle. 
Some of these models showed that observed urometric pressure pulses and flow rates could be 
accounted for by assuming internal dimensions of the ureter which seem physiologically plausible. 
But ureteral physiology has not been the only motivation for the study of peristalsis. 

Burns and Parkes [ll] and Hanin [12] contributed to the theory of peristaltic pumping without 
reference to physiological applications. Barton and Raynor [13] made a calculation based on peri- 
stalsis theory of the time required for thyme to traverse the small intestine and found that this 
calculation compared favorably with observed values. In addition, F’ung [lo] studied peristaltic 
flow taking muscle action in the tube wall into account. Some new examples of peristalsis were 
given in [14]. Considerable experimental investigations of peristaltic pumping have also been un- 
dertaken, for example, in [2,9,15-201. Most of the theoretical investigations have been carried out 
by assuming blood and other physiological fluids behave like a Newtonian fluid. Although this 
approach may provide a satisfactory understanding of the peristaltic mechanism in the ureter, it 
fails to provide a satisfactory model when the peristaltic mechanism is involved in small blood 
vessels, lymphatic vessels, intestine, ductus efferentes of the male reproductive transport, and 
in the transport of spermatozoa in the cervical canal. It has now been accepted that most of 
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the physiological fluids behave like non-Newtonian fluids. But, it appears that no quantitative 
rigorous attempt has been made to understand the problem of a non-Newtonian fluid before the 
investigation of Raju and Devanathan [21] in the case of small wave amplitude. Subsequently, 
Srivastava and Srivastava [22] investigated the problem of peristaltic transport of blood assuming 
a single-layered C&son fluid and ignoring the presence of a peripheral layer. Later on, Srivas- 
tava [23] considered the sxisymmetric flow of a Carson fluid in a circular nonuniform tube. More 
recently, Siddiqui et al. [24] investigated peristaltic motion of a non-Newtonian fluid modelied 
with a constitutive equation for a second-order fluid for the case of a planar channel. A perturba 
tion series was used representing parameters such as curvature, inertia, and the non-Newtonian 
character of the fluid. Tang and Rankin [25] proposed a mathematical model for peristaltic mo- 
tion of a nonlinear viscous flow where they used an iterative method to solve a free boundary 
problem. Das and Batra [26] studied the fully developed, steady flow of a Carson fluid through 
a curved tube for small values of Dean number. A plug core formation region at the centre is 
considered where the shear stress is not sufficient to exceed the yield value. Elshehawey et al. [27] 
consider the problem of peristaltic transport of a non-Newtonian (Carreau) fluid in a nonuni- 
form channel under zero Reynolds number with long wavelength approximation. The problem is 
formulated using a perturbation expansion in terms of a variant of Weissenberg number. They 
find that pressure rise and friction force are smaller than the corresponding values in the case of 
uniform geometry. However, in the present paper, we propose to study peristaltic transport of 
physiological fluids in a planar channel using the most generalized form of constitutive equation, 
for Casson fluid, as given by Rung [28]. The final analysis is done by using a perturbation method 
in the same way as was done in our previous paper [l]. To the author’s knowledge, the use of 
this generalized equation has not been considered previously in the literature. 

2. PROBLEM FORMULATION 

2.1. Dimensionless Variables in a Two-Dimensional Channel 

2’ = : 
d’ 

y’= $, ‘111 = 24 
c’ 

qJ’ = E 
c’ #=$, 

_ 2nd A ct 
a=- x’ /=-J, t’ = -, 

d 
G’ = ;, 

/ I 

Figure 1. Peristaltic flow in a two-dimensional channel. 
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2.2. Statement of Problem 

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid in a 

two-dimensional channel, where d is the undeformed width of the channel and the channel is 

considered to be infinitely long; A represents the amplitude of the sinusoidal waves travelling 

along the channel at velocity c; X is the wavelength (Figure 1). A rectangular coordinate system 

is chosen for the channel with z along the centre line and y normal to it. Let u and ZI be the 

longitudinal and transverse velocity components, respectively. It is assumed that an infinite train 

of sinusoidal waves progresses along the walls in the 2 direction. The vertical displacements for 

the upper and lower walls are G and -G for peristaltic flow at time t, where G is defined by 

G(z,t) = Acos$(z - ct). (1) 

We assume that there is no motion of the wall in the longitudinal direction (extensible or elastic 

wall). 

For the case of peristaltic pumping of a Casson fluid in a planar channel, the stress-strain 

relationship in tensor format is given by Fung [28] as 

flij = -p&j + 2/4 J$4j, (2) 

where 

p(Js) = [(q2J2)1’4 + 2-‘1/27,‘/2]2 Jy1i2 = [$/2 +2-l/2$/2 J;‘/~]~ 

1 
2 

=p (say). 

(3) 

Here, we have denoted 
Ly = $12 : p = 2-112,;/2, 

where q is the Casson coeficient of viscosity, and TV is the yield stress. Here, 

(4) 

(5) 

and 

where 
au 

61 = -7 ax 
dV 

62 = -, 
aY 

.,=.,=;(g+g3. 

2.3. Mathematical Modelling of a Casson Fluid in a Two-Dimensional Channel 

Substituting equations (2)-(6) into the basic equations for continuity and momentum, respec- 

tively, given by 
div q = 0 (7) 

and 
Dqi a 

Pz = -uij, 
axj 

we have 

p $+uE+v”” 
( ay > 

which, using continuity, reduces to 
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Similarly, 

( 

dV E+v& 
p dtfuaa: ay ) 

=-2+2pv$+p, 
ay 

($+Z) +pv%. (10) 

Defining a stream function as u = $J, and v = -& we obtain 

respectively, 

and 

from equations (9) and (lo), 

- IL) + PV2&l (11) 

where 

and 

2.4. Solution Procedure (Zeroth-Order Approximation) 

Expressing stream function $, pressure p, and p as a series in terms of amplitude ratio E = A/d, 

where A is the amplitude and d is the undeformed width of the channel (Figure I), we have 

~=7fhl+~Th+E2~2+O(E3), (13) 

P = PO + EPl + E2P2 + 0 (E3) , (14 

p = /Jo + &CL1 + E2P2 + 0 (e3) , (15) 

where it is assumed that $~a is a function of y only, i.e., $0 = $0(y), because of zeroth-order axial 

pressure gradient. We finally obtain from equations (11) and (13)-( 15) after collecting coefficients 
of &a, 

aPo 

that is, 

Therefore, 

- = 2Poz~or/z + Poy$oyy - Poylctozz + Po$Jozzy -I- po$Joyyy, ax 

aPo 
- = POY~OYY + P0lcl0YYY. ax 

aPo a 
- = dy(POtiO”‘). ax 

(16) 

(17) 

We now need to find the zeroth-order expression for ~0 = ~(&)a. From equation (6) and 

expanding and substituting, we have 

J2=~{(~)2+(~)2+~(~+~)2}=~{~~y+~:y+~(~~y-~zz)~} 

= 
{ 

+2, + a(@,, - &!.)2} * 

Therefore we have, after introducing equations (13), (15), and (18), 

P(J2) = 

i [ 

a + P ; (vi&y + 2doyg/(Thpy - W)] -1’4 + 0 (e2)i2. 

Neglecting O(s2) and higher in equation (19) and expanding, we have 

/4J2) w 

(18) 

(19) 

(20) 
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which after further expansion and collecting terms in amplitude ratio for the first two terms and 
using equation (15) yield equations for ~0 = I.L(J& and ~1 = p(Jz)i as 

(21) 
Pl = --QlPfi~;y3y/2wlyy - zhz1) - 2P2~~~~(7blYY - ?IlZZ). (22) 

Solving equation (17) by using equation (21) and nondimensionalising and applying the symmetry 
boundary condition $syy(0) = 0, we have 

KY + L = ~01cIoyy, 

where 

K=p&g and L = 2p? 

Our equation to solve for $0(y) then becomes 

cr2&,V + 2&&/5 - Ky = 0. 

If we set 

Gori, = W2, 

then equation (24) becomes a quadratic in W as 

a2W2 + 2&@W - Ky = 0, 

whose roots are given by 

Using equations (25) and (27), we obtain 

(23) 

(24) 

(25) 

(26) 

+/55. (27) 

2 

d-d_ . 
> 

w9 

But, the symmetry boundary condition $JO~~(O) = 0 demands only the positive sign to be valid; 
therefore, 

@or/y = (-\/Ii + ;dm)2. 

Integrating equation (29) twice we obtain 

(29) 

$0(Y) = 
K 3 W%3 

6cu2’ - 15K%$ (2P2 + KY)5’2 f Ay + B, 

where A and B are constants of integration. 
Using the boundary conditions T,!Q,(~) = 0 and Q(O) = 0, we find 

A = g (2p2 + K)3’2 _ !$ _ _& . 

B = & (2/32)5’2. 

(30) 

(31) 

(32) 

If we let B --* 0, that is, ra, + 0 from equation (4), we obtain the Newtonian case in the form 

which coincides with the literature [6]. 
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We now seek to determine the dimensionless pressure rise, 

The flow rate, q, is given by 

Apt, where 

901 

(33) 

therefore, from equations (30)-( 32), 

f/J(l) - 1cl(O) = -5 - & + $& (2p2 + K)3’2 = q. 

Applying expansion gives 
2@ K 

9 
16p4 =---+----_. 

o2 3cu2 3a2K 

(34) 

(35) 

(36) 

Separating the pressure gradient after solving for quadratic in K, and using equation (23), gives 

b K 1 

-=gx=pm ax - f (3a2q - S/3”) f ; d9a4q2 + loop“ - 3&+‘q,@ 
> 

. (37) 

Hence, using equation (33), pressure rise is 

3a2q - S/Y”) f $,/9cr4q2 + loop4 - 36a2qp2 dx, 

because - a (3a2q - S/3”) f id9ct4q2 + loop4 - 36cr2qp2 = constant, (38) 

APO = 3a2q - 60”) f $h9a4q2 + loop4 - 36c+‘qp2 . 

However, the condition ,5 = 0 implies that only the negative sign of the quadratic is valid; 
therefore, 

1 
Ape = - 

pm 
-f (3a2q-6P2) - $/ 9a4q2 + loop4 - 36a2qa} . (39) 

This is graphically depicted in Figure 2. 

05 0.6 0.7 0.8 0.9 

-1 -- 

Prosruro RI80 

-3 c 

Flow Rat. 

Figure 2. Pressure rise vs. flow rate. 
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2.5. Solution Procedure (First-Order Approximation) 

We now look at the procedure for determining $r(z, y, t). The boundary conditions for 

$r (2, y, t) are derived as follows. Assuming that there is no horizontal displacement of the tube 

walls during the peristaltic motion, the boundary conditions at the walls are 

no-slip condition: u = 0, at y = f(d + G(z, t)], (46a) 

impermeable condition: u = +$G(z,t), at y = f[d + G(z, t)]. (46b) 

Using G(z, t) = A cos(2n/X)(a: - ct) and equation (13) and nondimensionalising as defined above, 

we obtain 

at y = f[l + Ecos&(z - t)], (41a) 

$(3:-ct)=F&sin&(z-t), at y = f[l + scosCi(z -t)]. (41b) 

The boundary conditions (41) can be written using Taylor series expansions about y = *(l + G) 

where here G = ECOS&(Z - t) as, after equating terms of the same order in E, on either side of 

the equations, which gives 

&,(&l) f G&&l) + $&&l) * 0 (G3) = 0, 

t&(&l) f G&,(fl) + $1/?2yy(*l) f 0 (G3) = fiksinti(z - t). 

(424 

(42b) 

Substituting equation (13) into equation (42) and collecting terms of the same order in E gives 

1Clo,(fl) = 0, &(&l) f ?jIo&l) cos&(a: - t) = 0, 

$oz(fl) = 0, h(~:l) f $Joq/(fl) cos&(s - t) = +sin&(z - t), (43) 

and so on for higher order terms in t. Taking the positive sign of the boundary conditions as 

given in equation (43) yields the boundary conditions as 

th,(l) = -Go&) cosqa: - t), 

$1,(l) = -dsin&(z - t). 

(444 

(44b) 

From these boundary conditions, it can be assumed that $1 (z, y, t) can be obtained in the form 

@l(?Y,Q = f(Y) cos&(a: -t) +g(y)sin&(z -t). (45) 

Eliminating the pressure terms in equations (11) and (12) by cross-differentiation and subtraction, 
the following equation is obtained: 

By substituting equation (45) for $Q(z, y,t) and equation (29) for @c(y) into equation (46), and 

collecting coefficients of cos &(z - t) and sin &(z - t) on either side of the resulting equation, two 

differential equations for f(y) and g(y) are obtained. 

Due to the length and complexity of these equations, approximate solutions are obtained by 

assuming that the parameter d, which is (27rd)/X, is small. As a first approximation, the terms 
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of order S2 and higher can be neglected; as a second approximation, the terms of order 63 and 

higher can be neglected, and so on. 

Hence, the following equation is obtained from equation (45) by expanding in a perturbations 
series as indicated in equations (13)-(15) ft a er collecting terms of the first order in amplitude 

ratio, E: 

P_(lc, lyyt + eoy+lYYz - 1cIl+~oYYy) = POyy~lyy + PlyytiOyy + 2Poy?hyyy 

+2PlY+oYyY + POhYYYY + Pl@oYyYy> 
(47) 

where PO, CLOT, ~oyy and ~1, ply, ~lyy are extensive and complicated equations and are obtained 

from equation (21) and (22), respectively, as follows: 

After substituting for the various terms in equation (47) and collecting terms and remembering 
the approximation made on terms in the parameter d, the following ordinary differential equation 
is: 

I 

1 

2 

Gf” sin &(a: - t) - 69” cos &(z - t) + %Y+$y2- $$ (2P2 + ICY)“” + A 

pm 1 x (4f” sin cS(z - t) + 69” cos &(z - t)) 

- (-G$sinG(z - t) + dgcosd(z - t))&Y 

1 
-5/2 

(f”CosCZ(z -t) +g”sind(a: - t)) - 
2LW-9 

- ~2 (2P2 + kY) 
l/2 

- ( > & (f “’ cos G(z - t) + 9”’ sin G(z - t)) 

-3f2 
WJZ 

- -g-- ( 2P2 + ky) 1’2 1 
+~2(fivcos&(z-~)+gi”sin~(z-t)) - 

> 
-3/2 

x (f” cos &(a: - t> + 9” sin &(a: - t)) $ + $Y- y (2P2 + ky)‘/21 
_I 

- l/2 

(fiv cos &(s - t) + giv sin G(z - t)) , 

(52) 

where the constant A is given in equation (31). 
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Collecting coefficients of cos &(a: - t) in equation (52) gives 

Collecting coefficients of sin &(a: - t) in equation (52) gives 

- (~)(,-,~~n[~+~y-~~2,2+ky)1~2]-3’2 (54) 

-3/Z 

+cr2 (gi”) - 1 
k 

-l/Z 

?@ (2p2 + ky)l” 2y- a2 1 (5-P) . 
The equations for f(y) and g(y) can be simplified by assuming that the Reynolds number asso- 
ciated with the present model is small, where the associated Reynolds number is given as 

Re=p&% (55) 

Therefore, 
f(y) = fo(y) + Fte’ _fz(y) + higher order terms in Fk, 

g(y) = Regr(y) + Re3 ga(y) + higher order terms in Re. 
(56) 

Hence, evaluating equations (53) and (54) with equation (56) and equating equal terms in 
Reynolds number, the following ordinary differential equations are obtained for fc(y) and gr(y), 
respectively: 

-5/Z 

- 

I 

-3/Z (57) 
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-312 

(57)(cont.) 

-3/2 +c?(gf")- 1 
(58) 

From equation (44), the boundary conditions for fo(y) and gl( y) are given as 

fo(O) = 0, f;(o) = 0, fo(l) = 1, f;(l) = -1cloyy, 

91(O) = g:(O) =91(l) = g:(l) = 0. 
(5% 

The analytical solution to equation (57) is found by using the text [29]. 
Reducing equation (57) to a second-order equation and then integrating twice, the solution 

is found. Comparing our reduced second-order equation to and using part 28 on page 134 of 
text [29] with their notations, 

where 
A = k43a/3 (4p2/(y2) -5’2 (14/4) 

24 (4p2cr2)2 ’ 

B = 3k3aj3 (4P2/a2) -3’2 (10/4) 

16p4cr22&f ’ 

c = k2ap (4P2/a2) -3’2 (10/4) 

4fi~W ’ 

D _ k&r+’ (4p2/cr2) -3’2 (10/4) 

4pW 
> 

Consequently, with wo = f{, equation (57) reduces to 

w;r - E ‘yw:,+${Ay2+By-C)wo=o. (61) 

(60) 
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Then, following through the analysis, they describe where 

is the root of the quadratic (see [29, p. 1341) 

4s2 + 2as + Q = 0, 
D 

a=--, 
E 

b = 0. 

It is found that if we consider the first two terms of the series, 

wo = .I%’ = exp(hy) exp (sy2) 40, w h ere z(E) is found in Table 2.2 of [29, p. 1431, 

wo = exp(hy) exp (sy2) O3 (a>, (W2)” 
1 + C - - n=l @In n! 1 

+c2y II2 
M (o + l/2), (lc’C2)n 

1 + c 
n=l (b)n n! ’ 

(63) 

(64) 

where 

Z(<)=+,+<2), <=y, ~=-~~‘;i+~‘, X=1, (65) 

<(a, l/2, k’S2) is the degenerate hypergeometric solution and is found in [29, Part 103, p. 143, 
Part 65, p. 1371. 

Subsequently, the solution to equation (57) and hence equations (64) and (65), after applying 
symbolic integration twice using MATLAB ~5.3, is very intricate and given in Appendix A. 
Numerical solutions of equations (57) for fc(y) and (58) for gi (y) result in the plot in Figures 4-7. 
Figure 3 shows a comparison of fo(y) with other models [21]. Figure 4 shows the curves for fc(y) 
and f;(y) with varying values of yield stress. That is, fl is gradually varied between zero and 
unity. Figures 5-7 show curves for gi(y) and g:(y) with varying values of yield stress and various 
values of.wave number. Figure 8 gives a plot of the function, $ vs. I, where 5 = x - t as derived 
in this paper from equations (13),(30)-(32),(45), and (56), which are very similar to plots given 
in [21]. 

1.2 - 

1 -- 

0.0 -- 

lo(y) 0.6 -- 

0.4 -- 

- - - -fO(Power 

-fO(Casson-present 

n 
” , . . 

0 0.1 0.2 0.3 0.4 y 0.5 0.6 0.7 0.8 0.9 1 

Figure 3. Comparing _fo vs. y with [21]. 
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When comparing the values of our Casson model in Figure 3, obtained from numerical inte- 
gration, of the first order in s t ream function with those of the power-law model of Mernone and 
Mazumdar  [1] and Raju and Devanathan [21], the results are similar but noticeably different. 
The Casson model indicates the effects of the yield stress and Casson viscosity on the s t ream 
function. However, there are similarities between the two models in form. Initially, the two 
models coincide then diversify as values increase. 

2 i i , i , r i i i J 

1.5 

O.S 

-0 .5  

-1 

• \ 
. ' \  

\ 

" .  x 

I I , I . 1 

Figure 4. fo(Y) and £(y) with - -  --- £(1) = -1(8 = 0) . . . . .  £(1) = -0.5; . . . . . .  
£(1) = -0.1(8 = 1). 

When considering the fo(Y) and f~(y) in Figure 4, it is found that  as the yield stress ~ is 
gradually varied between zero and unity, the effects on both fo(Y) and fO(Y) are noticeable and 
significant. I t  appears  tha t  the maximum value for f~(y) is shifted slightly to the right. 

Similarly, in Figures 5-7 when considering the functions gl (Y) and g~ (y), we find tha t  the wave 
number  & has considerable effect on the curves. I t  appears that  as the yield stress ~ is gradually 
varied between zero and unity, and therefore the value of f~(y) = -¢Oyy(Y), there is a shift in the 
size and shape of the left side and right side in the curve representing g~ (y). There seems to be a 
reversal in the location of peaks between the right side and left side. I t  is of interest to note tha t  
the points of inflection occur in exactly the same location when considering each of the respective 
graphs of gl(Y) and g~(y). As the yield stress /3 is gradually varied between zero and unity, 
the points of inflection are shifted slightly to the right. The numerical values obtained for fo(Y) 
and f~(y), and gl(Y) and g~(y) are indicative of the validity of the per turbat ion analysis used 
throughout  this research as indicated in equation (45). It  is seen that  the order in magni tude 
of fo(Y) is very much greater than that  of gl(Y) as is suggested by the per turbat ion method.  
From the numerical calculations, we find tha t  the change in behaviour of the s treamfunction 
occurs depending on many  parameters,  including K ,  O, a,  fl, Re, and 6. Just  for the sake of 
understanding peristaltics, we have taken some basic values of the parameters,  with ¢ = 0.01. 

When we consider Figure 8, which is a plot of the function ¢ given by equations (13) and (30) 
and equations (45) and (54) and selecting ~ = 0.01, for the case of high pressure gradient, with - -  
representing ¢0.1 (y = 0.1), - - -  representing ¢0.3, "'" representing ¢0.5, - . . . .  representing ¢0.?, 
and . . . . . . .  representing ¢0.9 (Y = 0.9), it is found tha t  the curves for streamfunction ¢ run 
parallel to the axis of the channel when considered near the axis (y = 0.1), whereas considerable 
deformation is observed when they are considered near the boundary (y = 0.9). Perhaps a 
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Figure 5. gl(v) and g:(y) with f/,(l) e -1. - = & = 0.2,. . . ,& = 0.4; - . - . - = 

& = 0.6; - - - = & = 0.8. 
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Figure 6. gr(g) and g;(u) with f&(l) = -0.5. - = CE = 0.2,. . . ,& = 0.4; - . -. - = 
d = 0.6; - - - = B = 0.8. 

possible explanation for this sort of behaviour of the streamlines can be given considering the 
region as consisting of two parts-a central core and a boundary layer region. As the pressure 
gradient increases, we find that the streamfunctions 21, in the central region are more influenced by 
it than by the motion of the boundary, and hence the values for the str~fun~tion run parallel 
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Figure 7. g1 (y) and g;(v) with f,$( 1) = -0.1. - = & = 0.2,. . . , & = 0.4; - . - . - = 
& = 0.6; - - - = c?i = 0.8. 
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Figure 8. Plot of function II, vs. Z as given by equations (30)-(32),(45), and (56). 

to the axis, while in the region near the boundary the flow is influenced by both the wave and 

the pressure gradient. 

3. CONCLUSION 

In this research it is found that for the C&son model, the governing partial differential equations 
are indeed extensive and complicated. If, however, we use the fact that zeroth-order perturbation 

in stream function is a function of the axial coordinate only, because the zeroth-order axial 
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pressure gradient is constant, we find that the Casson model may be quantitatively expressed as 

a Newtonian model (Figure 2). 

It is found that in the zeroth-order approximation in stream function that there is a dependence 

on the Casson coefficient of viscosity, yield stress, the density of the fluid, the wave speed, and 

the dimensions of the channel. 

When considering this approximation in the zeroth-order stream function, results show the 

difference between Newtonian (dashed line) and non-Newtonian (bold line) in Figure 2 seems to 

be slightly significant, and consistent with that of a Newtonian model, with slight anomalies at 

very low and very high flow rates. 

However, we see that for the first order in stream function the differential equation to be solved 

is complex, and the analytical solution derived from symbolic integration is more so. The values 

for the first order in streamfunction are indicative of the perturbation method used, and results 

in Figures 4-7 are consistent with that given in the literature. 

This modelling is appropriate as it may allow insight into the validity of the reduction of the 

complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and blood flow 

in the blood vessels under certain physiological conditions. 

APPENDIX A 
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k2=0 

1 _ exp 

5 ( > 

z (_l)kq(-l-2k2) ( _$)(-1+zk2) $1,2~~1 @$-; ; ;;;;j:f\‘131h) 

+ _t2(-1-2k21 
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exp (~) q-l)“2 (-$) 
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where (31, C2, Cs, C4 are constants of integration determined by the boundary conditions in 
equation (66), and SI = D - 4sE and %l = y,/Z - h/Z,,& 
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