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One of the more beautiful results related to approximating π is the integral

I =
∫ 1

0

x4(1 − x)4

1 + x2
dx =

22

7
− π. (1)

Since the integrand is nonnegative on the interval [0, 1], this shows that π is
strictly less than 22/7, the well known approximation to π. Here we shall look
at some features of this integral, including error bounds and a related series
expansion. Then, we present a number of generalizations, including a new
series approximation to π where each term adds as many digits of accuracy
as you wish. We conclude by presenting a number of related integral results
for other continued fraction convergents of π.

1 The classic integral

Proving (1) is not difficult, if perhaps somewhat tedious. A partial fraction
decomposition leads to

x4(1 − x)4

1 + x2
= x6 − 4x5 + 5x4 − 4x2 + 4 −

4

1 + x2
, (2)
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and integration immediately gives us that

∫ 1

0

x4(1 − x)4

1 + x2
dx =

1

7
−

2

3
+ 1 −

4

3
+ 4 − 4

π

4
,

from which (1) immediately follows. An alternative is to use the substitution
x = tan θ, leading to

∫ 1

0

x4(1 − x)4

1 + x2
dx =

∫ π/4

0

tan4 θ(1 − tan θ)4

sec2 θ
sec2 θ dθ

=
∫ π/4

0
tan4 θ − 4 tan5 θ + 6 tan6 θ − 4 tan7 θ + tan8 θ dθ.

This can be solved using the recurrence relation (tann θ = tann−2 θ(sec2 θ−1))

∫ π/4

0
tann θ dθ =

1

n − 1
−

∫ π/4

0
tann−2 θ dθ,

with
∫ π/4

0
dθ =

π

4
,

∫ π/4

0
tan θ dθ = ln

√
2,

which returns the required result after some algebra. Of course, the simplest
approach today is to simply verify (1) using a symbolic manipulation package.

The earliest statement of this result that we are aware of is Dalzell [5]
in 1944. Proving (1) was a question in a University of Sydney examination
in November 1960 (Borwein et al. [3]), and it was apparently shown by
Kurt Mahler to his students in the mid 1960’s. Proving (1) was also the
first question in the William Lowell Putnam mathematical competition of
October 1968, as published by McKay [8] in 1969. In 1971, Dalzell [6] again
derived (1) in a larger work published in the Cambridge student journal
Eureka. This paper is the one most often cited in context with the result (1)
(e.g. Backhouse [1] and Borwein et al. [3]). It was also presented without
reference in Cornwell [4] in 1980. A more recent reference is Medina [9].

1.1 Error estimation

As well as showing 22/7 > π, we can use this integral result (1) to get bounds
on the error. One approach, following Nield [10] (The actual paper misspells
the name as Neild, which is reproduced by MathSciNet) is to note that since
x(1 − x) ≤ 1/4 and 1 + x2 ≥ 1 on [0, 1] with equality only at the endpoints,
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the integrand takes maximum value (1/4)2 = 1/256. Combined with the fact
that 22/7 − π is positive, we get the error bound

5625

1792
=

22

7
−

1

256
< π <

22

7
.

However, a better bound can be found by noting that 1 < 1 + x2 < 2 for

x ∈ (0, 1), and
∫ 1

0
x4(1− x)4 dx = 1/630 (as in Dalzell [5, 6] and Nield [11]).

Then

1

1260
<

22

7
− π <

1

630
or

22

7
−

1

630
< π <

22

7
−

1

1260
.

The interval [1979/630,3959/1260] is of width 7.94×10−4, and is not centered
at π.

1.2 Series expansion

Dalzell [5] also provides a series expansion for π based upon (2), which is
included in Borwein et al. [3] as an example. After gathering the two pieces
with 1 + x2 as the denominator, we can write

1

1 + x2
=

x6 − 4x5 + 5x4 − 4x2 + 4

4 + x4(1 − x)4
or

4

1 + x2
=

x6 − 4x5 + 5x4 − 4x2 + 4

1 + x4(1 − x)4/4
.

Integrating both sides between 0 and 1 and using the Taylor series expansion
for 1/(1 + t) leads to

π =
∞
∑

k=0

(

−
1

4

)k ∫ 1

0
(x6 − 4x5 + 5x4 − 4x2 + 4)x4k(1 − x)4k dx. (3)

Applying integration by parts n times reducing the coefficient of (1− x), we
have

∫ 1

0
xm(1 − x)n dx =

m!n!

(m + n + 1)!
, (4)

where m and n are nonnegative integers, which when applied to (3) gives

π =
∞
∑

k=0

(

−
1

4

)k
[

(4k)!(4k + 6)!

(8k + 7)!
−

4(4k)!(4k + 5)!

(8k + 6)!
+

5(4k)!(4k + 4)!

(8k + 5)!

−
4(4k)!(4k + 2)!

(8k + 3)!
+

4(4k)!2

(8k + 1)!

]

.

(5)
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The sequence (5) is equivalent to that derived in Dalzell [5, 6] and Borwein
et al. [3], but written in a different form. There the sixth order polynomial
in (3) is recognized to be unchanged when x is replaced by 1 − x, and so
additional algebra is performed to reformulate the integral in (3) as

∫ 1

0

(

3 + x(1 − x) −
1

2
x2(1 − x)2 − x3(1 − x)3

)

x4k(1 − x)4k dx =

3(4k)!2

(8k + 1)!
+

(4k + 1)!2

(8k + 3)!
−

(4k + 2)!2

2(8k + 5)!
−

(4k + 3)!2

(8k + 7)!
,

(6)

where we have applied (4) with m = n several times. To show that (5)
and (6) are equivalent, it is easiest to factor both of them, and incidentally
get a cleaner solution. In both cases, start by giving them the common
denominator (8k+7)!, and take the common factor (4k)!2. It quickly becomes
apparent that (4k + 1)(4k + 2)(4k + 3) is also a common factor, and we find
that both expressions lead to

π =
∞
∑

k=0

(−1)k42−k (4k)!(4k + 3)!

(8k + 7)!
(820k3 + 1533k2 + 902k + 165)

=
22

7
−

19

15015
+

543

594914320
−

77

104187267600
+ · · · .

(7)

The convergence rate can be found by applying Stirling’s approximation for
the factorials and taking the ratios of successive terms, giving that each term
has magnitude roughly 1/1024 of the previous term, or roughly 3 decimal
digits of accuracy are added per term. Using just the first two terms, and
knowing that the error when truncating an alternating series with terms
decreasing in magnitude is less than or equal to the absolute value of the
first term in the truncated part, we can form the bound

22

7
−

19

15015
≤ π ≤

22

7
+

19

15015
, (8)

which is of width 2.53 × 10−3. This result is poorer than bound from the
previous section, but if we use three terms, then

22

7
−

19

15015
−

543

594914320
≤ π ≤

22

7
−

19

15015
+

543

594914320
, (9)

which is a bound of width 1.83 × 10−6, an improvement.
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We can make one more perhaps artificial use of the series (7). By taking
the first k terms to the left hand side, we can show π ∈ [a, b] as in (8)
and (9). If z is then some number near π, we can rewrite the bound as
π ∈ [z − (z − a), z − (z − b)]. Applying this to (8) and (9) with z = 355/113,
the next good rational approximation of π, we get

π ∈
[

355

113
−

118

108
,
355

113
+

253

105

]

and π ∈
[

355

113
−

210

108
,
355

113
−

266

109

]

.

2 Related families of integrals

There turn out to be a number of families of integrals that are similar in
style to (1). The most obvious is originally due to Nield [10] in 1982, who
introduces

I4n =
∫ 1

0

x4n(1 − x)4n

1 + x2
dx (10)

for positive integers n. Then I from (1) is equivalent to I4. Medina [9]
has investigated this set of integrals in detail, where the upper bound in the
integral has been replaced by x, and polynomial approximations to arctan(x)
with rational coefficients are developed. From our perspective, one of the
most useful results he gives is the closed form expression

x4n(1 − x)4n

1 + x2
= (x6 −4x5 +5x4 −4x2 +4)

n−1
∑

k=0

(−4)n−1−kx4k(1−x)4k +
(−4)n

1 + x2
.

(11)
While not proven explicitly in [9], this can easily be proven by mathematical
induction. Integrating (11) using (4) and simplifying leads to

(−1)n

4n−1

∫ 1

0

x4n(1 − x)4n

1 + x2
dx = π −

n−1
∑

k=0

(−1)k 24−2k(4k)!(4k + 3)!

(8k + 7)!
×

(820k3 + 1533k2 + 902k + 165),

where the integral and simplification was already done earlier for Dalzell’s
series expansion. So in fact the closed form expression for (−1)nI4n/4n−1

is equivalent to the error when approximating π by a truncated version of
Dalzell’s series expansion! Every increase in n will increase by roughly two
and a half the number of digits of accuracy in the approximation to π. It is
less accurate due to the 1/4n−1 term.
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In 1995, Backhouse [1] generalized (1) to

Im,n =
∫ 1

0

xm(1 − x)n

1 + x2
dx = a + bπ + c ln(2), (12)

where a, b and c are rationals that depend on the positive integers m and n,
and a and b have opposite sign. In this case, I ≡ I4,4. Backhouse [1] showed
that if 2m − n ≡ 0 (mod 4), then c = 0 and approximations to π result.
In what follows we shall assume that this is the case. An integral equal to
a + bπ gives the approximation −a/b for π. As m and n increase, the inte-
grand becomes increasingly flat (Backhouse calls them “pancake functions”)
and the approximations to π improve, as well. Unfortunately, there is no
straightforward formula relating a and b directly to m and n as in the I4n

case. However, Weisstein [13] at least states the result

Im,n = 2−(m+n+1)
√

πΓ(m + 1)Γ(n + 1)×

3F2

(

1,
m + 1

2
,
m + 2

2
;
m + n + 2

2
;
m + n + 3

2
;−1

)

.

2.1 Error estimation

We previously saw that error bounds for I could be found using the bounds
1 ≤ 1 + x2 ≤ 2. The same approach for Im,n directly leads to

m!n!

2(m + n + 1)!
< a + bπ =

∫ 1

0

xm(1 − x)n

1 + x2
dx <

m!n!

(m + n + 1)!
,

where a and b are the rationals depending on m and n. As m and n increase,
the bounds on the error decrease with reasonable rapidity.

2.2 Series expansion

Given the closed form expression (11), we can follow the same process as
Dalzell to produce series expansions for π, with a specific value of n leading
to

π =
∞
∑

m=0

n−1
∑

k=0

(−4)−nm−k
∫ 1

0
(x6 −4x5 +5x4 −4x2 +4)x4(k+nm)(1−x)4(k+nm) dx,

(13)
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which generalizes (3). Evaluating the integrals as before leads to

π =
∞
∑

m=0

n−1
∑

k=0

(−1)α42−α (4α)!(4α + 3)!

(8α + 7)!
(820α3 + 1533α2 + 902α + 165), (14)

where α = k+nm. With n = 1, (14) is exactly Dalzell’s expansion (7). With
n = 2 we have

π =
∞
∑

m=0

42−2m

[

(8m)!(8m + 3)!

(16m + 7)!
(6560m3 + 6132m2 + 1804m + 165)−

(8m + 4)!(8m + 7)!

(16m + 15)!
(1640m3 + 3993m2 + 3214m + 855)

]

=
47171

15015
+

16553

18150270600
+

64615651

102659859353904652800
+ · · · .

Note that this is not an alternating series, and each term is roughly 1/220 of
the previous, or roughly 6 digits of accuracy are added per term.

There is no reason why we can’t take n as large as we like. While this
increases the amount of work to find each term in the series, each term is
roughly 1/210n the size of the previous term, or roughly 3n digits of accuracy
are added with each term. In principle, there is no reason why a series where
each term adds one hundred digits or more of accuracy cannot be explicitly
written down from (14) with n ≥ 33.

3 Integrals leading to convergents

The main reason for appreciating the elegance of (1) surely is due to its
approximating π by 22/7, the classic and most well-known rational approx-
imation both within and outside the mathematics community. The number
22/7 is particularly good because it is better than other rational approxi-
mation p/q for q < 57. In fact it is one of the convergents of the continued
fraction approximation to π, the first few of which are 3, 22/7, 333/106,
355/113, 103993/33102 and 104348/33215. There are many excellent texts
on continued fractions, including Olds [12]. A natural question, then, is
whether there are integrals similar to the ones shown here that lead to other
convergents of π.

Unfortunately, none of the integrals considered so far lead to approxima-
tions to π related to the other convergents of π. The 22/7 in (1) must be
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considered a happy coincidence. However, Lucas [7] developed a set of inte-
grals with nonnegative integrands that equalled 355/113−π, where 355/113
is the next particularly good approximation to π. Here, we generalize those
results, and show how integrals with nonnegative integrands can be formed
for z − π (if z > π) or π − z (if z < π), with any real z.

We begin by noting that Im,n from (12) is a combination of multiples of
1, π, and ln 2. Now consider the related integral

I ′

m,n =
∫ 1

0

xm(1 − x)n(a + bx + cx2)

1 + x2
dx,

which can be evaluated as a combination of 1, π and ln 2, where the coeffi-
cients depend on a, b and c. If we want the integral to equal z−π, this leads
to a set of three linear equations in the three unknowns. A solution leads
to an integral of the appropriate form. However, it does not guarantee that
the integrand is nonnegative. To do so, we need to increase m and n until
we get a solution where a + bx + cx2 ≥ 0 for x ∈ [0, 1]. The closer z is to
π, the larger m and n will need to be. As m and n increase, the coefficients
a, b and c become increasingly large, and so a “best” solution can be found,
in the sense that the number of characters required to form the integrand
is minimal. Lucas [7] only considered integrals leading to 355/113 − π us-
ing the symbolic toolbox within Matlab to evaluate the integrals. A more
effective approach is to use Maple, and the code in figure 1 can be used for
355/113 − π. Changing 355/113 to other values is straightforward. Using
code like this we can easily show (1) is the simplest approximation using
22/7. Experimentation suggests that the simplest results for other continued
fractions are

∫ 1

0

x5(1 − x)6(197 + 462x2)

530(1 + x2)
dx = π −

333

106
,

∫ 1

0

x8(1 − x)8(25 + 816x2)

3164(1 + x2)
dx =

355

113
− π,

∫ 1

0

x14(1 − x)12(124360 + 77159x2)

755216(1 + x2)
dx = π −

103993

33102
,

and
∫ 1

0

x12(1 − x)12(1349 − 1060x2)

38544(1 + x2)
dx =

104348

33215
− π.
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for m from 1 to 12 do

for n from 1 to 12 do

x:=’x’: a:=’a’: b:=’b’: c:=’c’:

sol:=int(x^m*(1-x)^n*(a+b*x+c*x^2)/(1+x^2),x=0..1):

out:=op(sol): eq1:=0: eq2:=0: eq3:=0:

for i from 1 to nops(sol) do

if type(out[i],Or(name,rational&*name,name&*rational)) then

eq1:=eq1+out[i]:

elif type(out[i]/Pi,Or(name,rational&*name,name&*rational)) then

eq2:=eq2+out[i]/Pi:

else

eq3:=eq3+out[i]/log(2):

end if;

end do:

assign(solve({eq1=355/113,eq2=-1,eq3=0})):

assume(x>=0,x<=1); print(m,n,a,b,c,is(a+b*x+c*x^2>=0));

end do:

end do:

Figure 1: Maple code to find coefficients of integrals that approximate π

We conclude with the somewhat sillier results

∫ 1

0

x8(1 − x)6(61 + 250x + 61x2)

500(1 + x2)
dx = 3.14160 − π, (15)

and
∫ 1

0

x9(1 − x)6(944 + 6569x2)

11250(1 + x2)
dx = π − 3.14159, (16)

that can be combined to prove that 3.14159 < π < 3.14160.
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