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Abstract

Flight testing of aircraft in which new design concepts, problems, and deficiencies
are examined, involves the collection of a large quantity of data or test parameters
allocated onto blocks within a telemetry frame or Data Cycle Map (DCM). Individual
parameters are sampled at different rates and may vary in both their word length and
the number of words used to represent them. During a flight test these parameters
are digitally represented and placed in a certain order within the DCM before being
transmitted to the ground. When planning a flight test it is necessary to determine
the order in which parameters are placed on the DCM to guarantee the integrity of
the data, and other industry standards, for example, relating to the length of frames
and the requirement for periodic placement of parameters.

This process is usually performed manually with some computer assistance, but
typically involves several week’s work for a number of people. As flight tests become
more complex, restrictions on bandwidth and personnel have become limiting factors.

We present an algorithm for the design of DCMs and discuss situations in which the
placement of sets of parameters on such frames is not possible using a number-theoretic
analysis of the data cycle map structure. A fast and efficient optimisation approach for
constructing DCMs using a set covering Integer Programming formulation (DCM-Opt)
is discussed. A comparison of efficiencies for this algorithm and DCM designs produced
by AutoTelemTM will be discussed.

1 Introduction

Aircraft flight testing involves the collection of data from specially instrumented aircraft
flown in planned testing missions. Typically several hundred parameters, such as speed, al-
titude, mechanical stress, pressure, etc. are sampled in such flight testing missions. Samples
are taken from sensors and transmitted to a ground receiving station. Prior to this trans-
mission the data is multiplexed into a data structure called a data cycle map (DCM).
The individual parameters may vary in the number of words required to store them and the
length of the word. Typically one to three words with word lengths of from 8 to 32 bits are
required. In addition, sampling rates will also vary from one parameter to another. The way
in which the data cycle map may be constructed is subject to certain standards as set down
by the Inter Range Instrument Group (IRIG) [1]. While these regulations are too numerous
to discuss here, the essential requirements relevent to this discussion can be summarised as
follows:-

• Parameters must be placed on the map in accordance with their word lengths and
sample rates;

• The map data structure may be viewed as an array called a major frame whose rows
are called minor frames;

• Minor frames can be no longer than 512 16 bit words in length;

• Major frames can consist of no more than 256 minor frames;

1



• Each minor and major frame must start with frame synchronisation words and contain
a frame id;

• Each parameter must be periodically spaced on the map. The length of the period is
determined by the sample rate and the length of the major frame;

• A data cycle map is a repetition of several major frames.

Since some parameters are collected at lower sample rates than others, such parameters may
not appear on every minor frame, but at least once on every major frame. Such parameters
are said to be subcommutated. On the other hand, parameters which occur at least once
on each minor frame are said to be supercommutated.

The process of designing a data cycle map prior to a flight test is complex and time con-
suming, [2, 3]. This process may take several week’s work for a number of people. Further,
as flight tests become more complex, the size of the map required may extend the limits
of available bandwidth, necessitating more than one flight to collect the data. It is there-
fore important that the process of data cycle map construction is as efficient as possible.
Efficiency in this case involves not only the time taken to construct the map, but also the
amount of unused space on the major frame. A more precise definition of efficiency will
be discussed later. From an operational viewpoint DCMs are constructed using what are
essentially computer assisted manual systems (for example FTIMS [7]). More recently, a
technique has been developed for taking a generated DCM and applying an improvement
heuristic to it [7], however it has been shown that while this technique improves on the man-
ually generated solution it gives results which are far from optimal. To date, optimisation
techniques applied to DCM construction have not been used in an operational environment.
Past experience with DCM generation has shown that when the data satisfies certain power
of two relationships fast solutions can be found. This idea has been addressed in [8] where
it has been extended to consider certain 2npk relationships, for some prime number p, in
the parameter sample rates. Efficiencies obtained using this method are low however. The
software package AutoTelemTM developed by QUEST Integrated Inc. uses a local search
procedure to produce near optimal DCMs and has been commissioned by the United States
Airforce. At the time of writing AutoTelemTM was still in the evaluation phase.

This paper discusses the process of data cycle map construction from the data input phase
to the generation of optimal telemetry frames. In section 2 we discuss the design of the
DCM based on the nature of the input data and the constraints imposed by the IRIG
regulations. The efficiency of a DCM will be defined in terms of our ability to generate
frames which minimise the amount of unused space. Some interesting number-theoretic
results will be discussed concerning our ability to generate efficient frames. The relationship
between generating DCMs and juggling will also be considered. In section 3 we discuss the
use of a set covering model as an optimisation tool for generating optimal DCMs. Section
4 discusses the results of a comparative study between DCM-Opt and AutoTelemTM with
respect to their relative efficiencies and speed of execution.
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2 The Data Cycle Map Structure

2.1 Introduction

Construction of a data cycle map is a complex process. The complexity lies not only in
the number of parameters required to be placed on the map, but more particularly in the
fact that, individually, they must be equally spaced. Manual methods for constructing maps
are faced with avoiding coincident placements. This avoidance becomes more and more
difficult as the map construction process proceeds. By necessity, manually constructed maps
therefore contain a very high percentage of ‘empty’ space as a result of avoiding coincident
placement.

In considering the application of optimisation methods to data cycle map construction we
need to take into account our ability to manage the task in terms of memory and compu-
tational requirements. The construction of an entire major frame for example will almost
certainly require a model which is too unwieldy and unmanageable. For this reason it will
be necessary to decompose the problem into smaller tasks whose solutions can be used as
building blocks for solving the larger problem. Our approach therefore will be to construct
minor frames whose replication can be used to define the entire major frame. In doing this
it will be essential that parameter sample rates are preserved and that parameter period-
icity is also achieved, along with other IRIG standards to be discussed later. To assist in
this decomposition approach we will represent each parameter in the DCM in terms of a
specified number of words. Each word will occupy a ‘slot’ in the DCM. The use of bits
to occupy slots and represent parameters would be potentially more efficient in a situation
where maps required parameters with varying word lengths, however the resulting models
would be unwieldy. In our model we select a uniform word length equal to the largest used
in the map, resulting in unused bits for parameters with shorter word lengths. Despite this
potential reduction in efficiency our ability to find optimal solutions using this approach will
outweigh this disadvantage.

2.2 Notation

Consider the following notation to be used in this section:
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N = Number of distinct parameter sample rates
ri = Required sample rate for parameter i (samples/second)
di = Number of signals sent at rate ri

pi = Sample rate for parameter i in the minor frame
mi = Period in word intervals for parameter i in the minor frame
wi = Number of words required for parameter i
globalw = Global word length (bits)
mfl = Minor frame length (words)
mfr = Minor frame rate (number of frames/second)
nmf = Number of minor frame in each major frame
nfb = Number of bits in designed frame
E = Efficiency

2.3 The structure of the minor frame

The design of a suitable telemetry frame is dependent on several factors. Apart from pe-
riodicity and minimum required sample rates, IRIG Class I conditions also require that
transmission bit rates fall within a minimum and maximum level, each minor frame has two
header synchronisation words and a minor frame id word, there is a common word length
for each parameter, minor frames contain no more than 512 16 bit words, and that there
are no more than 256 minor frames in a major frame. Although we will not be concerned
with many of these operational issues it is important that they are taken into account when
designing a suitable telemetry frame. In order to accommodate all parameters on the frame
in ‘slots’ of equal length we will adopt a common or global word length globalw. This may
vary from one data set to another, however for the purposes of this discussion we assume
it is 16 bits in length. We also assume that the header words are placed at the beginning
of each minor frame, but the frame id may be placed anywhere in the frame. Within these
constraints the task is to place the measured parameters onto a frame according to their
required sample rates and periodicity. As we will see the periodicity will depend on the size
of the frame. There are normally several options available on the size of the frame, however
it is our task to select a frame size in which the total amount of unused space is as small as
possible.

The efficiency E of a frame design can be defined as the ratio

E = required bits/nfb,

where the bit rate in the frame design

nfb = mfr ∗ mfl ∗ globalw.

Since the required bit rate is given by ri ∗ di ∗ wi ∗ globalw the efficiency E can be written

E =
N∑

i=1

(ri ∗ di ∗ wi ∗ globalw)/nfb. (1)

Note that the required number of bits (numerator) does not include header or frame id words
but that these are included in computing the value of nfb.
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Since in general it is too hard to design the entire major frame at once we consider an
approach where we design a set of minor frames which when taken together constitute the
entire major frame. As long as the ri values are minimally satisfied and their placement is
periodic it is not important that each parameter is placed in each minor frame. In most cases
a parameter will appear at least once in each minor frame, and we say it is supercommutated.
If however a parameter does not appear in every minor frame, but as long as it occurs at
least once in the major frame, we say it is subcommutated. To see how this situation arises
we consider the following example:-

Example 1: Consider N = 4 parameter classes and assume that globalw = 16. Sample
rates, the number of signals and the parameter word sizes are shown in table 1.

ri 1 5 6 25
di 1 3 2 1
wi 1 1 1 1

Table 1: A data set with 5 parameter classes.

In the process we will describe it is necessary to place the ri values in increasing order as
given in table 1. We now select one of the sample rates as the minor frame rate mfr and
let mfr = rk. In fact rk must be selected so that minimum and maximum bit transmission
rates are not exceeded, however we will not discuss this issue and always assume that the
choice of rk is legal. In this case the value of rk represents the number of times the minor
frame occurs per second. We now divide each of the input data rates ri by rk to give the
vector

{
r1

rk

,
r2

rk

, . . . ,
rN

rk

},

where the kth element rk/rk = 1, all elements to the left of the kth are less than 1 and all
elements to the right of the kth are greater than 1. To illustrate, suppose we choose rk = 5
giving the vector

{
1

5
,
1

1
,
6

5
,
25

5
}.

We now rewrite this as a vector of minor frame rates {p1, p2, . . . , pN} which in this case is
{5, 1, 2, 5}. Numbers to the right of 1 are rounded up (drj/rke j > k) which effectively
means that they may be oversampled in the minor frame. The resulting rates in this case
represent parameters which are supercommutated in the minor frame. Thus parameter three
will occur twice in each minor frame and parameter four five times. Since the frame rate is
5 in this case then the minor frame is repeated 5 times per second resulting in parameter
three appearing 10 times per second, compared with its required sample rate of 6 per second.
Numbers to the left of 1 must be rescaled so that their numerators are all equal to 1. The
rescaled values are then inverted to give minor frame rates for subcommutated parameters.
Thus the value of 5 for parameter 1 means that this parameter will occur only once in every
5 minor frames. In order to ensure that all parameters will fit into a minor frame with
periodicity satisfied we need to add up the space required for both subcommutated and
supercommutated parameters together with 3 slots for the header and frame id words. This
value may have to be increased to the nearest multiple of the LCM of the supercommutated
parameters to ensure that each supercommuated minor frame rate pj j > k divides the
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minor frame length and hence periodicity is satisfied. In general the space required by the
supercommutated data is given by

N∑

i=k

pi ∗ di ∗ wi. (2)

In our example this gives a value of 12. In general the space required by the subcommutated
data is given by

k−1∑

i=1

wi ddi/pie, (3)

which in our example yields 1. In addition we add 3 words for the header and frame id, giving
a total of 16. Since 5 does not divide 16 this must be increased to 20 which is the nearest
multiple of LCM(2,5). Thus we have a minor frame length of mfl = 20. To summarise,
we are now generating minor frames each of length 20 16 bit words. Parameter one will be
placed in only one of these (any one will do), while parameters two, three, and four will
be placed 1, 2, and 5 times respectively at appropriate positions to ensure wrap-around
periodicity. Note that the number of minor frames required is in general given by

nmf = LCM(p1, p2, . . . , pk) (4)

which will guarantee that subcommutated parameters can also be periodically placed. In
our example nmf = 5. Finally we need to compute the efficiency of this construction. The
required bit rate is 848, whereas the designed bit rate is 1600. Our efficiency is therefore
848/1600 or 53%. 2

The process described in example 1 can be carried out for all possible values of rk and a
value of E calculated for each. A number of factors may influence the value of E. These
include the degree of rounding up required to determine pi values leading to oversampling
and hence wasted space, the gap between the nominal minor frame length and the value
mfl required to satisfy periodicity and the minor frame rate necessary for periodicity of the
subcommutated parameters. For very large data sets all or many of the choices may violate
the maximum minor frame length of 8192 bits. In this situation a simple device for restoring
legality is to introduce header splits into the minor frame. In this situation the header can
be thought of as another parameter with a sample rate determined by the required number
of splits. For example suppose that the most efficient frame design gives a frame length of
842 16 bit words, including the original header of two words and a frame id of one word.
We introduce another two word header and treat it as a parameter with a sample rate of
2. The additional 2 words can be added to the original nominal minor frame length which
will in most cases still give a frame length less than or equal to 842. If necessary the revised
mfl may need to be adjusted up by adding another LCM factor of the supercommutated
parameters. When the new mfl value is computed (assume for the sake of this arguement
this is still 842), our original minor frame of length 842 can now be replaced by two minor
frames each of length 421. Periodic placement of the header will guarantee that they are
placed at the start of each of these two new frames. The header splitting strategy will work
as long as the total number of minor frames does not exceed the limit of 256. If this limit is
exceeded the data set is too large to conform to IRIG class I conditions.
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Preprocessing of the data will examine all options and their relative efficiencies. Under
normal circumstances the option which has the highest efficiency will be chosen and will
generate a feasible minor frame set. Under certain circumstances however feasible minor
frames will not exist. An example will illustrate.

Example 2: Consider the data given in table 2

ri 1 3 5
di 1 2 1
wi 1 1 1

Table 2: A data set with 3 parameter classes.

Table 3 shows all possible rates, minor frame lengths and efficiencies. Of the three optional
frame rates the most efficient is a single frame with efficiency 80%.

mfr mfl E(%)
rk

1 1 15 80
3 3 8 50
5 5 7 34

Table 3: Alternative frame rates and efficiencies for data from table 2

The natural choice in this case is a frame rate of 1 with no subcommutation. The periods mi

for each parameter i are given by mfl/pi giving {15, 5, 3} with a space of 2 words reserved at
the beginning for the header and an additional space for the frame id. It is easy to show by
construction that placement of the parameters on this frame is impossible without avoiding
coincidence. In this case we are forced to try a less efficient frame construction. This issue
will be explored in the next section.

2.4 The non-coincident placement of parameters on a minor frame

The example in the previous section fails because of the relative prime relationship between
the periods for parameters two and three. As we will establish later in this section, this is
a sufficient condition for coincidence to occur, however it is not a necessary condition, and
a much deeper analysis of the problem is required. Some insight into this problem can be
gained by reference to the Chinese Remainder Theorem in its more general form (CRT) [6].
which can be stated as follows:-

‘The set of n linear congruences x ≡ ai(mod mi) has a solution x if and only if the
greatest common divisor of every pair of moduli, (mi, mj), i, j = 1, . . . , n, i 6= j divides the
corresponding ai − aj’.

In relation to our problem, the mi represent parameter periods, and the ai the initial param-
eter placements. As we will see from the following examples, our ability to find a solution
for the variable x is related to the issue of coincident placement. Note that for examples
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in this section we will assume that all parameters are supercommutated. The analysis is
easily extendable to the more general case since the size of the minor frame is determined
as a multiple of the LCM of all supercommutated parameters. In addition we will assume
without loss of generality that a single word header is used.

Example 3: Consider 3 parameters with p1 = 1, p2 = 4, p3 = 8. We assume all parameters
have word length 1, hence LCM(p1, p2, p3) = 8, mfl = 16, and corresponding periods are
m1 = 16, m2 = 4, m3 = 2. It is easy to find a non-coincident solution in this case. Indeed
if our initial placement for parameter 3 is a3 = 2, parameter 2 a2 = 3, and parameter 1,
a1 = 5, for example, then the associated congruences can be written x ≡ 2(mod 2), x ≡
3(mod 4), x ≡ 5(mod 16). Note that in this case no unique pair (mi, mj) divides ai − aj.
Non-coincident placement thus corresponds to the property (mi, mj) 6 | ai − aj for every
unique pair i, j. No solution x can be found for the set of congruence relations in this case.

Example 4: Now consider 3 parameters with p1 = 1, p2 = 4, p3 = 6. We assume
all parameters have word length 1, hence mfl = 12 and corresponding periods are m1 =
12, m2 = 3, m3 = 2. In this case whatever initial placements are chosen coincidence is
unavoidable. For example suppose our initial placement for parameter 1 is in position 5,
parameter 2 in position 3, and parameter 3 in position 2, then the associated congruences can
be written x ≡ 5(mod 12), x ≡ 3(mod 3), x ≡ 2(mod 2). We see that since (m2, m3) = 1,
this will divide any difference a2 − a3 and hence whatever initial placement we select for
parameters 2 and 3, coincidence is unavoidable.

What should now be clear from these examples is that non-coincidence of placement corre-
sponds to being able to find (mi, mj) values which do not divide ai − aj. Moreover we need
this situation to apply for all such i, j combinations. In this situation a solution x can never
be found, and so in a sense we are seeking conditions in which no solution x can occur for
any subset of the congruences.

We have already identified a situation in which coincidence cannot be avoided, as illustrated
in example 4, where two periods are relatively prime. This observation can be formalised in
the following result:

Theorem 1: Let p1, p2, . . . , pn be the sample rates of n parameters in a minor frame with
associated periods m1, m2, . . . , mn. A sufficient condition for the coincidence of parameters
i and j in the frame is that periods mi and mj are relatively prime.

Proof: Consider pi and pj, and their associated periods mi and mj, which are relatively
prime. Assume that parameter i is placed first at position ai, then subsequent placements
are defined by ai + rimi with 0 ≤ ri < pi. Parameter j can now be placed at positions
aj + rjmj where 0 ≤ rj < pj and aj 6= ai + kmi for integer k. Consider the condition for
which there is at least one value for which positions of parameters i and j coincide, namely
ai + rimi = aj + rjmj. This can be rewritten as rimi − rjmj = aj − ai. This represents a
diophantine equation in variables ri and rj. It is well known that a necessary and sufficient
condition for such equations to have solutions is that the greatest common divisor of mi and
mj divides aj − ai, i.e. (mi, mj)|aj − ai. We note that if mi and mj are relatively prime then
(mi, mj) = 1 which will always divide aj − ai. This means that whatever choice of initial
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values, a coincidence of positions will occur and hence periodic assignment is not possible in
this case. 2

There is an interesting parallel between juggling and the placement of parameters on a
telemetry frame [4]. A common notation used in juggling literature is the site swap where
a juggling pattern can be represented by a set H = {hi} i = 1, . . . , F where each hi

represents a height function of a throw, and F is the number of throws in the pattern. For
example the sequence 51414 denotes a period 5 pattern with 3 balls. Heights in this case
correspond to periods for the DCM problem. Periodic in this context refers to the pattern
rather than the height of the balls. If we call the balls A, B, C this gives the pattern ABBCC
where ball A has constant period 5 but balls B and C alternate from period (height) 1 to
period 4. The number of balls in this pattern is given by the average height which is 3 and
the site swap pattern is repeated periodically. Unless the average height is an integer this is
not a feasible juggling pattern. This corresponds to the DCM requirement that the length
of the minor frame is divisible by all parameter periods. Such site swap patterns are not
guaranteed to be periodic however. The conditions under which periodic juggling patterns
occur have been investigated in [5].

Theorem 2: A site swap sequence h0h1 . . . hn−1 is periodic if and only if (ht + t)(mod n) is
a permutation of {0, 1, . . . , n− 1}, where t gives the position in the sequence 0, 1, . . . , n− 1.

For example the site swap pattern 51414 gives the permutation {02143}. This result also
allows for ’empty hand’ throws so that missing positions in the sequence denoted by 0s can
occur. To illustrate, consider a simple DCM requirement of three parameters with sample
rates ri : 1 3 6. Ignoring the need for a frame header this requires a frame length of 12
to ensure periodic placement with associated periods mi : 12 4 2 and hence there are 2
empty slots. We need a permutation for the sequence 12 4 4 4 2 2 2 2 2 2 0 0. Labelling
the parameters (balls) A B C it is easy to find a site swap sequence which is periodic, for
example

A C B C 0 C B C 0 C B C.

The associated permutation in this case is {0 3 6 5 4 7 10 9 8 11 2 1}. While it is easy
to find a periodic pattern and associated permutation (with constant height balls) in this
case, in general the task of finding such a permutation is at least as hard as the original
problem. The juggling result requires a simple test for a given pattern, whereas in our case
a pattern must first be found. We are therefore more concerned with determining conditions
for detecting coincidence which are based on the initial data. One such sufficient condition
for coincidence has already between discussed, namely when two periods are relatively prime.
However we require necessary conditions for coincidence so that when these conditions are
not satisfied we can be certain that coincidence will not occur.

2.5 Coincidence Conditions

Analysis of a large number of data sets has led to the following observations:-
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Definition: A coincident set of order k is a set of periods mi, i = 1, . . . , k for which each
distinct gcd (mi, mj), i, j = 1, . . . , k (i < j) = k − 1.

An example of a coincident set of order 3 is m1 = 10, m2 = 6, m3 = 4. In this case we have
(m1, m2) = (m1, m3) = (m2, m3) = 2.

Theorem 3: Consider a set of n parameters with periods mi and associated initial place-
ments ai, 0 < ai ≤ mi. A sufficient condition for coincident placement is that the periods
contain a coincident set.

Proof: First, we make the observation that when k = 2 and (m1, m2) = 1 we have the
case of two relatively prime periods considered earlier. Suppose mi form a coincident set
of order k. Observe that with k distinct values of initial placements ai it is impossible to
avoid at least one difference ai − aj divisible by k − 1. Since (mi, mj) = (k − 1) for all
i, j = 1, . . . , k i < j then at least one coincidence must occur as a consequence of the CRT.
2

Example 6: Consider five parameters with p1 = 1, p2 = 6, p3 = 10, p4 = 30, p5 = 30,
all with word length 1. This gives mfl = 90 with associated periods m1 = 90, m2 =
15, m3 = 9, m4 = 3, m5 = 3. In this case we have 4 periods m2, . . . , m5 with (mi, mj) =
3, i < j, and hence a coincident set of order 4. For example with the initial placements as
shown |4|5|2|4|5|3| · · · we see that the corresponding congruences are x ≡ 1(mod 3), x ≡
2(mod 3), x ≡ 3(mod 15), x ≡ 6(mod 9). In the last two of these we have (15, 9) = 3|6− 3.

Note that for small data sets proof of coincidence can be achieved by construction. For
larger data sets the number of permutations of placements makes the constructive approach
impossible. In the next section we will discuss an optimisation model which implicitly
performs this construction process and hence can be used to test for coincidence. Validation
of these results is also available using the AutoTelemTM software.

While a coincident set is sufficient to ensure coincidence, it is not necessary. Consider the
following example:

Example 7: It can be shown that coincident placement is unavoidable with the periods
m1 = 120, m2 = 20, m3 = 12, m4 = 4, m5 = 2. These periods contains no relatively prime
pairs or coincident sets however.

Observation of a large number of data sets has suggested the following conjecture which if
proven strengthens the coincident set result.

Conjecture: Consider the sequence of periods m1, . . . , mN where period mi has di associated
signals and periods are placed in descending order. Periods in the subset m1 represent the
minor frame length. Take the subsets of periods m2, . . . , mN and treat each repeated period
independently. Assume there are a total of k such independent periods. Compute all gcd
pairs (mi, mj) i < j, and compute the average gcd over all such pairs. If this average is
≤ k − 1 then coincidence of parameters will occur.

Omission of the highest period parameter can be justified on the basis that none of these
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parameters is repeated in the placement process. They need only be placed in one position
in the frame and there is guaranteed to be space for them. Every data set tested for which
the average as defined above is ≤ k − 1 gives no feasible solution and hence coincidence. In
example 7, the average gcd as defined above is equal to 3 (k− 1). An isolated case has been
found for which coincidence occurs with an average > k − 1 thus the conjecture is at best a
more general sufficiency condition for coincidence.

Despite the absence of a necessary condition for coincidence, DCM generation can be carried
out with relative efficiency. Models discussed in the following section allow us to quickly test
a number of options and take necessary action if an option fails. Never the less, research is
continuing in order to develop a better understanding of the process.

3 Optimisation Models

Three alternative models were considered to generate optimal or near optimal DCMs. The
first considered was an Integer Programming (IP) formulation in which parameters were
directly assigned to a minor frame with all desired properties. This method proved feasible
but too slow to be operationally useful. The second model considered involved the use of
Genetic Algorithms. While this approach has some potential it is not sufficiently developed
to be a contender at this stage. The third approach which has proved successful has been
to use a set covering model.

3.1 Set Covering Model- DCM-Opt

Having determined the length of the minor frame mfl we can now enumerate all possible
placements for a given parameter on this frame. Each placement pattern will be referred
to as a tour. For example, consider the data from table 1 with a minor frame rate of 5
and a minor frame length of mfl = 20. Consider the parameter with required rate 25 and a
supercommutated rate of 5. This parameter will have period 4 on the minor frame and has
the following tours as shown in table 4.

Our problem is to select one tour for each parameter so that the minor frame is covered with
no overlap. Generation of the parameter tours automatically ensures that they are periodic.
Consider the following model:-

Define the binary variable xi to be 1 if column i is selected, and 0 otherwise. Note that
columns can be divided into subsets Si, one for each parameter, and that only one column
from each subset can be chosen.

Minimise
∑

k

sk (5)

subject to
∑

i

aikxi + sk ≤ 1 ∀k, (6)
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tour → 1 2 3 4
frame
position
1 1
2 . 1
3 . 1
4 . 1
5 1
. . . .
. . . .
9 1
10 . 1
11 . 1
12 . 1
13 1
. . . .
. . . .
20 1

Table 4: Enumeration of all tours for parameter period 4.

where aik = 1 if parameter i covers position k and 0 otherwise, and sk is a slack variable
for frame position k. Thus if frame position k is not covered by a parameter tour the slack
variable sk = 1. In addition the constraints

∑

r∈Si

1r = 1 ∀i, (7)

where 1r = 1 for each element in the set, ensure that only one column is selected from each
parameter set.

The objective is to minimise the sum of the slack variables sk which is consistent with
a solution having as little unused space as possible. Savings in the number of variables
can be made by noting that in the generation of the parameter tours there is considerable
duplication since parameters with the same minor frame sample rate and word requirements
will have identical tour sets. Parameters can be grouped into parameter classes and tours
generated for each class. In this case the constraints which ensure that only one parameter
is selected from each set are modified so that the appropriate number are selected from each
class. Once the optimal solution is found, members of each class are assigned arbitrarily to
each tour and the minor frame map reconstructed.

An interesting feature of this model is that we know à priori what the optimal solution
objective value is, since we know that a non-coincident solution must leave a number of
empty slots in the minor frame equal to the difference between the computed minor frame
length mfl and the nominal minor frame length. This enables us to set the tightest possible
bound on the optimal solution, thereby greatly reducing the size of the branch and bound
tree. Two other observations are important. First, when these models are solved using
CPLEXTM 7.0 we have the option of seeking feasible rather than optimal solutions since in
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this case any feasible solution is automatically optimal. Second, Dual Simplex is used as the
default LP solver, however when the number of columns in the model becomes significantly
greater than the number of rows we switch to the Primal LP solver. Both of these strategies
contribute significantly to reductions in execution times.

4 Results

A total of 1870 data sets representing bit requirements ranging from 640 to 1119968 were
selected for analysis. Each algorithm was compared for the efficiency of its frame design and
execution time.

All results were generated on a PC with clock speed 733 MHz. AutoTelem was run under
Windows 95, while DCM-Opt was run under Red Hat Linux v6.2.
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Figure 1: Average efficiency for each algorithm, over batches of 100 data sets which have
been ordered in size of increasing bit requirements.

The relative efficiencies of DCM-Opt and AutoTelemTM are displayed in Figure 1. These
graphs represent the average efficiency as a function of the size of the input file required bits.
All results were sorted in order of increasing required bits and the efficiency values averaged
over batches of size 100 (except for the last batch which is of size 70). The median batch
size is shown on the figure for each batch. It can be observed that for batches in the mid
to high range of required bits the DCM-Opt algorithm generally produces solutions with a
higher efficiency than for AutoTelemTM , whereas for data sets in the low to mid range of
required bits the reverse is true. Without knowledge of the algorithm used in AutoTelemTM

we surmise that this is a consequence of the header splitting strategy used for DCM-Opt, as
described in Section 2.3, which will tend to be executed for larger data sets.

A comparison of execution times is shown in Figure 2. The results in this case are also
sorted in order of increasing required bits and times are averaged over batches of size 100.
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Figure 2: Average execution time in seconds for AutoTelemTM and DCM-Opt, over batches
of 100 data sets which have been ordered in size of increasing bit requirements.

It is clear that DCM-Opt executes faster than AutoTelemTM across the range of data set
batches. Both algorithms have low execution times in absolute terms compared with current
frame generation practice.
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